1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Analysis/SliceAnalysis.h" 14 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 15 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 16 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 17 #include "mlir/Dialect/Linalg/Utils/Utils.h" 18 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 19 #include "mlir/Dialect/Vector/VectorOps.h" 20 #include "mlir/IR/AffineExpr.h" 21 #include "mlir/IR/Matchers.h" 22 #include "mlir/IR/PatternMatch.h" 23 #include "mlir/Pass/Pass.h" 24 #include "mlir/Support/LLVM.h" 25 #include "mlir/Transforms/RegionUtils.h" 26 #include "llvm/ADT/ScopeExit.h" 27 #include "llvm/ADT/Sequence.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/TypeSwitch.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <type_traits> 33 34 using namespace mlir; 35 using namespace mlir::linalg; 36 37 using llvm::dbgs; 38 39 #define DEBUG_TYPE "linalg-vectorization" 40 41 /// Return the unique instance of OpType in `block` if it is indeed unique. 42 /// Return null if none or more than 1 instances exist. 43 template <typename OpType> 44 static OpType getSingleOpOfType(Block &block) { 45 OpType res; 46 block.walk([&](OpType op) { 47 if (res) { 48 res = nullptr; 49 return WalkResult::interrupt(); 50 } 51 res = op; 52 return WalkResult::advance(); 53 }); 54 return res; 55 } 56 57 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a 58 /// projectedPermutation, compress the unused dimensions to serve as a 59 /// permutation_map for a vector transfer operation. 60 /// For example, given a linalg op such as: 61 /// 62 /// ``` 63 /// %0 = linalg.generic { 64 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, 65 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> 66 /// } 67 /// ins(%0 : tensor<2x3x4xf32>) 68 /// outs(%1 : tensor<5x6xf32>) 69 /// ``` 70 /// 71 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine 72 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second 73 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. 74 static AffineMap reindexIndexingMap(AffineMap map) { 75 assert(map.isProjectedPermutation() && "expected projected permutation"); 76 auto res = compressUnusedDims(map); 77 assert(res.getNumDims() == res.getNumResults() && 78 "expected reindexed map with same number of dims and results"); 79 return res; 80 } 81 82 /// Helper data structure to represent the result of vectorization. 83 /// In certain specific cases, like terminators, we do not want to propagate/ 84 enum VectorizationStatus { 85 /// Op failed to vectorize. 86 Failure = 0, 87 /// Op vectorized and custom function took care of replacement logic 88 NoReplace, 89 /// Op vectorized into a new Op whose results will replace original Op's 90 /// results. 91 NewOp 92 // TODO: support values if Op vectorized to Many-Ops whose results we need to 93 // aggregate for replacement. 94 }; 95 struct VectorizationResult { 96 /// Return status from vectorizing the current op. 97 enum VectorizationStatus status = VectorizationStatus::Failure; 98 /// New vectorized operation to replace the current op. 99 /// Replacement behavior is specified by `status`. 100 Operation *newOp; 101 }; 102 103 /// Return a vector type of the same shape and element type as the (assumed) 104 /// ShapedType of `v`. 105 static VectorType extractVectorTypeFromShapedValue(Value v) { 106 auto st = v.getType().cast<ShapedType>(); 107 if (st.isa<MemRefType>() && st.getShape().empty()) 108 return VectorType(); 109 return VectorType::get(st.getShape(), st.getElementType()); 110 } 111 112 /// Given an `outputOperand` of a LinalgOp, compute the intersection of the 113 /// forward slice starting from `outputOperand` and the backward slice 114 /// starting from the corresponding linalg.yield operand. 115 /// This intersection is assumed to have a single binary operation that is 116 /// the reduction operation. Multiple reduction operations would impose an 117 /// ordering between reduction dimensions and is currently unsupported in 118 /// Linalg. This limitation is motivated by the fact that e.g. 119 /// min(max(X)) != max(min(X)) 120 // TODO: use in LinalgOp verification, there is a circular dependency atm. 121 static Operation *getSingleBinaryOpAssumedReduction(OpOperand *outputOperand) { 122 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 123 auto yieldOp = cast<YieldOp>(linalgOp->getRegion(0).front().getTerminator()); 124 unsigned yieldNum = 125 outputOperand->getOperandNumber() - linalgOp.getNumInputs(); 126 llvm::SetVector<Operation *> backwardSlice, forwardSlice; 127 BlockArgument bbArg = linalgOp->getRegion(0).front().getArgument( 128 outputOperand->getOperandNumber()); 129 Value yieldVal = yieldOp->getOperand(yieldNum); 130 getBackwardSlice(yieldVal, &backwardSlice, [&](Operation *op) { 131 return op->getParentOp() == linalgOp; 132 }); 133 backwardSlice.insert(yieldVal.getDefiningOp()); 134 getForwardSlice(bbArg, &forwardSlice, 135 [&](Operation *op) { return op->getParentOp() == linalgOp; }); 136 // Search for the (assumed unique) elementwiseMappable op at the intersection 137 // of forward and backward slices. 138 Operation *reductionOp = nullptr; 139 for (Operation *op : llvm::reverse(backwardSlice)) { 140 if (!forwardSlice.contains(op)) 141 continue; 142 if (OpTrait::hasElementwiseMappableTraits(op)) { 143 if (reductionOp) { 144 // Reduction detection fails: found more than 1 elementwise-mappable op. 145 return nullptr; 146 } 147 reductionOp = op; 148 } 149 } 150 // TODO: also assert no other subsequent ops break the reduction. 151 return reductionOp; 152 } 153 154 /// If `value` of assumed VectorType has a shape different than `shape`, try to 155 /// build and return a new vector.broadcast to `shape`. 156 /// Otherwise, just return `value`. 157 // TODO: this is best effort atm and there is currently no guarantee of 158 // correctness for the broadcast semantics. 159 static Value broadcastIfNeeded(OpBuilder &b, Value value, 160 ArrayRef<int64_t> shape) { 161 unsigned numDimsGtOne = std::count_if(shape.begin(), shape.end(), 162 [](int64_t val) { return val > 1; }); 163 auto vecType = value.getType().dyn_cast<VectorType>(); 164 if (shape.empty() || 165 (vecType != nullptr && 166 (vecType.getShape() == shape || vecType.getRank() > numDimsGtOne))) 167 return value; 168 auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType() 169 : value.getType()); 170 return b.create<vector::BroadcastOp>(b.getInsertionPoint()->getLoc(), 171 newVecType, value); 172 } 173 174 static llvm::Optional<vector::CombiningKind> 175 getKindForOp(Operation *reductionOp) { 176 if (!reductionOp) 177 return llvm::None; 178 return llvm::TypeSwitch<Operation *, llvm::Optional<vector::CombiningKind>>( 179 reductionOp) 180 .Case<AddIOp, AddFOp>([&](auto op) { 181 return llvm::Optional<vector::CombiningKind>{ 182 vector::CombiningKind::ADD}; 183 }) 184 .Default([&](auto op) { return llvm::None; }); 185 } 186 187 /// If value of assumed VectorType has a shape different than `shape`, build and 188 /// return a new vector.broadcast to `shape`. 189 /// Otherwise, just return value. 190 static Value reduceIfNeeded(OpBuilder &b, VectorType targetVectorType, 191 Value value, OpOperand *outputOperand) { 192 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 193 assert(targetVectorType.getShape() == linalgOp.getShape(outputOperand)); 194 auto vecType = value.getType().dyn_cast<VectorType>(); 195 if (!vecType || vecType.getShape() == targetVectorType.getShape()) 196 return value; 197 // At this point, we know we need to reduce. Detect the reduction operator. 198 // TODO: Use the generic reduction detection util. 199 Operation *reductionOp = getSingleBinaryOpAssumedReduction(outputOperand); 200 unsigned pos = 0; 201 MLIRContext *ctx = b.getContext(); 202 SmallVector<AffineExpr> exprs; 203 for (auto s : linalgOp.iterator_types()) 204 if (isParallelIterator(s)) 205 exprs.push_back(getAffineDimExpr(pos++, ctx)); 206 auto loc = value.getLoc(); 207 // TODO: reuse common CombiningKing logic and support more than add. 208 auto maybeKind = getKindForOp(reductionOp); 209 assert(maybeKind && "Failed precondition: could not get reduction kind"); 210 unsigned idx = 0; 211 SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false); 212 for (auto attr : linalgOp.iterator_types()) { 213 if (isReductionIteratorType(attr)) 214 reductionMask[idx] = true; 215 ++idx; 216 } 217 return b.create<vector::MultiDimReductionOp>(loc, value, reductionMask, 218 *maybeKind); 219 } 220 221 /// Build a vector.transfer_read from `source` at indices set to all `0`. 222 /// If source has rank zero, build an memref.load. 223 /// Return the produced value. 224 static Value buildVectorRead(OpBuilder &b, Value source, VectorType vectorType, 225 AffineMap map) { 226 Location loc = source.getLoc(); 227 auto shapedType = source.getType().cast<ShapedType>(); 228 SmallVector<Value> indices(shapedType.getRank(), 229 b.create<ConstantIndexOp>(loc, 0)); 230 return b.create<vector::TransferReadOp>(loc, vectorType, source, indices, 231 map); 232 } 233 234 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set 235 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp 236 /// currently being vectorized. If `dest` has null rank, build an memref.store. 237 /// Return the produced value or null if no value is produced. 238 static Value buildVectorWrite(OpBuilder &b, Value value, 239 OpOperand *outputOperand) { 240 Operation *write; 241 Location loc = value.getLoc(); 242 if (VectorType vectorType = 243 extractVectorTypeFromShapedValue(outputOperand->get())) { 244 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 245 AffineMap map = 246 reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand)); 247 SmallVector<Value> indices(linalgOp.getRank(outputOperand), 248 b.create<ConstantIndexOp>(loc, 0)); 249 value = broadcastIfNeeded(b, value, vectorType.getShape()); 250 value = reduceIfNeeded(b, vectorType, value, outputOperand); 251 write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(), 252 indices, map); 253 } else { 254 write = b.create<memref::StoreOp>(loc, value, outputOperand->get()); 255 } 256 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write); 257 if (!write->getResults().empty()) 258 return write->getResult(0); 259 return Value(); 260 } 261 262 // Custom vectorization function type. Produce a vector form of Operation* 263 // assuming all its vectorized operands are already in the BlockAndValueMapping. 264 // Return nullptr if the Operation cannot be vectorized. 265 using CustomVectorizationHook = std::function<VectorizationResult( 266 Operation *, const BlockAndValueMapping &)>; 267 268 /// Helper function to vectorize the terminator of a `linalgOp`. New result 269 /// vector values are appended to `newResults`. Return 270 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it 271 /// should not try to map produced operations and instead return the results 272 /// using the `newResults` vector making them available to the 273 /// vectorization algorithm for RAUW. This function is meant to be used as a 274 /// CustomVectorizationHook. 275 static VectorizationResult 276 vectorizeLinalgYield(OpBuilder &b, Operation *op, 277 const BlockAndValueMapping &bvm, LinalgOp linalgOp, 278 SmallVectorImpl<Value> &newResults) { 279 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 280 if (!yieldOp) 281 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 282 for (auto outputs : llvm::enumerate(yieldOp.values())) { 283 // TODO: Scan for an opportunity for reuse. 284 // TODO: use a map. 285 Value vectorValue = bvm.lookup(outputs.value()); 286 Value newResult = buildVectorWrite( 287 b, vectorValue, linalgOp.getOutputOperand(outputs.index())); 288 if (newResult) 289 newResults.push_back(newResult); 290 } 291 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 292 } 293 294 /// Helper function to vectorize the index operations of a `linalgOp`. Return 295 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it 296 /// should map the produced operations. This function is meant to be used as a 297 /// CustomVectorizationHook. 298 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op, 299 LinalgOp linalgOp) { 300 IndexOp indexOp = dyn_cast<linalg::IndexOp>(op); 301 if (!indexOp) 302 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 303 auto loc = indexOp.getLoc(); 304 // Compute the static loop sizes of the index op. 305 auto targetShape = linalgOp.computeStaticLoopSizes(); 306 // Compute a one-dimensional index vector for the index op dimension. 307 SmallVector<int64_t> constantSeq = 308 llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()])); 309 ConstantOp constantOp = 310 b.create<ConstantOp>(loc, b.getIndexVectorAttr(constantSeq)); 311 // Return the one-dimensional index vector if it lives in the trailing 312 // dimension of the iteration space since the vectorization algorithm in this 313 // case can handle the broadcast. 314 if (indexOp.dim() == targetShape.size() - 1) 315 return VectorizationResult{VectorizationStatus::NewOp, constantOp}; 316 // Otherwise permute the targetShape to move the index dimension last, 317 // broadcast the one-dimensional index vector to the permuted shape, and 318 // finally transpose the broadcasted index vector to undo the permutation. 319 std::swap(targetShape[indexOp.dim()], targetShape.back()); 320 auto broadCastOp = b.create<vector::BroadcastOp>( 321 loc, VectorType::get(targetShape, b.getIndexType()), constantOp); 322 SmallVector<int64_t> transposition = 323 llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops())); 324 std::swap(transposition.back(), transposition[indexOp.dim()]); 325 auto transposeOp = 326 b.create<vector::TransposeOp>(loc, broadCastOp, transposition); 327 return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; 328 } 329 330 /// Generic vectorization for a single operation `op`, given already vectorized 331 /// operands carried by `bvm`. Vectorization occurs as follows: 332 /// 1. Try to apply any of the `customVectorizationHooks` and return its 333 /// result on success. 334 /// 2. Clone any constant in the current scope without vectorization: each 335 /// consumer of the constant will later determine the shape to which the 336 /// constant needs to be broadcast to. 337 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 338 /// of the `customVectorizationHooks` to cover such cases. 339 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 340 /// operand of maximal rank. Other operands have smaller rank and are 341 /// broadcast accordingly. It is assumed this broadcast is always legal, 342 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 343 /// 344 /// This function assumes all operands of `op` have been vectorized and are in 345 /// the `bvm` mapping. As a consequence, this function is meant to be called on 346 /// a topologically-sorted list of ops. 347 /// This function does not update `bvm` but returns a VectorizationStatus that 348 /// instructs the caller what `bvm` update needs to occur. 349 static VectorizationResult 350 vectorizeOneOp(OpBuilder &b, Operation *op, const BlockAndValueMapping &bvm, 351 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 352 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op); 353 354 // 1. Try to apply any CustomVectorizationHook. 355 if (!customVectorizationHooks.empty()) { 356 for (auto &customFunc : customVectorizationHooks) { 357 VectorizationResult result = customFunc(op, bvm); 358 if (result.status == VectorizationStatus::Failure) 359 continue; 360 return result; 361 } 362 } 363 364 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 365 // Clone so that the constant is not confined to the linalgOp block . 366 if (isa<ConstantOp>(op)) 367 return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)}; 368 369 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 370 if (!OpTrait::hasElementwiseMappableTraits(op)) 371 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 372 373 // 4. Generic vectorization path for ElementwiseMappable ops. 374 // a. first get the first max ranked shape. 375 SmallVector<int64_t, 4> firstMaxRankedShape; 376 for (Value operand : op->getOperands()) { 377 auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); 378 if (vt && firstMaxRankedShape.size() < vt.getShape().size()) 379 firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); 380 } 381 // b. broadcast each op if needed. 382 auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { 383 return firstMaxRankedShape.empty() 384 ? bvm.lookup(v) 385 : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape); 386 }); 387 // c. for elementwise, the result is the vector with the firstMaxRankedShape 388 auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { 389 return firstMaxRankedShape.empty() 390 ? t 391 : VectorType::get(firstMaxRankedShape, t); 392 }); 393 394 // Build and return the new op. 395 OperationState state(op->getLoc(), op->getName()); 396 state.addAttributes(op->getAttrs()); 397 state.addOperands(llvm::to_vector<4>(vectorizedOperands)); 398 state.addTypes(llvm::to_vector<4>(returnTypes)); 399 return VectorizationResult{VectorizationStatus::NewOp, 400 b.createOperation(state)}; 401 } 402 403 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. 404 static bool hasOnlyScalarElementwiseOp(Region &r) { 405 if (!llvm::hasSingleElement(r)) 406 return false; 407 for (Operation &op : r.front()) { 408 if (!(isa<ConstantOp, linalg::YieldOp, linalg::IndexOp>(op) || 409 OpTrait::hasElementwiseMappableTraits(&op)) || 410 llvm::any_of(op.getResultTypes(), 411 [](Type type) { return !type.isIntOrIndexOrFloat(); })) 412 return false; 413 } 414 return true; 415 } 416 417 // Return true if the op is an element-wise linalg op. 418 static bool isElementwise(Operation *op) { 419 auto linalgOp = dyn_cast<linalg::LinalgOp>(op); 420 if (!linalgOp) 421 return false; 422 if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) 423 return false; 424 // TODO: relax the restrictions on indexing map. 425 for (OpOperand *opOperand : linalgOp.getOutputOperands()) { 426 if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity()) 427 return false; 428 } 429 if (linalgOp->getNumRegions() != 1) 430 return false; 431 return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0)); 432 } 433 434 /// Generic vectorization function that rewrites the body of a `linalgOp` into 435 /// vector form. Generic vectorization proceeds as follows: 436 /// 1. Verify the `linalgOp` has one non-empty region. 437 /// 2. Values defined above the region are mapped to themselves and will be 438 /// broadcasted on a per-need basis by their consumers. 439 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 440 /// load). 441 /// TODO: Reuse opportunities for RAR dependencies. 442 /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. 443 /// 4b. Register CustomVectorizationHook for IndexOp to access the iteration 444 /// indices. 445 /// 5. Iteratively call vectorizeOneOp on the region operations. 446 /// 447 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is 448 /// performed to the maximal common vector size implied by the `linalgOp` 449 /// iteration space. This eager broadcasting is introduced in the 450 /// permutation_map of the vector.transfer_read operations. The eager 451 /// broadcasting makes it trivial to detrmine where broadcast, transposes and 452 /// reductions should occur, without any bookkeeping. The tradeoff is that, in 453 /// the absence of good canonicalizations, the amount of work increases. 454 /// This is not deemed a problem as we expect canonicalizations and foldings to 455 /// aggressively clean up the useless work. 456 LogicalResult vectorizeAsLinalgGeneric( 457 OpBuilder &b, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults, 458 bool broadcastToMaximalCommonShape = false, 459 ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) { 460 // 1. Fail to vectorize if the operation does not have one non-empty region. 461 if (linalgOp->getNumRegions() != 1 || linalgOp->getRegion(0).empty()) 462 return failure(); 463 auto &block = linalgOp->getRegion(0).front(); 464 465 // 2. Values defined above the region can only be broadcast for now. Make them 466 // map to themselves. 467 BlockAndValueMapping bvm; 468 SetVector<Value> valuesSet; 469 mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); 470 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 471 472 if (linalgOp.getNumOutputs() == 0) 473 return failure(); 474 475 // TODO: the common vector shape is equal to the static loop sizes only when 476 // all indexing maps are projected permutations. For convs and stencils the 477 // logic will need to evolve. 478 SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes(); 479 480 // 3. Turn all BBArgs into vector.transfer_read / load. 481 SmallVector<AffineMap> indexings; 482 for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) { 483 BlockArgument bbarg = block.getArgument(opOperand->getOperandNumber()); 484 if (linalgOp.isScalar(opOperand)) { 485 bvm.map(bbarg, opOperand->get()); 486 continue; 487 } 488 // TODO: 0-d vectors. 489 if (linalgOp.getShape(opOperand).empty()) { 490 Value loaded = 491 b.create<memref::LoadOp>(linalgOp.getLoc(), opOperand->get()); 492 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" 493 << bbarg.getArgNumber() << "): " << loaded); 494 bvm.map(bbarg, loaded); 495 bvm.map(opOperand->get(), loaded); 496 continue; 497 } 498 AffineMap map; 499 VectorType vectorType; 500 if (broadcastToMaximalCommonShape) { 501 map = inverseAndBroadcastProjectedPermuation( 502 linalgOp.getTiedIndexingMap(opOperand)); 503 vectorType = VectorType::get(commonVectorShape, 504 getElementTypeOrSelf(opOperand->get())); 505 } else { 506 map = inversePermutation( 507 reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand))); 508 vectorType = VectorType::get(map.compose(linalgOp.getShape(opOperand)), 509 getElementTypeOrSelf(opOperand->get())); 510 } 511 Value vectorRead = buildVectorRead(b, opOperand->get(), vectorType, map); 512 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" 513 << bbarg.getArgNumber() << "): " << vectorRead); 514 bvm.map(bbarg, vectorRead); 515 bvm.map(opOperand->get(), vectorRead); 516 } 517 518 auto hooks = llvm::to_vector<4>(customVectorizationHooks); 519 // 4a. Register CustomVectorizationHook for yieldOp. 520 CustomVectorizationHook vectorizeYield = 521 [&](Operation *op, 522 const BlockAndValueMapping &bvm) -> VectorizationResult { 523 return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults); 524 }; 525 hooks.push_back(vectorizeYield); 526 527 // 4b. Register CustomVectorizationHook for indexOp. 528 CustomVectorizationHook vectorizeIndex = 529 [&](Operation *op, 530 const BlockAndValueMapping &bvm) -> VectorizationResult { 531 return vectorizeLinalgIndex(b, op, linalgOp); 532 }; 533 hooks.push_back(vectorizeIndex); 534 535 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 536 for (Operation &op : block.getOperations()) { 537 VectorizationResult result = vectorizeOneOp(b, &op, bvm, hooks); 538 if (result.status == VectorizationStatus::Failure) { 539 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op); 540 return failure(); 541 } 542 if (result.status == VectorizationStatus::NewOp) { 543 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: " 544 << *result.newOp;); 545 bvm.map(op.getResults(), result.newOp->getResults()); 546 } 547 } 548 549 return success(); 550 } 551 552 static LogicalResult vectorizeContraction(OpBuilder &b, LinalgOp linalgOp, 553 SmallVectorImpl<Value> &newResults) { 554 assert(isaContractionOpInterface(linalgOp) && 555 "expected vectorizeContraction preconditions to be met"); 556 Location loc = linalgOp.getLoc(); 557 // Vectorize other ops as vector contraction. 558 // TODO: interface. 559 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 560 << "Rewrite linalg op as vector.contract: "; 561 linalgOp.dump()); 562 // Special function that describes how to vectorize the multiplication op in a 563 // linalg contraction. 564 CustomVectorizationHook vectorizeContraction = 565 [&](Operation *op, 566 const BlockAndValueMapping &bvm) -> VectorizationResult { 567 if (!isa<MulIOp, MulFOp>(op)) 568 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 569 ArrayRef<int64_t> outShape = 570 linalgOp.getShape(linalgOp.getOutputOperand(0)); 571 auto vType = outShape.empty() 572 ? op->getResult(0).getType() 573 : VectorType::get(outShape, op->getResult(0).getType()); 574 auto zero = b.create<ConstantOp>(loc, vType, b.getZeroAttr(vType)); 575 // Indexing maps at the time of vector.transfer_read are adjusted to order 576 // vector dimensions in the same order as the canonical linalg op iteration 577 // space order. 578 // The indexings for the contraction therefore need to be adjusted. 579 // TODO: consider dropping contraction special casing altogether, this will 580 // require more advanced canonicalizations involving vector.multi_reduction 581 // that are not yet available. 582 SmallVector<AffineMap> indexingMaps; 583 indexingMaps.reserve(linalgOp.getNumInputsAndOutputs()); 584 llvm::transform(linalgOp.getIndexingMaps(), 585 std::back_inserter(indexingMaps), 586 [](AffineMap indexingMap) { 587 return inversePermutation(reindexIndexingMap(indexingMap)) 588 .compose(indexingMap); 589 }); 590 Operation *contract = b.create<vector::ContractionOp>( 591 loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero, 592 b.getAffineMapArrayAttr(indexingMaps), linalgOp.iterator_types()); 593 return VectorizationResult{VectorizationStatus::NewOp, contract}; 594 }; 595 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 596 /*broadcastToMaximalCommonShape=*/false, 597 {vectorizeContraction}); 598 } 599 600 static bool allIndexingsAreProjectedPermutation(LinalgOp op) { 601 return llvm::all_of(op.getIndexingMaps(), 602 [](AffineMap m) { return m.isProjectedPermutation(); }); 603 } 604 605 // TODO: probably need some extra checks for reduction followed by consumer 606 // ops that may not commute (e.g. linear reduction + non-linear instructions). 607 static LogicalResult reductionPreconditions(LinalgOp op) { 608 if (llvm::none_of(op.iterator_types(), isReductionIteratorType)) 609 return failure(); 610 for (OpOperand *opOperand : op.getOutputOperands()) { 611 Operation *reductionOp = getSingleBinaryOpAssumedReduction(opOperand); 612 if (!getKindForOp(reductionOp)) 613 return failure(); 614 } 615 return success(); 616 } 617 618 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { 619 auto linalgOp = cast<linalg::LinalgOp>(op); 620 // All types must be static shape to go to vector. 621 if (linalgOp.hasDynamicShape()) 622 return failure(); 623 if (isElementwise(op)) 624 return success(); 625 if (isaContractionOpInterface(linalgOp)) 626 return success(); 627 // TODO: the common vector shape is equal to the static loop sizes only when 628 // all indexing maps are projected permutations. For convs and stencils the 629 // logic will need to evolve. 630 if (allIndexingsAreProjectedPermutation(linalgOp) && 631 succeeded(reductionPreconditions(linalgOp))) 632 return success(); 633 return failure(); 634 } 635 636 LogicalResult 637 mlir::linalg::vectorizeLinalgOp(OpBuilder &b, Operation *op, 638 SmallVectorImpl<Value> &newResults) { 639 if (failed(vectorizeLinalgOpPrecondition(op))) 640 return failure(); 641 642 auto linalgOp = cast<LinalgOp>(op); 643 if (isaContractionOpInterface(linalgOp)) 644 return vectorizeContraction(b, linalgOp, newResults); 645 646 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 647 << "Vectorize linalg op as a generic by broadcasting to " 648 "maximal common shape: " 649 << *op); 650 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 651 /*broadcastToMaximalCommonShape=*/true); 652 } 653 654 //----------------------------------------------------------------------------// 655 // Misc. vectorization patterns. 656 //----------------------------------------------------------------------------// 657 658 /// Helper function that retrieves the value of an IntegerAttr. 659 static int64_t getIntFromAttr(Attribute attr) { 660 return attr.cast<IntegerAttr>().getInt(); 661 } 662 663 /// Given an ArrayRef of OpFoldResults, return a vector of Values. IntegerAttrs 664 /// are converted to ConstantIndexOps. Other attribute types are not supported. 665 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc, 666 ArrayRef<OpFoldResult> ofrs) { 667 SmallVector<Value> result; 668 llvm::for_each(ofrs, [&](auto o) { 669 if (auto val = o.template dyn_cast<Value>()) { 670 result.push_back(val); 671 } else { 672 result.push_back(builder.create<ConstantIndexOp>( 673 loc, getIntFromAttr(o.template get<Attribute>()))); 674 } 675 }); 676 return result; 677 } 678 679 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and 680 /// SubTensorInsertOp. For now, only constant padding values are supported. 681 /// If there is enough static type information, TransferReadOps and 682 /// TransferWriteOps may be generated instead of SubTensorInsertOps. 683 struct GenericPadTensorOpVectorizationPattern 684 : public OpRewritePattern<PadTensorOp> { 685 using OpRewritePattern<PadTensorOp>::OpRewritePattern; 686 687 LogicalResult matchAndRewrite(PadTensorOp padOp, 688 PatternRewriter &rewriter) const final { 689 // Given an OpFoldResult, return an index-typed value. 690 auto getIdxValue = [&](OpFoldResult ofr) { 691 if (auto val = ofr.dyn_cast<Value>()) 692 return val; 693 return rewriter.create<ConstantIndexOp>( 694 padOp.getLoc(), getIntFromAttr(ofr.get<Attribute>())).getResult(); 695 }; 696 697 auto resultType = padOp.getResultType(); 698 // Compute size of InitTensorOp. Any combination of static/dynamic is 699 // supported. 700 SmallVector<Value> dynSizes; 701 SmallVector<int64_t> staticSizes; 702 for (unsigned dim = 0; dim < resultType.getRank(); ++dim) { 703 if (resultType.isDynamicDim(dim)) { 704 auto srcSize = rewriter.createOrFold<memref::DimOp>( 705 padOp.getLoc(), padOp.source(), dim); 706 // Add low and high padding value. 707 auto plusLow = rewriter.createOrFold<AddIOp>( 708 padOp.getLoc(), srcSize, getIdxValue(padOp.getMixedLowPad()[dim])); 709 auto plusHigh = rewriter.createOrFold<AddIOp>( 710 padOp.getLoc(), plusLow, getIdxValue(padOp.getMixedHighPad()[dim])); 711 dynSizes.push_back(plusHigh); 712 } 713 staticSizes.push_back(resultType.getDimSize(dim)); 714 } 715 716 // Init tensor and fill it with padding. 717 Value init = rewriter.create<InitTensorOp>( 718 padOp.getLoc(), dynSizes, staticSizes, resultType.getElementType()); 719 Value fill = tryVectorizeFill(rewriter, padOp, init, dynSizes); 720 721 // Try vectorizing the copy of source. 722 if (tryVectorizeCopy(rewriter, padOp, fill).succeeded()) 723 return success(); 724 725 // Neither source type nor PadTensorOp result type have static shape. Such 726 // PadTensorOps cannot be vectorized. Generate a SubTensorInsertOp instead 727 // for copying the PadOp source. 728 729 auto sourceType = padOp.getSourceType(); 730 // Compute size of source of PadTensorOp. 731 SmallVector<OpFoldResult> srcSizes; 732 for (unsigned dim = 0; dim < sourceType.getRank(); ++dim) { 733 if (sourceType.isDynamicDim(dim)) { 734 srcSizes.push_back(rewriter.createOrFold<memref::DimOp>( 735 padOp.getLoc(), padOp.source(), dim)); 736 } else { 737 srcSizes.push_back(rewriter.getIndexAttr(sourceType.getDimSize(dim))); 738 } 739 } 740 // Strides of SubTensorInsertOp are all 1. 741 SmallVector<OpFoldResult> strides(sourceType.getRank(), 742 rewriter.getIndexAttr(1)); 743 rewriter.replaceOpWithNewOp<SubTensorInsertOp>( 744 padOp, padOp.source(), fill, padOp.getMixedLowPad(), srcSizes, strides); 745 746 return success(); 747 } 748 749 /// Vectorize the filling of `dest`. This is possible if the padOp is padding 750 /// with a constant value. Otherwise, generate a tensor::GenerateOp. 751 Value tryVectorizeFill(PatternRewriter &rewriter, PadTensorOp padOp, 752 Value dest, const SmallVector<Value> &dynSizes) const { 753 // Fill can be vectorized if padValue is a constant. (If there is enough 754 // static type information, the FillOp will be vectorized by another 755 // pattern.) 756 auto padValue = padOp.getConstantPaddingValue(); 757 if (padValue) 758 return rewriter.create<FillOp>(padOp.getLoc(), dest, padValue).result(); 759 760 // Fill could not be vectorized: Lower to tensor::GenerateOp with region. 761 auto generateOp = rewriter.create<tensor::GenerateOp>( 762 padOp.getLoc(), padOp.getResultType(), dynSizes); 763 // Copy region to new op. 764 BlockAndValueMapping bvm; 765 padOp.region().cloneInto(&generateOp.getRegion(), bvm); 766 // Rewrite linalg::YieldOp to tensor::YieldOp. 767 OpBuilder::InsertionGuard guard(rewriter); 768 auto yieldOp = dyn_cast<linalg::YieldOp>( 769 generateOp.getRegion().front().getTerminator()); 770 assert(yieldOp && "malformed PadTensorOp: expected YieldOp terminator"); 771 assert(yieldOp.values().size() == 1); 772 rewriter.setInsertionPoint(yieldOp); 773 rewriter.replaceOpWithNewOp<tensor::YieldOp>(yieldOp, yieldOp.values()[0]); 774 return generateOp; 775 } 776 777 /// Vectorize the copying of a PadTensorOp's source. This is possible if each 778 /// dimension size is statically know in the source type or the result type 779 /// (or both). 780 LogicalResult tryVectorizeCopy(PatternRewriter &rewriter, PadTensorOp padOp, 781 Value dest) const { 782 auto sourceType = padOp.getSourceType(); 783 auto resultType = padOp.getResultType(); 784 785 // Copy cannot be vectorized if pad value is non-constant and source shape 786 // is dynamic. In case of a dynamic source shape, padding must be appended 787 // by TransferReadOp, but TransferReadOp supports only constant padding. 788 auto padValue = padOp.getConstantPaddingValue(); 789 if (!padValue) { 790 if (!sourceType.hasStaticShape()) return failure(); 791 // Create dummy padding value. 792 auto elemType = sourceType.getElementType(); 793 padValue = rewriter.create<ConstantOp>(padOp.getLoc(), elemType, 794 rewriter.getZeroAttr(elemType)); 795 } 796 797 SmallVector<int64_t> vecShape; 798 SmallVector<bool> readInBounds; 799 SmallVector<bool> writeInBounds; 800 for (unsigned i = 0; i < sourceType.getRank(); ++i) { 801 if (!sourceType.isDynamicDim(i)) { 802 vecShape.push_back(sourceType.getDimSize(i)); 803 // Source shape is statically known: Neither read nor write are out-of- 804 // bounds. 805 readInBounds.push_back(true); 806 writeInBounds.push_back(true); 807 } else if (!resultType.isDynamicDim(i)) { 808 // Source shape is not statically known, but result shape is. Vectorize 809 // with size of result shape. This may be larger than the source size. 810 vecShape.push_back(resultType.getDimSize(i)); 811 // Read may be out-of-bounds because the result size could be larger 812 // than the source size. 813 readInBounds.push_back(false); 814 // Write is out-of-bounds if low padding > 0. 815 writeInBounds.push_back( 816 isEqualConstantIntOrValue(padOp.getMixedLowPad()[i], 817 rewriter.getIndexAttr(0))); 818 } else { 819 // Neither source nor result dim of padOp is static. Cannot vectorize 820 // the copy. 821 return failure(); 822 } 823 } 824 auto vecType = VectorType::get(vecShape, sourceType.getElementType()); 825 826 // Generate TransferReadOp. 827 SmallVector<Value> readIndices( 828 vecType.getRank(), rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); 829 auto read = rewriter.create<vector::TransferReadOp>( 830 padOp.getLoc(), vecType, padOp.source(), readIndices, padValue, 831 readInBounds); 832 833 // Generate TransferWriteOp. 834 auto writeIndices = ofrToIndexValues( 835 rewriter, padOp.getLoc(), padOp.getMixedLowPad()); 836 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 837 padOp, read, dest, writeIndices, writeInBounds); 838 839 return success(); 840 } 841 }; 842 843 /// Base pattern for rewriting PadTensorOps whose result is consumed by a given 844 /// operation type OpTy. 845 template <typename OpTy> 846 struct VectorizePadTensorOpUserPattern : public OpRewritePattern<PadTensorOp> { 847 using OpRewritePattern<PadTensorOp>::OpRewritePattern; 848 849 LogicalResult matchAndRewrite(PadTensorOp padOp, 850 PatternRewriter &rewriter) const final { 851 bool changed = false; 852 // Insert users in vector, because some users may be replaced/removed. 853 for (auto *user : llvm::to_vector<4>(padOp->getUsers())) 854 if (auto op = dyn_cast<OpTy>(user)) 855 changed |= rewriteUser(rewriter, padOp, op).succeeded(); 856 return success(changed); 857 } 858 859 protected: 860 virtual LogicalResult rewriteUser( 861 PatternRewriter &rewriter, PadTensorOp padOp, OpTy op) const = 0; 862 }; 863 864 /// Rewrite use of PadTensorOp result in TransferReadOp. E.g.: 865 /// ``` 866 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> 867 /// %r = vector.transfer_read %0[%c0, %c0], %cst 868 /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> 869 /// ``` 870 /// is rewritten to: 871 /// ``` 872 /// %r = vector.transfer_read %src[%c0, %c0], %padding 873 /// {in_bounds = [true, true]} 874 /// : tensor<?x?xf32>, vector<17x5xf32> 875 /// ``` 876 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be 877 /// sure that the original padding value %cst was never used. 878 /// 879 /// This rewrite is possible if: 880 /// - `xferOp` has no out-of-bounds dims or mask. 881 /// - Low padding is static 0. 882 /// - Single, scalar padding value. 883 struct PadTensorOpVectorizationWithTransferReadPattern 884 : public VectorizePadTensorOpUserPattern<vector::TransferReadOp> { 885 using VectorizePadTensorOpUserPattern<vector::TransferReadOp> 886 ::VectorizePadTensorOpUserPattern; 887 888 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 889 vector::TransferReadOp xferOp) const override { 890 // Low padding must be static 0. 891 if (!padOp.hasZeroLowPad()) return failure(); 892 // Pad value must be a constant. 893 auto padValue = padOp.getConstantPaddingValue(); 894 if (!padValue) return failure(); 895 // Padding value of existing `xferOp` is unused. 896 if (xferOp.hasOutOfBoundsDim() || xferOp.mask()) return failure(); 897 898 rewriter.updateRootInPlace(xferOp, [&]() { 899 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 900 xferOp->setAttr(xferOp.getInBoundsAttrName(), 901 rewriter.getBoolArrayAttr(inBounds)); 902 xferOp.sourceMutable().assign(padOp.source()); 903 xferOp.paddingMutable().assign(padValue); 904 }); 905 906 return success(); 907 } 908 }; 909 910 /// Rewrite use of PadTensorOp result in TransferWriteOp. 911 /// This pattern rewrites TransferWriteOps that write to a padded tensor value, 912 /// where the same amount of padding is immediately removed again after the 913 /// write. In such cases, the TransferWriteOp can write to the non-padded tensor 914 /// value and apply out-of-bounds masking. E.g.: 915 /// ``` 916 /// %0 = subtensor ...[...] [%s0, %s1] [1, 1] : tensor<...> to tensor<?x?xf32> 917 /// %1 = linalg.pad_tensor %0 ... : tensor<?x?xf32> to tensor<17x5xf32> 918 /// %2 = vector.transfer_write %vec, %1[...] 919 /// : vector<17x5xf32>, tensor<17x5xf32> 920 /// %r = subtensor %2[0, 0] [%s0, %s1] [1, 1] 921 /// : tensor<17x5xf32> to tensor<?x?xf32> 922 /// ``` 923 /// is rewritten to: 924 /// ``` 925 /// %0 = subtensor ...[...] [%s0, %s1] [1, 1] : tensor<...> to tensor<?x?xf32> 926 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, tensor<?x?xf32> 927 /// ``` 928 /// Note: It is important that the SubTensorOp %r resizes the result of the 929 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an even 930 /// smaller size). Otherwise, %r's new (dynamic) dimensions would differ from 931 /// %r's old dimensions. 932 /// 933 /// This rewrite is possible if: 934 /// - Low padding is static 0. 935 /// - `xferOp` has exactly one use, which is a SubTensorOp. This SubTensorOp 936 /// trims the same amount of padding that was added beforehand. 937 /// - Single, scalar padding value. 938 struct PadTensorOpVectorizationWithTransferWritePattern 939 : public VectorizePadTensorOpUserPattern<vector::TransferWriteOp> { 940 using VectorizePadTensorOpUserPattern<vector::TransferWriteOp> 941 ::VectorizePadTensorOpUserPattern; 942 943 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 944 vector::TransferWriteOp xferOp) const override { 945 // Low padding must be static 0. 946 if (!padOp.hasZeroLowPad()) return failure(); 947 // Pad value must be a constant. 948 auto padValue = padOp.getConstantPaddingValue(); 949 if (!padValue) return failure(); 950 // TransferWriteOp result must be directly consumed by a SubTensorOp. 951 if (!xferOp->hasOneUse()) return failure(); 952 auto trimPadding = dyn_cast<SubTensorOp>(*xferOp->user_begin()); 953 if (!trimPadding) return failure(); 954 // Only static zero offsets supported when trimming padding. 955 if (!trimPadding.hasZeroOffset()) return failure(); 956 // trimPadding must remove the amount of padding that was added earlier. 957 if (!hasSameTensorSize(padOp.source(), trimPadding)) return failure(); 958 959 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 960 auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 961 xferOp, padOp.source().getType(), xferOp.vector(), padOp.source(), 962 xferOp.indices(), xferOp.permutation_mapAttr(), xferOp.mask(), 963 rewriter.getBoolArrayAttr(inBounds)); 964 rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); 965 966 return success(); 967 } 968 969 /// Check if `beforePadding` and `afterTrimming` have the same tensor size, 970 /// i.e., same dimensions. 971 /// 972 /// Dimensions may be static, dynamic or mix of both. In case of dynamic 973 /// dimensions, this function tries to infer the (static) tensor size by 974 /// looking at the defining op and utilizing op-specific knowledge. 975 /// 976 /// This is a conservative analysis. In case equal tensor sizes cannot be 977 /// proven statically, this analysis returns `false` even though the tensor 978 /// sizes may turn out to be equal at runtime. 979 bool hasSameTensorSize(Value beforePadding, SubTensorOp afterTrimming) const { 980 // If the input to PadTensorOp is a CastOp, try with with both CastOp result 981 // and CastOp operand. 982 if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>()) 983 if (hasSameTensorSize(castOp.source(), afterTrimming)) return true; 984 985 auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>(); 986 auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>(); 987 // Only RankedTensorType supported. 988 if (!t1 || !t2) return false; 989 // Rank of both values must be the same. 990 if (t1.getRank() != t2.getRank()) return false; 991 992 // All static dimensions must be the same. Mixed cases (e.g., dimension 993 // static in `t1` but dynamic in `t2`) are not supported. 994 for (unsigned i = 0; i < t1.getRank(); ++i) { 995 if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) 996 return false; 997 if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) 998 return false; 999 } 1000 1001 // Nothing more to check if all dimensions are static. 1002 if (t1.getNumDynamicDims() == 0) return true; 1003 1004 // All dynamic sizes must be the same. The only supported case at the moment 1005 // is when `beforePadding` is a SubTensorOp (or a cast thereof). 1006 1007 // Apart from CastOp, only SubTensorOp is supported. 1008 auto beforeSubtensor = beforePadding.getDefiningOp<SubTensorOp>(); 1009 if (!beforeSubtensor) return false; 1010 1011 assert(static_cast<size_t>(t1.getRank()) 1012 == beforeSubtensor.getMixedSizes().size()); 1013 assert(static_cast<size_t>(t2.getRank()) 1014 == afterTrimming.getMixedSizes().size()); 1015 1016 for (unsigned i = 0; i < t1.getRank(); ++i) { 1017 // Skip static dimensions. 1018 if (!t1.isDynamicDim(i)) continue; 1019 auto size1 = beforeSubtensor.getMixedSizes()[i]; 1020 auto size2 = afterTrimming.getMixedSizes()[i]; 1021 1022 // Case 1: Same value or same constant int. 1023 if (isEqualConstantIntOrValue(size1, size2)) continue; 1024 1025 // Other cases: Take a deeper look at defining ops of values. 1026 auto v1 = size1.dyn_cast<Value>(); 1027 auto v2 = size2.dyn_cast<Value>(); 1028 if (!v1 || !v2) return false; 1029 1030 // Case 2: Both values are identical AffineMinOps. (Should not happen if 1031 // CSE is run.) 1032 auto minOp1 = v1.getDefiningOp<AffineMinOp>(); 1033 auto minOp2 = v2.getDefiningOp<AffineMinOp>(); 1034 if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() 1035 && minOp1.operands() == minOp2.operands()) continue; 1036 1037 // Add additional cases as needed. 1038 } 1039 1040 // All tests passed. 1041 return true; 1042 } 1043 }; 1044 1045 /// Rewrite use of PadTensorOp result in SubtensorInsertOp. E.g.: 1046 /// ``` 1047 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> 1048 /// %r = subtensor_insert %0 into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] 1049 /// : tensor<17x5xf32> into tensor<?x?x17x5xf32> 1050 /// ``` 1051 /// is rewritten to: 1052 /// ``` 1053 /// %0 = vector.transfer_read %src[%c0, %c0], %padding 1054 /// : tensor<?x?xf32>, vector<17x5xf32> 1055 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] 1056 /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32> 1057 /// ``` 1058 /// 1059 /// This rewrite is possible if: 1060 /// - Low padding is static 0. 1061 /// - `padOp` result shape is static. 1062 /// - The entire padded tensor is inserted. 1063 /// (Implies that sizes of `insertOp` are all static.) 1064 /// - Only unit strides in `insertOp`. 1065 /// - Single, scalar padding value. 1066 struct PadTensorOpVectorizationWithSubTensorInsertPattern 1067 : public VectorizePadTensorOpUserPattern<SubTensorInsertOp> { 1068 using VectorizePadTensorOpUserPattern<SubTensorInsertOp> 1069 ::VectorizePadTensorOpUserPattern; 1070 1071 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 1072 SubTensorInsertOp insertOp) const override { 1073 // Low padding must be static 0. 1074 if (!padOp.hasZeroLowPad()) return failure(); 1075 // Only unit stride supported. 1076 if (!insertOp.hasUnitStride()) return failure(); 1077 // Pad value must be a constant. 1078 auto padValue = padOp.getConstantPaddingValue(); 1079 if (!padValue) 1080 return failure(); 1081 // Dynamic shapes not supported. 1082 if (!padOp.result().getType().cast<ShapedType>().hasStaticShape()) 1083 return failure(); 1084 1085 auto vecType = VectorType::get(padOp.getType().getShape(), 1086 padOp.getType().getElementType()); 1087 unsigned vecRank = vecType.getRank(); 1088 unsigned tensorRank = insertOp.getType().getRank(); 1089 1090 // Check if sizes match: Insert the entire tensor into most minor dims. 1091 // (No permutations allowed.) 1092 SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1); 1093 expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); 1094 if (!llvm::all_of( 1095 llvm::zip(insertOp.getMixedSizes(), expectedSizes), 1096 [](auto it) { return isEqualConstantInt(std::get<0>(it), 1097 std::get<1>(it)); })) 1098 return failure(); 1099 1100 // Generate TransferReadOp: Read entire source tensor and add high padding. 1101 SmallVector<Value> readIndices( 1102 vecRank, rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); 1103 auto read = rewriter.create<vector::TransferReadOp>( 1104 padOp.getLoc(), vecType, padOp.source(), readIndices, padValue); 1105 1106 // Generate TransferWriteOp: Write to SubTensorInsertOp's dest tensor at 1107 // specified offsets. Write is fully in-bounds because a SubTensorInsertOp's 1108 // source must fit into the destination at the specified offsets. 1109 auto writeIndices = 1110 ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); 1111 SmallVector<bool> inBounds(vecRank, true); 1112 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 1113 insertOp, read, insertOp.dest(), writeIndices, inBounds); 1114 1115 return success(); 1116 } 1117 }; 1118 1119 void mlir::linalg::populatePadTensorOpVectorizationPatterns( 1120 RewritePatternSet &patterns, PatternBenefit baseBenefit) { 1121 patterns.add<GenericPadTensorOpVectorizationPattern>( 1122 patterns.getContext(), baseBenefit); 1123 // Try these specialized patterns first before resorting to the generic one. 1124 patterns.add<PadTensorOpVectorizationWithTransferReadPattern, 1125 PadTensorOpVectorizationWithTransferWritePattern, 1126 PadTensorOpVectorizationWithSubTensorInsertPattern>( 1127 patterns.getContext(), baseBenefit.getBenefit() + 1); 1128 } 1129 1130 // TODO: cleanup all the convolution vectorization patterns. 1131 template <class ConvOp, int N> 1132 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite( 1133 ConvOp op, PatternRewriter &rewriter) const { 1134 Location loc = op.getLoc(); 1135 MLIRContext *context = op.getContext(); 1136 1137 OpOperand *input = op.getInputOperand(0); 1138 OpOperand *kernel = op.getInputOperand(1); 1139 OpOperand *output = op.getOutputOperand(0); 1140 ArrayRef<int64_t> inShape = op.getShape(input); 1141 ArrayRef<int64_t> kShape = op.getShape(kernel); 1142 1143 if (llvm::any_of(inShape, ShapedType::isDynamic) || 1144 llvm::any_of(kShape, ShapedType::isDynamic)) 1145 return failure(); 1146 1147 SmallVector<AffineExpr, 4> mapping; 1148 SmallVector<int64_t, 4> vectorDims; 1149 // Fail to apply when the size of not vectorized dimension is not 1. 1150 for (unsigned i = 0; i < N; i++) { 1151 if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) 1152 return failure(); 1153 1154 if (mask[i] && inShape[i] != kShape[i]) 1155 return failure(); 1156 1157 if (mask[i]) { 1158 mapping.push_back(getAffineDimExpr(i, context)); 1159 vectorDims.push_back(inShape[i]); 1160 } 1161 } 1162 1163 int64_t rank = op.getRank(input); 1164 int64_t numDims = mapping.size(); 1165 Type elemType = getElementTypeOrSelf(input->get()); 1166 1167 auto map = AffineMap::get(rank, 0, mapping, context); 1168 SmallVector<Value, 4> zeros(rank, rewriter.create<ConstantIndexOp>(loc, 0)); 1169 auto vecType = VectorType::get(vectorDims, elemType); 1170 1171 auto inputVec = rewriter.create<vector::TransferReadOp>( 1172 loc, vecType, input->get(), zeros, map); 1173 auto kernelVec = rewriter.create<vector::TransferReadOp>( 1174 loc, vecType, kernel->get(), zeros, map); 1175 1176 auto acc = rewriter.create<ConstantOp>(loc, elemType, 1177 rewriter.getZeroAttr(elemType)); 1178 1179 std::array<AffineMap, 3> indexingMaps{ 1180 AffineMap::getMultiDimIdentityMap(numDims, context), 1181 AffineMap::getMultiDimIdentityMap(numDims, context), 1182 AffineMap::get(numDims, 0, {}, context)}; 1183 1184 std::vector<StringRef> iteratorTypes(numDims, "reduction"); 1185 1186 auto result = rewriter.create<vector::ContractionOp>( 1187 loc, inputVec, kernelVec, acc, 1188 rewriter.getAffineMapArrayAttr(indexingMaps), 1189 rewriter.getStrArrayAttr(iteratorTypes)); 1190 1191 rewriter.create<memref::StoreOp>(loc, result, output->get(), 1192 ValueRange(zeros)); 1193 rewriter.eraseOp(op); 1194 return success(); 1195 } 1196 1197 using ConvOpConst = ConvOpVectorization<ConvWOp, 1>; 1198 1199 /// Inserts tiling, promotion and vectorization pattern for ConvOp 1200 /// conversion into corresponding pattern lists. 1201 template <typename ConvOp, unsigned N> 1202 static void populateVectorizationPatterns( 1203 RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns, 1204 RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) { 1205 auto *context = tilingPatterns.getContext(); 1206 if (tileSizes.size() < N) 1207 return; 1208 1209 constexpr static StringRef kTiledMarker = "TILED"; 1210 constexpr static StringRef kPromotedMarker = "PROMOTED"; 1211 tilingPatterns.add<LinalgTilingPattern<ConvOp>>( 1212 context, LinalgTilingOptions().setTileSizes(tileSizes), 1213 LinalgTransformationFilter(ArrayRef<Identifier>{}, 1214 Identifier::get(kTiledMarker, context))); 1215 1216 promotionPatterns.add<LinalgPromotionPattern<ConvOp>>( 1217 context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), 1218 LinalgTransformationFilter(Identifier::get(kTiledMarker, context), 1219 Identifier::get(kPromotedMarker, context))); 1220 1221 SmallVector<bool, 4> mask(N); 1222 int offset = tileSizes.size() - N; 1223 std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), 1224 [](int64_t i) -> bool { return i > 1; }); 1225 1226 vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask); 1227 } 1228 1229 void mlir::linalg::populateConvVectorizationPatterns( 1230 MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns, 1231 ArrayRef<int64_t> tileSizes) { 1232 RewritePatternSet tiling(context); 1233 RewritePatternSet promotion(context); 1234 RewritePatternSet vectorization(context); 1235 populateVectorizationPatterns<ConvWOp, 1>(tiling, promotion, vectorization, 1236 tileSizes); 1237 1238 populateVectorizationPatterns<ConvNWCOp, 3>(tiling, promotion, vectorization, 1239 tileSizes); 1240 populateVectorizationPatterns<ConvInputNWCFilterWCFOp, 3>( 1241 tiling, promotion, vectorization, tileSizes); 1242 1243 populateVectorizationPatterns<ConvNCWOp, 3>(tiling, promotion, vectorization, 1244 tileSizes); 1245 populateVectorizationPatterns<ConvInputNCWFilterWCFOp, 3>( 1246 tiling, promotion, vectorization, tileSizes); 1247 1248 populateVectorizationPatterns<ConvHWOp, 2>(tiling, promotion, vectorization, 1249 tileSizes); 1250 1251 populateVectorizationPatterns<ConvNHWCOp, 4>(tiling, promotion, vectorization, 1252 tileSizes); 1253 populateVectorizationPatterns<ConvInputNHWCFilterHWCFOp, 4>( 1254 tiling, promotion, vectorization, tileSizes); 1255 1256 populateVectorizationPatterns<ConvNCHWOp, 4>(tiling, promotion, vectorization, 1257 tileSizes); 1258 populateVectorizationPatterns<ConvInputNCHWFilterHWCFOp, 4>( 1259 tiling, promotion, vectorization, tileSizes); 1260 1261 populateVectorizationPatterns<ConvDHWOp, 3>(tiling, promotion, vectorization, 1262 tileSizes); 1263 1264 populateVectorizationPatterns<ConvNDHWCOp, 5>(tiling, promotion, 1265 vectorization, tileSizes); 1266 populateVectorizationPatterns<ConvInputNDHWCFilterDHWCFOp, 5>( 1267 tiling, promotion, vectorization, tileSizes); 1268 1269 populateVectorizationPatterns<ConvNCDHWOp, 5>(tiling, promotion, 1270 vectorization, tileSizes); 1271 populateVectorizationPatterns<ConvInputNCDHWFilterDHWCFOp, 5>( 1272 tiling, promotion, vectorization, tileSizes); 1273 1274 patterns.push_back(std::move(tiling)); 1275 patterns.push_back(std::move(promotion)); 1276 patterns.push_back(std::move(vectorization)); 1277 } 1278 1279 //----------------------------------------------------------------------------// 1280 // Forwarding patterns 1281 //----------------------------------------------------------------------------// 1282 1283 /// Check whether there is any interleaved use of any `values` between `firstOp` 1284 /// and `secondOp`. Conservatively return `true` if any op or value is in a 1285 /// different block. 1286 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 1287 ValueRange values) { 1288 if (firstOp->getBlock() != secondOp->getBlock() || 1289 !firstOp->isBeforeInBlock(secondOp)) { 1290 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1291 << "interleavedUses precondition failed, firstOp: " 1292 << *firstOp << ", second op: " << *secondOp); 1293 return true; 1294 } 1295 for (auto v : values) { 1296 for (auto &u : v.getUses()) { 1297 Operation *owner = u.getOwner(); 1298 if (owner == firstOp || owner == secondOp) 1299 continue; 1300 // TODO: this is too conservative, use dominance info in the future. 1301 if (owner->getBlock() == firstOp->getBlock() && 1302 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 1303 continue; 1304 LLVM_DEBUG(llvm::dbgs() 1305 << "\n[" DEBUG_TYPE "]: " 1306 << " found interleaved op " << *owner 1307 << ", firstOp: " << *firstOp << ", second op: " << *secondOp); 1308 return true; 1309 } 1310 } 1311 return false; 1312 } 1313 1314 /// Return the unique subview use of `v` if it is indeed unique, null otherwise. 1315 static memref::SubViewOp getSubViewUseIfUnique(Value v) { 1316 memref::SubViewOp subViewOp; 1317 for (auto &u : v.getUses()) { 1318 if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { 1319 if (subViewOp) 1320 return memref::SubViewOp(); 1321 subViewOp = newSubViewOp; 1322 } 1323 } 1324 return subViewOp; 1325 } 1326 1327 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1328 /// when available. 1329 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 1330 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 1331 1332 // Transfer into `view`. 1333 Value viewOrAlloc = xferOp.source(); 1334 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1335 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1336 return failure(); 1337 1338 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << viewOrAlloc); 1339 1340 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1341 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1342 if (!subViewOp) 1343 return failure(); 1344 Value subView = subViewOp.getResult(); 1345 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1346 << "with subView " << subView); 1347 1348 // Find the copy into `subView` without interleaved uses. 1349 CopyOp copyOp; 1350 for (auto &u : subView.getUses()) { 1351 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 1352 assert(newCopyOp.output().getType().isa<MemRefType>()); 1353 if (newCopyOp.output() != subView) 1354 continue; 1355 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1356 << "copy candidate " << *newCopyOp); 1357 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 1358 continue; 1359 copyOp = newCopyOp; 1360 break; 1361 } 1362 } 1363 if (!copyOp) 1364 return failure(); 1365 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1366 << "with copy " << *copyOp); 1367 1368 // Find the fill into `viewOrAlloc` without interleaved uses before the copy. 1369 FillOp maybeFillOp; 1370 for (auto &u : viewOrAlloc.getUses()) { 1371 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 1372 assert(newFillOp.output().getType().isa<MemRefType>()); 1373 if (newFillOp.output() != viewOrAlloc) 1374 continue; 1375 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1376 << "fill candidate " << *newFillOp); 1377 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 1378 continue; 1379 maybeFillOp = newFillOp; 1380 break; 1381 } 1382 } 1383 // Ensure padding matches. 1384 if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) 1385 return failure(); 1386 if (maybeFillOp) 1387 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1388 << "with maybeFillOp " << *maybeFillOp); 1389 1390 // `in` is the subview that linalg.copy reads. Replace it. 1391 Value in = copyOp.input(); 1392 1393 // linalg.copy + linalg.fill can be used to create a padded local buffer. 1394 // The `masked` attribute is only valid on this padded buffer. 1395 // When forwarding to vector.transfer_read, the attribute must be reset 1396 // conservatively. 1397 Value res = rewriter.create<vector::TransferReadOp>( 1398 xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), 1399 xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); 1400 1401 if (maybeFillOp) 1402 rewriter.eraseOp(maybeFillOp); 1403 rewriter.eraseOp(copyOp); 1404 rewriter.replaceOp(xferOp, res); 1405 1406 return success(); 1407 } 1408 1409 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1410 /// when available. 1411 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 1412 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 1413 // Transfer into `viewOrAlloc`. 1414 Value viewOrAlloc = xferOp.source(); 1415 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1416 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1417 return failure(); 1418 1419 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1420 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1421 if (!subViewOp) 1422 return failure(); 1423 Value subView = subViewOp.getResult(); 1424 1425 // Find the copy from `subView` without interleaved uses. 1426 CopyOp copyOp; 1427 for (auto &u : subViewOp.getResult().getUses()) { 1428 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 1429 if (newCopyOp.getInputOperand(0)->get() != subView) 1430 continue; 1431 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 1432 continue; 1433 copyOp = newCopyOp; 1434 break; 1435 } 1436 } 1437 if (!copyOp) 1438 return failure(); 1439 1440 // `out` is the subview copied into that we replace. 1441 assert(copyOp.output().getType().isa<MemRefType>()); 1442 Value out = copyOp.output(); 1443 1444 // Forward vector.transfer into copy. 1445 // linalg.copy + linalg.fill can be used to create a padded local buffer. 1446 // The `masked` attribute is only valid on this padded buffer. 1447 // When forwarding to vector.transfer_write, the attribute must be reset 1448 // conservatively. 1449 rewriter.create<vector::TransferWriteOp>( 1450 xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), 1451 xferOp.permutation_map(), ArrayAttr()); 1452 1453 rewriter.eraseOp(copyOp); 1454 rewriter.eraseOp(xferOp); 1455 1456 return success(); 1457 } 1458