1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Analysis/SliceAnalysis.h" 14 #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h" 15 #include "mlir/Dialect/Affine/IR/AffineOps.h" 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Func/IR/FuncOps.h" 18 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 19 #include "mlir/Dialect/Linalg/IR/Linalg.h" 20 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 21 #include "mlir/Dialect/Linalg/Utils/Utils.h" 22 #include "mlir/Dialect/Tensor/IR/Tensor.h" 23 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 24 #include "mlir/Dialect/Vector/IR/VectorOps.h" 25 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" 26 #include "mlir/IR/AffineExpr.h" 27 #include "mlir/IR/Matchers.h" 28 #include "mlir/IR/PatternMatch.h" 29 #include "mlir/Pass/Pass.h" 30 #include "mlir/Support/LLVM.h" 31 #include "mlir/Transforms/RegionUtils.h" 32 #include "llvm/ADT/ScopeExit.h" 33 #include "llvm/ADT/Sequence.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/TypeSwitch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <type_traits> 39 40 using namespace mlir; 41 using namespace mlir::linalg; 42 43 #define DEBUG_TYPE "linalg-vectorization" 44 45 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") 46 #define LDBG(X) LLVM_DEBUG(DBGS() << X) 47 48 /// Try to vectorize `convOp` as a convolution. 49 static FailureOr<Operation *> vectorizeConvolution(OpBuilder &b, 50 LinalgOp convOp); 51 52 /// Return the unique instance of OpType in `block` if it is indeed unique. 53 /// Return null if none or more than 1 instances exist. 54 template <typename OpType> 55 static OpType getSingleOpOfType(Block &block) { 56 OpType res; 57 block.walk([&](OpType op) { 58 if (res) { 59 res = nullptr; 60 return WalkResult::interrupt(); 61 } 62 res = op; 63 return WalkResult::advance(); 64 }); 65 return res; 66 } 67 68 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a 69 /// projectedPermutation, compress the unused dimensions to serve as a 70 /// permutation_map for a vector transfer operation. 71 /// For example, given a linalg op such as: 72 /// 73 /// ``` 74 /// %0 = linalg.generic { 75 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, 76 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> 77 /// } 78 /// ins(%0 : tensor<2x3x4xf32>) 79 /// outs(%1 : tensor<5x6xf32>) 80 /// ``` 81 /// 82 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine 83 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second 84 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. 85 static AffineMap reindexIndexingMap(AffineMap map) { 86 assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) && 87 "expected projected permutation"); 88 auto res = compressUnusedDims(map); 89 assert(res.getNumDims() == res.getNumResults() && 90 "expected reindexed map with same number of dims and results"); 91 return res; 92 } 93 94 /// Helper data structure to represent the result of vectorization. 95 /// In certain specific cases, like terminators, we do not want to propagate/ 96 enum VectorizationStatus { 97 /// Op failed to vectorize. 98 Failure = 0, 99 /// Op vectorized and custom function took care of replacement logic 100 NoReplace, 101 /// Op vectorized into a new Op whose results will replace original Op's 102 /// results. 103 NewOp 104 // TODO: support values if Op vectorized to Many-Ops whose results we need to 105 // aggregate for replacement. 106 }; 107 struct VectorizationResult { 108 /// Return status from vectorizing the current op. 109 enum VectorizationStatus status = VectorizationStatus::Failure; 110 /// New vectorized operation to replace the current op. 111 /// Replacement behavior is specified by `status`. 112 Operation *newOp; 113 }; 114 115 llvm::Optional<vector::CombiningKind> 116 mlir::linalg::getCombinerOpKind(Operation *combinerOp) { 117 using ::mlir::vector::CombiningKind; 118 119 if (!combinerOp) 120 return llvm::None; 121 return llvm::TypeSwitch<Operation *, llvm::Optional<CombiningKind>>( 122 combinerOp) 123 .Case<arith::AddIOp, arith::AddFOp>( 124 [&](auto op) { return CombiningKind::ADD; }) 125 .Case<arith::AndIOp>([&](auto op) { return CombiningKind::AND; }) 126 .Case<arith::MaxSIOp>([&](auto op) { return CombiningKind::MAXSI; }) 127 .Case<arith::MaxFOp>([&](auto op) { return CombiningKind::MAXF; }) 128 .Case<arith::MinSIOp>([&](auto op) { return CombiningKind::MINSI; }) 129 .Case<arith::MinFOp>([&](auto op) { return CombiningKind::MINF; }) 130 .Case<arith::MulIOp, arith::MulFOp>( 131 [&](auto op) { return CombiningKind::MUL; }) 132 .Case<arith::OrIOp>([&](auto op) { return CombiningKind::OR; }) 133 .Case<arith::XOrIOp>([&](auto op) { return CombiningKind::XOR; }) 134 .Default([&](auto op) { return llvm::None; }); 135 } 136 137 /// Check whether `outputOperand` is a reduction with a single combiner 138 /// operation. Return the combiner operation of the reduction. Return 139 /// nullptr otherwise. Multiple reduction operations would impose an 140 /// ordering between reduction dimensions and is currently unsupported in 141 /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) != 142 /// max(min(X)) 143 // TODO: use in LinalgOp verification, there is a circular dependency atm. 144 static Operation *matchLinalgReduction(OpOperand *outputOperand) { 145 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 146 unsigned outputPos = 147 outputOperand->getOperandNumber() - linalgOp.getNumInputs(); 148 // Only single combiner operations are supported for now. 149 SmallVector<Operation *, 4> combinerOps; 150 if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) || 151 combinerOps.size() != 1) 152 return nullptr; 153 154 // Return the combiner operation. 155 return combinerOps[0]; 156 } 157 158 /// Broadcast `value` to a vector of `shape` if possible. Return value 159 /// otherwise. 160 static Value broadcastIfNeeded(OpBuilder &b, Value value, 161 ArrayRef<int64_t> shape) { 162 // If no shape to broadcast to, just return `value`. 163 if (shape.empty()) 164 return value; 165 VectorType targetVectorType = 166 VectorType::get(shape, getElementTypeOrSelf(value)); 167 if (vector::isBroadcastableTo(value.getType(), targetVectorType) != 168 vector::BroadcastableToResult::Success) 169 return value; 170 Location loc = b.getInsertionPoint()->getLoc(); 171 return b.createOrFold<vector::BroadcastOp>(loc, targetVectorType, value); 172 } 173 174 /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This 175 /// assumes that `reductionOp` has two operands and one of them is the reduction 176 /// initial value. 177 static Operation *buildMultiDimReduce(OpBuilder &b, Operation *reduceOp, 178 Value valueToReduce, Value acc, 179 const SmallVector<bool> &reductionMask) { 180 auto maybeKind = getCombinerOpKind(reduceOp); 181 assert(maybeKind && "Failed precondition: could not get reduction kind"); 182 return b.create<vector::MultiDimReductionOp>( 183 reduceOp->getLoc(), valueToReduce, acc, reductionMask, *maybeKind); 184 } 185 186 static SmallVector<bool> getReductionMask(LinalgOp linalgOp) { 187 unsigned idx = 0; 188 SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false); 189 for (auto attr : linalgOp.iterator_types()) { 190 if (isReductionIterator(attr)) 191 reductionMask[idx] = true; 192 ++idx; 193 } 194 return reductionMask; 195 } 196 197 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set 198 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp 199 /// currently being vectorized. If `dest` has null rank, build an memref.store. 200 /// Return the produced value or null if no value is produced. 201 static Value buildVectorWrite(OpBuilder &b, Value value, 202 OpOperand *outputOperand) { 203 Operation *write; 204 Location loc = value.getLoc(); 205 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 206 ArrayRef<int64_t> shape = linalgOp.getShape(outputOperand); 207 auto vectorType = VectorType::get( 208 shape, getElementTypeOrSelf(outputOperand->get().getType())); 209 if (vectorType.getRank() > 0) { 210 // 0-d case is still special: do not invert the reindexing map. 211 AffineMap map = 212 reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand)); 213 SmallVector<int64_t> transposeShape = 214 applyPermutationMap(inversePermutation(map), vectorType.getShape()); 215 assert(!transposeShape.empty() && "unexpected empty transpose shape"); 216 vectorType = VectorType::get(transposeShape, vectorType.getElementType()); 217 SmallVector<Value> indices(linalgOp.getRank(outputOperand), 218 b.create<arith::ConstantIndexOp>(loc, 0)); 219 value = broadcastIfNeeded(b, value, vectorType.getShape()); 220 write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(), 221 indices, map); 222 } else { 223 if (!value.getType().isa<VectorType>()) 224 value = b.create<vector::BroadcastOp>(loc, vectorType, value); 225 assert(value.getType() == vectorType && "incorrect type"); 226 write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(), 227 ValueRange{}); 228 } 229 LDBG("vectorized op: " << *write); 230 if (!write->getResults().empty()) 231 return write->getResult(0); 232 return Value(); 233 } 234 235 // Custom vectorization function type. Produce a vector form of Operation* 236 // assuming all its vectorized operands are already in the BlockAndValueMapping. 237 // Return nullptr if the Operation cannot be vectorized. 238 using CustomVectorizationHook = std::function<VectorizationResult( 239 Operation *, const BlockAndValueMapping &)>; 240 241 /// Helper function to vectorize the terminator of a `linalgOp`. New result 242 /// vector values are appended to `newResults`. Return 243 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it 244 /// should not try to map produced operations and instead return the results 245 /// using the `newResults` vector making them available to the 246 /// vectorization algorithm for RAUW. This function is meant to be used as a 247 /// CustomVectorizationHook. 248 static VectorizationResult 249 vectorizeLinalgYield(OpBuilder &b, Operation *op, 250 const BlockAndValueMapping &bvm, LinalgOp linalgOp, 251 SmallVectorImpl<Value> &newResults) { 252 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 253 if (!yieldOp) 254 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 255 for (const auto &outputs : llvm::enumerate(yieldOp.values())) { 256 // TODO: Scan for an opportunity for reuse. 257 // TODO: use a map. 258 Value vectorValue = bvm.lookup(outputs.value()); 259 Value newResult = buildVectorWrite( 260 b, vectorValue, linalgOp.getOutputOperand(outputs.index())); 261 if (newResult) 262 newResults.push_back(newResult); 263 } 264 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 265 } 266 267 /// Helper function to vectorize the index operations of a `linalgOp`. Return 268 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it 269 /// should map the produced operations. This function is meant to be used as a 270 /// CustomVectorizationHook. 271 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op, 272 LinalgOp linalgOp) { 273 IndexOp indexOp = dyn_cast<linalg::IndexOp>(op); 274 if (!indexOp) 275 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 276 auto loc = indexOp.getLoc(); 277 // Compute the static loop sizes of the index op. 278 auto targetShape = linalgOp.computeStaticLoopSizes(); 279 // Compute a one-dimensional index vector for the index op dimension. 280 SmallVector<int64_t> constantSeq = 281 llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()])); 282 auto constantOp = 283 b.create<arith::ConstantOp>(loc, b.getIndexVectorAttr(constantSeq)); 284 // Return the one-dimensional index vector if it lives in the trailing 285 // dimension of the iteration space since the vectorization algorithm in this 286 // case can handle the broadcast. 287 if (indexOp.dim() == targetShape.size() - 1) 288 return VectorizationResult{VectorizationStatus::NewOp, constantOp}; 289 // Otherwise permute the targetShape to move the index dimension last, 290 // broadcast the one-dimensional index vector to the permuted shape, and 291 // finally transpose the broadcasted index vector to undo the permutation. 292 std::swap(targetShape[indexOp.dim()], targetShape.back()); 293 auto broadCastOp = b.create<vector::BroadcastOp>( 294 loc, VectorType::get(targetShape, b.getIndexType()), constantOp); 295 SmallVector<int64_t> transposition = 296 llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops())); 297 std::swap(transposition.back(), transposition[indexOp.dim()]); 298 auto transposeOp = 299 b.create<vector::TransposeOp>(loc, broadCastOp, transposition); 300 return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; 301 } 302 303 /// Emit reduction operations if the shapes of the value to reduce is different 304 /// that the result shape. 305 static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op, 306 Value reduceValue, Value initialValue, 307 const BlockAndValueMapping &bvm) { 308 Value reduceVec = bvm.lookup(reduceValue); 309 Value outputVec = bvm.lookup(initialValue); 310 auto reduceType = reduceVec.getType().dyn_cast<VectorType>(); 311 auto outputType = outputVec.getType().dyn_cast<VectorType>(); 312 // Reduce only if needed as the value may already have been reduce for 313 // contraction vectorization. 314 if (!reduceType || 315 (outputType && reduceType.getShape() == outputType.getShape())) 316 return nullptr; 317 SmallVector<bool> reductionMask = getReductionMask(linalgOp); 318 return buildMultiDimReduce(b, op, reduceVec, outputVec, reductionMask); 319 } 320 321 /// Generic vectorization for a single operation `op`, given already vectorized 322 /// operands carried by `bvm`. Vectorization occurs as follows: 323 /// 1. Try to apply any of the `customVectorizationHooks` and return its 324 /// result on success. 325 /// 2. Clone any constant in the current scope without vectorization: each 326 /// consumer of the constant will later determine the shape to which the 327 /// constant needs to be broadcast to. 328 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 329 /// of the `customVectorizationHooks` to cover such cases. 330 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 331 /// operand of maximal rank. Other operands have smaller rank and are 332 /// broadcast accordingly. It is assumed this broadcast is always legal, 333 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 334 /// 335 /// This function assumes all operands of `op` have been vectorized and are in 336 /// the `bvm` mapping. As a consequence, this function is meant to be called on 337 /// a topologically-sorted list of ops. 338 /// This function does not update `bvm` but returns a VectorizationStatus that 339 /// instructs the caller what `bvm` update needs to occur. 340 static VectorizationResult 341 vectorizeOneOp(OpBuilder &b, LinalgOp linalgOp, Operation *op, 342 const BlockAndValueMapping &bvm, 343 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 344 LDBG("vectorize op " << *op); 345 346 // 1. Try to apply any CustomVectorizationHook. 347 if (!customVectorizationHooks.empty()) { 348 for (auto &customFunc : customVectorizationHooks) { 349 VectorizationResult result = customFunc(op, bvm); 350 if (result.status == VectorizationStatus::Failure) 351 continue; 352 return result; 353 } 354 } 355 356 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 357 // Clone so that the constant is not confined to the linalgOp block . 358 if (isa<arith::ConstantOp, func::ConstantOp>(op)) 359 return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)}; 360 361 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 362 if (!OpTrait::hasElementwiseMappableTraits(op)) 363 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 364 365 // 4 . Check if the operation is a reduction. 366 SmallVector<std::pair<Value, Value>> reductionOperands; 367 for (Value operand : op->getOperands()) { 368 auto arg = operand.dyn_cast<BlockArgument>(); 369 if (!arg || arg.getArgNumber() < linalgOp.getNumInputs()) 370 continue; 371 SmallVector<Operation *> reductionOps; 372 Value reduceValue = matchReduction( 373 linalgOp.getRegionOutputArgs(), 374 arg.getArgNumber() - linalgOp.getNumInputs(), reductionOps); 375 if (!reduceValue) 376 continue; 377 reductionOperands.push_back(std::make_pair(reduceValue, operand)); 378 } 379 if (!reductionOperands.empty()) { 380 assert(reductionOperands.size() == 1); 381 Operation *reduceOp = 382 reduceIfNeeded(b, linalgOp, op, reductionOperands[0].first, 383 reductionOperands[0].second, bvm); 384 if (reduceOp) 385 return VectorizationResult{VectorizationStatus::NewOp, reduceOp}; 386 } 387 388 // 5. Generic vectorization path for ElementwiseMappable ops. 389 // a. first get the first max ranked shape. 390 SmallVector<int64_t, 4> firstMaxRankedShape; 391 for (Value operand : op->getOperands()) { 392 auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); 393 if (vt && firstMaxRankedShape.size() < vt.getShape().size()) 394 firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); 395 } 396 // b. broadcast each op if needed. 397 auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { 398 return firstMaxRankedShape.empty() 399 ? bvm.lookup(v) 400 : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape); 401 }); 402 // c. for elementwise, the result is the vector with the firstMaxRankedShape 403 auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { 404 return firstMaxRankedShape.empty() 405 ? t 406 : VectorType::get(firstMaxRankedShape, t); 407 }); 408 409 // Build and return the new op. 410 return VectorizationResult{ 411 VectorizationStatus::NewOp, 412 b.create(op->getLoc(), op->getName().getIdentifier(), 413 llvm::to_vector<4>(vectorizedOperands), 414 llvm::to_vector<4>(returnTypes), op->getAttrs())}; 415 } 416 417 /// Generic vectorization function that rewrites the body of a `linalgOp` into 418 /// vector form. Generic vectorization proceeds as follows: 419 /// 1. Verify the `linalgOp` has one non-empty region. 420 /// 2. Values defined above the region are mapped to themselves and will be 421 /// broadcasted on a per-need basis by their consumers. 422 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 423 /// load). 424 /// TODO: Reuse opportunities for RAR dependencies. 425 /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. 426 /// 4b. Register CustomVectorizationHook for IndexOp to access the iteration 427 /// indices. 428 /// 5. Iteratively call vectorizeOneOp on the region operations. 429 /// 430 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is 431 /// performed to the maximal common vector size implied by the `linalgOp` 432 /// iteration space. This eager broadcasting is introduced in the 433 /// permutation_map of the vector.transfer_read operations. The eager 434 /// broadcasting makes it trivial to detrmine where broadcast, transposes and 435 /// reductions should occur, without any bookkeeping. The tradeoff is that, in 436 /// the absence of good canonicalizations, the amount of work increases. 437 /// This is not deemed a problem as we expect canonicalizations and foldings to 438 /// aggressively clean up the useless work. 439 static LogicalResult 440 vectorizeAsLinalgGeneric(OpBuilder &b, LinalgOp linalgOp, 441 SmallVectorImpl<Value> &newResults) { 442 Block *block = linalgOp.getBlock(); 443 444 // 2. Values defined above the region can only be broadcast for now. Make them 445 // map to themselves. 446 BlockAndValueMapping bvm; 447 SetVector<Value> valuesSet; 448 mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); 449 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 450 451 if (linalgOp.getNumOutputs() == 0) 452 return failure(); 453 454 // TODO: the common vector shape is equal to the static loop sizes only when 455 // all indexing maps are projected permutations. For convs and stencils the 456 // logic will need to evolve. 457 SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes(); 458 459 // 3. Turn all BBArgs into vector.transfer_read / load. 460 Location loc = linalgOp.getLoc(); 461 Value zero = b.create<arith::ConstantIndexOp>(loc, 0); 462 for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) { 463 BlockArgument bbarg = block->getArgument(opOperand->getOperandNumber()); 464 if (linalgOp.isScalar(opOperand)) { 465 bvm.map(bbarg, opOperand->get()); 466 continue; 467 } 468 VectorType readType; 469 AffineMap map; 470 // TODO: can we keep this simplification? 471 // if (linalgOp.getShape(opOperand).empty()) { 472 // readType = VectorType::get({}, bbarg.getType()); 473 // } else { 474 if (opOperand->getOperandNumber() < linalgOp.getNumInputs()) { 475 map = inverseAndBroadcastProjectedPermutation( 476 linalgOp.getTiedIndexingMap(opOperand)); 477 readType = VectorType::get(commonVectorShape, 478 getElementTypeOrSelf(opOperand->get())); 479 } else { 480 map = inversePermutation( 481 reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand))); 482 readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)), 483 getElementTypeOrSelf(opOperand->get())); 484 } 485 // } 486 487 auto shape = linalgOp.getShape(opOperand); 488 SmallVector<Value> indices(shape.size(), zero); 489 Value readValue = b.create<vector::TransferReadOp>( 490 loc, readType, opOperand->get(), indices, map); 491 // Not all ops support 0-d vectors, extract the scalar for now. 492 // TODO: remove this. 493 if (readValue.getType().cast<VectorType>().getRank() == 0) 494 readValue = b.create<vector::ExtractElementOp>(loc, readValue); 495 496 LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue); 497 bvm.map(bbarg, readValue); 498 bvm.map(opOperand->get(), readValue); 499 } 500 501 SmallVector<CustomVectorizationHook> hooks; 502 // 4a. Register CustomVectorizationHook for yieldOp. 503 CustomVectorizationHook vectorizeYield = 504 [&](Operation *op, 505 const BlockAndValueMapping &bvm) -> VectorizationResult { 506 return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults); 507 }; 508 hooks.push_back(vectorizeYield); 509 510 // 4b. Register CustomVectorizationHook for indexOp. 511 CustomVectorizationHook vectorizeIndex = 512 [&](Operation *op, 513 const BlockAndValueMapping &bvm) -> VectorizationResult { 514 return vectorizeLinalgIndex(b, op, linalgOp); 515 }; 516 hooks.push_back(vectorizeIndex); 517 518 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 519 for (Operation &op : block->getOperations()) { 520 VectorizationResult result = vectorizeOneOp(b, linalgOp, &op, bvm, hooks); 521 if (result.status == VectorizationStatus::Failure) { 522 LDBG("failed to vectorize: " << op); 523 return failure(); 524 } 525 if (result.status == VectorizationStatus::NewOp) { 526 LDBG("new vector op: " << *result.newOp;); 527 bvm.map(op.getResults(), result.newOp->getResults()); 528 } 529 } 530 531 return success(); 532 } 533 534 // TODO: probably need some extra checks for reduction followed by consumer 535 // ops that may not commute (e.g. linear reduction + non-linear instructions). 536 static LogicalResult reductionPreconditions(LinalgOp op) { 537 if (llvm::none_of(op.iterator_types(), isReductionIterator)) { 538 LDBG("reduction precondition failed: no reduction iterator"); 539 return failure(); 540 } 541 for (OpOperand *opOperand : op.getOutputOperands()) { 542 Operation *reduceOp = matchLinalgReduction(opOperand); 543 if (!reduceOp || !getCombinerOpKind(reduceOp)) { 544 LDBG("reduction precondition failed: reduction detection failed"); 545 return failure(); 546 } 547 } 548 return success(); 549 } 550 551 static LogicalResult vectorizeStaticLinalgOpPrecondition(linalg::LinalgOp op) { 552 // All types in the body should be a supported element type for VectorType. 553 for (Operation &innerOp : op->getRegion(0).front()) { 554 if (llvm::any_of(innerOp.getOperandTypes(), [](Type type) { 555 return !VectorType::isValidElementType(type); 556 })) { 557 return failure(); 558 } 559 if (llvm::any_of(innerOp.getResultTypes(), [](Type type) { 560 return !VectorType::isValidElementType(type); 561 })) { 562 return failure(); 563 } 564 } 565 if (isElementwise(op)) 566 return success(); 567 // TODO: isaConvolutionOpInterface that can also infer from generic features. 568 // But we will still need stride/dilation attributes that will be annoying to 569 // reverse-engineer... 570 if (isa<ConvolutionOpInterface>(op.getOperation())) 571 return success(); 572 // TODO: the common vector shape is equal to the static loop sizes only when 573 // all indexing maps are projected permutations. For convs and stencils the 574 // logic will need to evolve. 575 if (!allIndexingsAreProjectedPermutation(op)) { 576 LDBG("precondition failed: not projected permutations"); 577 return failure(); 578 } 579 if (failed(reductionPreconditions(op))) { 580 LDBG("precondition failed: reduction preconditions"); 581 return failure(); 582 } 583 return success(); 584 } 585 586 static LogicalResult vectorizeLinalgOpPrecondition(LinalgOp linalgOp) { 587 // All types must be static shape to go to vector. 588 if (linalgOp.hasDynamicShape()) { 589 LDBG("precondition failed: dynamic shape"); 590 return failure(); 591 } 592 return vectorizeStaticLinalgOpPrecondition(linalgOp); 593 } 594 595 LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, 596 LinalgOp linalgOp) { 597 if (failed(vectorizeLinalgOpPrecondition(linalgOp))) 598 return failure(); 599 600 SmallVector<Value> results; 601 // TODO: isaConvolutionOpInterface that can also infer from generic 602 // features. Will require stride/dilation attributes inference. 603 FailureOr<Operation *> convOr = vectorizeConvolution(rewriter, linalgOp); 604 if (succeeded(convOr)) { 605 llvm::append_range(results, (*convOr)->getResults()); 606 } else { 607 if (failed(vectorizeLinalgOpPrecondition(linalgOp))) 608 return failure(); 609 LDBG("Vectorize generic by broadcasting to a common shape: " << linalgOp); 610 if (failed(vectorizeAsLinalgGeneric(rewriter, linalgOp, results))) 611 return failure(); 612 } 613 614 if (!results.empty()) 615 rewriter.replaceOp(linalgOp, results); 616 else 617 rewriter.eraseOp(linalgOp); 618 619 return success(); 620 } 621 622 LogicalResult mlir::linalg::vectorizeCopy(RewriterBase &rewriter, 623 memref::CopyOp copyOp) { 624 625 auto srcType = copyOp.getSource().getType().cast<MemRefType>(); 626 auto dstType = copyOp.getTarget().getType().cast<MemRefType>(); 627 if (!srcType.hasStaticShape() || !dstType.hasStaticShape()) 628 return failure(); 629 630 auto readType = 631 VectorType::get(srcType.getShape(), getElementTypeOrSelf(srcType)); 632 auto writeType = 633 VectorType::get(dstType.getShape(), getElementTypeOrSelf(dstType)); 634 635 Location loc = copyOp->getLoc(); 636 Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0); 637 SmallVector<Value> indices(srcType.getRank(), zero); 638 639 Value readValue = rewriter.create<vector::TransferReadOp>( 640 loc, readType, copyOp.getSource(), indices, 641 rewriter.getMultiDimIdentityMap(srcType.getRank())); 642 if (readValue.getType().cast<VectorType>().getRank() == 0) { 643 readValue = rewriter.create<vector::ExtractElementOp>(loc, readValue); 644 readValue = rewriter.create<vector::BroadcastOp>(loc, writeType, readValue); 645 } 646 Operation *writeValue = rewriter.create<vector::TransferWriteOp>( 647 loc, readValue, copyOp.getTarget(), indices, 648 rewriter.getMultiDimIdentityMap(srcType.getRank())); 649 rewriter.replaceOp(copyOp, writeValue->getResults()); 650 return success(); 651 } 652 653 //----------------------------------------------------------------------------// 654 // Misc. vectorization patterns. 655 //----------------------------------------------------------------------------// 656 657 /// Helper function that retrieves the value of an IntegerAttr. 658 static int64_t getIntFromAttr(Attribute attr) { 659 return attr.cast<IntegerAttr>().getInt(); 660 } 661 662 /// Given an ArrayRef of OpFoldResults, return a vector of Values. 663 /// IntegerAttrs are converted to ConstantIndexOps. Other attribute types are 664 /// not supported. 665 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc, 666 ArrayRef<OpFoldResult> ofrs) { 667 SmallVector<Value> result; 668 llvm::for_each(ofrs, [&](auto o) { 669 if (auto val = o.template dyn_cast<Value>()) { 670 result.push_back(val); 671 } else { 672 result.push_back(builder.create<arith::ConstantIndexOp>( 673 loc, getIntFromAttr(o.template get<Attribute>()))); 674 } 675 }); 676 return result; 677 } 678 679 /// Rewrite a tensor::PadOp into a sequence of InitTensorOp, FillOp and 680 /// InsertSliceOp. For now, only constant padding values are supported. 681 /// If there is enough static type information, TransferReadOps and 682 /// TransferWriteOps may be generated instead of InsertSliceOps. 683 struct GenericPadOpVectorizationPattern : public GeneralizePadOpPattern { 684 GenericPadOpVectorizationPattern(MLIRContext *context, 685 PatternBenefit benefit = 1) 686 : GeneralizePadOpPattern(context, tryVectorizeCopy, benefit) {} 687 /// Vectorize the copying of a tensor::PadOp's source. This is possible if 688 /// each dimension size is statically know in the source type or the result 689 /// type (or both). 690 static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter, 691 tensor::PadOp padOp, Value dest) { 692 auto sourceType = padOp.getSourceType(); 693 auto resultType = padOp.getResultType(); 694 695 // Copy cannot be vectorized if pad value is non-constant and source shape 696 // is dynamic. In case of a dynamic source shape, padding must be appended 697 // by TransferReadOp, but TransferReadOp supports only constant padding. 698 auto padValue = padOp.getConstantPaddingValue(); 699 if (!padValue) { 700 if (!sourceType.hasStaticShape()) 701 return failure(); 702 // Create dummy padding value. 703 auto elemType = sourceType.getElementType(); 704 padValue = rewriter.create<arith::ConstantOp>( 705 padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType)); 706 } 707 708 SmallVector<int64_t> vecShape; 709 SmallVector<bool> readInBounds; 710 SmallVector<bool> writeInBounds; 711 for (unsigned i = 0; i < sourceType.getRank(); ++i) { 712 if (!sourceType.isDynamicDim(i)) { 713 vecShape.push_back(sourceType.getDimSize(i)); 714 // Source shape is statically known: Neither read nor write are 715 // out-of- bounds. 716 readInBounds.push_back(true); 717 writeInBounds.push_back(true); 718 } else if (!resultType.isDynamicDim(i)) { 719 // Source shape is not statically known, but result shape is. 720 // Vectorize with size of result shape. This may be larger than the 721 // source size. 722 vecShape.push_back(resultType.getDimSize(i)); 723 // Read may be out-of-bounds because the result size could be larger 724 // than the source size. 725 readInBounds.push_back(false); 726 // Write is out-of-bounds if low padding > 0. 727 writeInBounds.push_back( 728 getConstantIntValue(padOp.getMixedLowPad()[i]) == 729 static_cast<int64_t>(0)); 730 } else { 731 // Neither source nor result dim of padOp is static. Cannot vectorize 732 // the copy. 733 return failure(); 734 } 735 } 736 auto vecType = VectorType::get(vecShape, sourceType.getElementType()); 737 738 // Generate TransferReadOp. 739 SmallVector<Value> readIndices( 740 vecType.getRank(), 741 rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0)); 742 auto read = rewriter.create<vector::TransferReadOp>( 743 padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue, 744 ArrayRef<bool>{readInBounds}); 745 746 // If `dest` is a FillOp and the TransferWriteOp would overwrite the 747 // entire tensor, write directly to the FillOp's operand. 748 if (llvm::equal(vecShape, resultType.getShape()) && 749 llvm::all_of(writeInBounds, [](bool b) { return b; })) 750 if (auto fill = dest.getDefiningOp<FillOp>()) 751 dest = fill.output(); 752 753 // Generate TransferWriteOp. 754 auto writeIndices = 755 ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad()); 756 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 757 padOp, read, dest, writeIndices, ArrayRef<bool>{writeInBounds}); 758 759 return success(); 760 } 761 }; 762 763 /// Base pattern for rewriting tensor::PadOps whose result is consumed by a 764 /// given operation type OpTy. 765 template <typename OpTy> 766 struct VectorizePadOpUserPattern : public OpRewritePattern<tensor::PadOp> { 767 using OpRewritePattern<tensor::PadOp>::OpRewritePattern; 768 769 LogicalResult matchAndRewrite(tensor::PadOp padOp, 770 PatternRewriter &rewriter) const final { 771 bool changed = false; 772 // Insert users in vector, because some users may be replaced/removed. 773 for (auto *user : llvm::to_vector<4>(padOp->getUsers())) 774 if (auto op = dyn_cast<OpTy>(user)) 775 changed |= rewriteUser(rewriter, padOp, op).succeeded(); 776 return success(changed); 777 } 778 779 protected: 780 virtual LogicalResult rewriteUser(PatternRewriter &rewriter, 781 tensor::PadOp padOp, OpTy op) const = 0; 782 }; 783 784 /// Rewrite use of tensor::PadOp result in TransferReadOp. E.g.: 785 /// ``` 786 /// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32> 787 /// %r = vector.transfer_read %0[%c0, %c0], %cst 788 /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> 789 /// ``` 790 /// is rewritten to: 791 /// ``` 792 /// %r = vector.transfer_read %src[%c0, %c0], %padding 793 /// {in_bounds = [true, true]} 794 /// : tensor<?x?xf32>, vector<17x5xf32> 795 /// ``` 796 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be 797 /// sure that the original padding value %cst was never used. 798 /// 799 /// This rewrite is possible if: 800 /// - `xferOp` has no out-of-bounds dims or mask. 801 /// - Low padding is static 0. 802 /// - Single, scalar padding value. 803 struct PadOpVectorizationWithTransferReadPattern 804 : public VectorizePadOpUserPattern<vector::TransferReadOp> { 805 using VectorizePadOpUserPattern< 806 vector::TransferReadOp>::VectorizePadOpUserPattern; 807 808 LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, 809 vector::TransferReadOp xferOp) const override { 810 // Low padding must be static 0. 811 if (!padOp.hasZeroLowPad()) 812 return failure(); 813 // Pad value must be a constant. 814 auto padValue = padOp.getConstantPaddingValue(); 815 if (!padValue) 816 return failure(); 817 // Padding value of existing `xferOp` is unused. 818 if (xferOp.hasOutOfBoundsDim() || xferOp.getMask()) 819 return failure(); 820 821 rewriter.updateRootInPlace(xferOp, [&]() { 822 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 823 xferOp->setAttr(xferOp.getInBoundsAttrName(), 824 rewriter.getBoolArrayAttr(inBounds)); 825 xferOp.getSourceMutable().assign(padOp.getSource()); 826 xferOp.getPaddingMutable().assign(padValue); 827 }); 828 829 return success(); 830 } 831 }; 832 833 /// Rewrite use of tensor::PadOp result in TransferWriteOp. 834 /// This pattern rewrites TransferWriteOps that write to a padded tensor 835 /// value, where the same amount of padding is immediately removed again after 836 /// the write. In such cases, the TransferWriteOp can write to the non-padded 837 /// tensor value and apply out-of-bounds masking. E.g.: 838 /// ``` 839 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 840 /// : tensor<...> to tensor<?x?xf32> 841 /// %1 = tensor.pad %0 ... : tensor<?x?xf32> to tensor<17x5xf32> 842 /// %2 = vector.transfer_write %vec, %1[...] 843 /// : vector<17x5xf32>, tensor<17x5xf32> 844 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] 845 /// : tensor<17x5xf32> to tensor<?x?xf32> 846 /// ``` 847 /// is rewritten to: 848 /// ``` 849 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 850 /// : tensor<...> to tensor<?x?xf32> 851 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, 852 /// tensor<?x?xf32> 853 /// ``` 854 /// Note: It is important that the ExtractSliceOp %r resizes the result of the 855 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an 856 /// even smaller size). Otherwise, %r's new (dynamic) dimensions would differ 857 /// from %r's old dimensions. 858 /// 859 /// This rewrite is possible if: 860 /// - Low padding is static 0. 861 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This 862 /// ExtractSliceOp trims the same amount of padding that was added 863 /// beforehand. 864 /// - Single, scalar padding value. 865 struct PadOpVectorizationWithTransferWritePattern 866 : public VectorizePadOpUserPattern<vector::TransferWriteOp> { 867 using VectorizePadOpUserPattern< 868 vector::TransferWriteOp>::VectorizePadOpUserPattern; 869 870 LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, 871 vector::TransferWriteOp xferOp) const override { 872 // TODO: support 0-d corner case. 873 if (xferOp.getTransferRank() == 0) 874 return failure(); 875 876 // Low padding must be static 0. 877 if (!padOp.hasZeroLowPad()) 878 return failure(); 879 // Pad value must be a constant. 880 auto padValue = padOp.getConstantPaddingValue(); 881 if (!padValue) 882 return failure(); 883 // TransferWriteOp result must be directly consumed by an ExtractSliceOp. 884 if (!xferOp->hasOneUse()) 885 return failure(); 886 auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin()); 887 if (!trimPadding) 888 return failure(); 889 // Only static zero offsets supported when trimming padding. 890 if (!trimPadding.hasZeroOffset()) 891 return failure(); 892 // trimPadding must remove the amount of padding that was added earlier. 893 if (!hasSameTensorSize(padOp.getSource(), trimPadding)) 894 return failure(); 895 896 // Insert the new TransferWriteOp at position of the old TransferWriteOp. 897 rewriter.setInsertionPoint(xferOp); 898 899 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 900 auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 901 xferOp, padOp.getSource().getType(), xferOp.getVector(), 902 padOp.getSource(), xferOp.getIndices(), xferOp.getPermutationMapAttr(), 903 xferOp.getMask(), rewriter.getBoolArrayAttr(inBounds)); 904 rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); 905 906 return success(); 907 } 908 909 /// Check if `beforePadding` and `afterTrimming` have the same tensor size, 910 /// i.e., same dimensions. 911 /// 912 /// Dimensions may be static, dynamic or mix of both. In case of dynamic 913 /// dimensions, this function tries to infer the (static) tensor size by 914 /// looking at the defining op and utilizing op-specific knowledge. 915 /// 916 /// This is a conservative analysis. In case equal tensor sizes cannot be 917 /// proven statically, this analysis returns `false` even though the tensor 918 /// sizes may turn out to be equal at runtime. 919 bool hasSameTensorSize(Value beforePadding, 920 tensor::ExtractSliceOp afterTrimming) const { 921 // If the input to tensor::PadOp is a CastOp, try with with both CastOp 922 // result and CastOp operand. 923 if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>()) 924 if (hasSameTensorSize(castOp.getSource(), afterTrimming)) 925 return true; 926 927 auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>(); 928 auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>(); 929 // Only RankedTensorType supported. 930 if (!t1 || !t2) 931 return false; 932 // Rank of both values must be the same. 933 if (t1.getRank() != t2.getRank()) 934 return false; 935 936 // All static dimensions must be the same. Mixed cases (e.g., dimension 937 // static in `t1` but dynamic in `t2`) are not supported. 938 for (unsigned i = 0; i < t1.getRank(); ++i) { 939 if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) 940 return false; 941 if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) 942 return false; 943 } 944 945 // Nothing more to check if all dimensions are static. 946 if (t1.getNumDynamicDims() == 0) 947 return true; 948 949 // All dynamic sizes must be the same. The only supported case at the 950 // moment is when `beforePadding` is an ExtractSliceOp (or a cast 951 // thereof). 952 953 // Apart from CastOp, only ExtractSliceOp is supported. 954 auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>(); 955 if (!beforeSlice) 956 return false; 957 958 assert(static_cast<size_t>(t1.getRank()) == 959 beforeSlice.getMixedSizes().size()); 960 assert(static_cast<size_t>(t2.getRank()) == 961 afterTrimming.getMixedSizes().size()); 962 963 for (unsigned i = 0; i < t1.getRank(); ++i) { 964 // Skip static dimensions. 965 if (!t1.isDynamicDim(i)) 966 continue; 967 auto size1 = beforeSlice.getMixedSizes()[i]; 968 auto size2 = afterTrimming.getMixedSizes()[i]; 969 970 // Case 1: Same value or same constant int. 971 if (isEqualConstantIntOrValue(size1, size2)) 972 continue; 973 974 // Other cases: Take a deeper look at defining ops of values. 975 auto v1 = size1.dyn_cast<Value>(); 976 auto v2 = size2.dyn_cast<Value>(); 977 if (!v1 || !v2) 978 return false; 979 980 // Case 2: Both values are identical AffineMinOps. (Should not happen if 981 // CSE is run.) 982 auto minOp1 = v1.getDefiningOp<AffineMinOp>(); 983 auto minOp2 = v2.getDefiningOp<AffineMinOp>(); 984 if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() && 985 minOp1.operands() == minOp2.operands()) 986 continue; 987 988 // Add additional cases as needed. 989 } 990 991 // All tests passed. 992 return true; 993 } 994 }; 995 996 /// Rewrite use of tensor::PadOp result in InsertSliceOp. E.g.: 997 /// ``` 998 /// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32> 999 /// %r = tensor.insert_slice %0 1000 /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] 1001 /// : tensor<17x5xf32> into tensor<?x?x17x5xf32> 1002 /// ``` 1003 /// is rewritten to: 1004 /// ``` 1005 /// %0 = vector.transfer_read %src[%c0, %c0], %padding 1006 /// : tensor<?x?xf32>, vector<17x5xf32> 1007 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] 1008 /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32> 1009 /// ``` 1010 /// 1011 /// This rewrite is possible if: 1012 /// - Low padding is static 0. 1013 /// - `padOp` result shape is static. 1014 /// - The entire padded tensor is inserted. 1015 /// (Implies that sizes of `insertOp` are all static.) 1016 /// - Only unit strides in `insertOp`. 1017 /// - Single, scalar padding value. 1018 /// - `padOp` result not used as destination. 1019 struct PadOpVectorizationWithInsertSlicePattern 1020 : public VectorizePadOpUserPattern<tensor::InsertSliceOp> { 1021 using VectorizePadOpUserPattern< 1022 tensor::InsertSliceOp>::VectorizePadOpUserPattern; 1023 1024 LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, 1025 tensor::InsertSliceOp insertOp) const override { 1026 // Low padding must be static 0. 1027 if (!padOp.hasZeroLowPad()) 1028 return failure(); 1029 // Only unit stride supported. 1030 if (!insertOp.hasUnitStride()) 1031 return failure(); 1032 // Pad value must be a constant. 1033 auto padValue = padOp.getConstantPaddingValue(); 1034 if (!padValue) 1035 return failure(); 1036 // Dynamic shapes not supported. 1037 if (!padOp.getResult().getType().cast<ShapedType>().hasStaticShape()) 1038 return failure(); 1039 // Pad result not used as destination. 1040 if (insertOp.getDest() == padOp.getResult()) 1041 return failure(); 1042 1043 auto vecType = VectorType::get(padOp.getType().getShape(), 1044 padOp.getType().getElementType()); 1045 unsigned vecRank = vecType.getRank(); 1046 unsigned tensorRank = insertOp.getType().getRank(); 1047 1048 // Check if sizes match: Insert the entire tensor into most minor dims. 1049 // (No permutations allowed.) 1050 SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1); 1051 expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); 1052 if (!llvm::all_of( 1053 llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { 1054 return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); 1055 })) 1056 return failure(); 1057 1058 // Insert the TransferReadOp and TransferWriteOp at the position of the 1059 // InsertSliceOp. 1060 rewriter.setInsertionPoint(insertOp); 1061 1062 // Generate TransferReadOp: Read entire source tensor and add high 1063 // padding. 1064 SmallVector<Value> readIndices( 1065 vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0)); 1066 auto read = rewriter.create<vector::TransferReadOp>( 1067 padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue); 1068 1069 // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at 1070 // specified offsets. Write is fully in-bounds because a InsertSliceOp's 1071 // source must fit into the destination at the specified offsets. 1072 auto writeIndices = 1073 ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); 1074 SmallVector<bool> inBounds(vecRank, true); 1075 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 1076 insertOp, read, insertOp.getDest(), writeIndices, 1077 ArrayRef<bool>{inBounds}); 1078 1079 return success(); 1080 } 1081 }; 1082 1083 void mlir::linalg::populatePadOpVectorizationPatterns( 1084 RewritePatternSet &patterns, PatternBenefit baseBenefit) { 1085 patterns.add<GenericPadOpVectorizationPattern>(patterns.getContext(), 1086 baseBenefit); 1087 // Try these specialized patterns first before resorting to the generic one. 1088 patterns.add<PadOpVectorizationWithTransferReadPattern, 1089 PadOpVectorizationWithTransferWritePattern, 1090 PadOpVectorizationWithInsertSlicePattern>( 1091 patterns.getContext(), baseBenefit.getBenefit() + 1); 1092 } 1093 1094 //----------------------------------------------------------------------------// 1095 // Forwarding patterns 1096 //----------------------------------------------------------------------------// 1097 1098 /// Check whether there is any interleaved use of any `values` between 1099 /// `firstOp` and `secondOp`. Conservatively return `true` if any op or value 1100 /// is in a different block. 1101 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 1102 ValueRange values) { 1103 if (firstOp->getBlock() != secondOp->getBlock() || 1104 !firstOp->isBeforeInBlock(secondOp)) { 1105 LDBG("interleavedUses precondition failed, firstOp: " 1106 << *firstOp << ", second op: " << *secondOp); 1107 return true; 1108 } 1109 for (auto v : values) { 1110 for (auto &u : v.getUses()) { 1111 Operation *owner = u.getOwner(); 1112 if (owner == firstOp || owner == secondOp) 1113 continue; 1114 // TODO: this is too conservative, use dominance info in the future. 1115 if (owner->getBlock() == firstOp->getBlock() && 1116 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 1117 continue; 1118 LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp 1119 << ", second op: " << *secondOp); 1120 return true; 1121 } 1122 } 1123 return false; 1124 } 1125 1126 /// Return the unique subview use of `v` if it is indeed unique, null 1127 /// otherwise. 1128 static memref::SubViewOp getSubViewUseIfUnique(Value v) { 1129 memref::SubViewOp subViewOp; 1130 for (auto &u : v.getUses()) { 1131 if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { 1132 if (subViewOp) 1133 return memref::SubViewOp(); 1134 subViewOp = newSubViewOp; 1135 } 1136 } 1137 return subViewOp; 1138 } 1139 1140 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1141 /// when available. 1142 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 1143 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 1144 1145 // TODO: support mask. 1146 if (xferOp.getMask()) 1147 return failure(); 1148 1149 // Transfer into `view`. 1150 Value viewOrAlloc = xferOp.getSource(); 1151 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1152 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1153 return failure(); 1154 1155 LDBG(viewOrAlloc); 1156 1157 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1158 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1159 if (!subViewOp) 1160 return failure(); 1161 Value subView = subViewOp.getResult(); 1162 LDBG("with subView " << subView); 1163 1164 // Find the copy into `subView` without interleaved uses. 1165 memref::CopyOp copyOp; 1166 for (auto &u : subView.getUses()) { 1167 if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) { 1168 assert(newCopyOp.getTarget().getType().isa<MemRefType>()); 1169 if (newCopyOp.getTarget() != subView) 1170 continue; 1171 LDBG("copy candidate " << *newCopyOp); 1172 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 1173 continue; 1174 copyOp = newCopyOp; 1175 break; 1176 } 1177 } 1178 if (!copyOp) 1179 return failure(); 1180 LDBG("with copy " << *copyOp); 1181 1182 // Find the fill into `viewOrAlloc` without interleaved uses before the 1183 // copy. 1184 FillOp maybeFillOp; 1185 for (auto &u : viewOrAlloc.getUses()) { 1186 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 1187 assert(newFillOp.output().getType().isa<MemRefType>()); 1188 if (newFillOp.output() != viewOrAlloc) 1189 continue; 1190 LDBG("fill candidate " << *newFillOp); 1191 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 1192 continue; 1193 maybeFillOp = newFillOp; 1194 break; 1195 } 1196 } 1197 // Ensure padding matches. 1198 if (maybeFillOp && xferOp.getPadding() != maybeFillOp.value()) 1199 return failure(); 1200 if (maybeFillOp) 1201 LDBG("with maybeFillOp " << *maybeFillOp); 1202 1203 // `in` is the subview that memref.copy reads. Replace it. 1204 Value in = copyOp.getSource(); 1205 1206 // memref.copy + linalg.fill can be used to create a padded local buffer. 1207 // The `masked` attribute is only valid on this padded buffer. 1208 // When forwarding to vector.transfer_read, the attribute must be reset 1209 // conservatively. 1210 Value res = rewriter.create<vector::TransferReadOp>( 1211 xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.getIndices(), 1212 xferOp.getPermutationMapAttr(), xferOp.getPadding(), xferOp.getMask(), 1213 // in_bounds is explicitly reset 1214 /*inBoundsAttr=*/ArrayAttr()); 1215 1216 if (maybeFillOp) 1217 rewriter.eraseOp(maybeFillOp); 1218 rewriter.eraseOp(copyOp); 1219 rewriter.replaceOp(xferOp, res); 1220 1221 return success(); 1222 } 1223 1224 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1225 /// when available. 1226 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 1227 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 1228 // TODO: support mask. 1229 if (xferOp.getMask()) 1230 return failure(); 1231 1232 // Transfer into `viewOrAlloc`. 1233 Value viewOrAlloc = xferOp.getSource(); 1234 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1235 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1236 return failure(); 1237 1238 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1239 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1240 if (!subViewOp) 1241 return failure(); 1242 Value subView = subViewOp.getResult(); 1243 1244 // Find the copy from `subView` without interleaved uses. 1245 memref::CopyOp copyOp; 1246 for (auto &u : subViewOp.getResult().getUses()) { 1247 if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) { 1248 if (newCopyOp.getSource() != subView) 1249 continue; 1250 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 1251 continue; 1252 copyOp = newCopyOp; 1253 break; 1254 } 1255 } 1256 if (!copyOp) 1257 return failure(); 1258 1259 // `out` is the subview copied into that we replace. 1260 assert(copyOp.getTarget().getType().isa<MemRefType>()); 1261 Value out = copyOp.getTarget(); 1262 1263 // Forward vector.transfer into copy. 1264 // memref.copy + linalg.fill can be used to create a padded local buffer. 1265 // The `masked` attribute is only valid on this padded buffer. 1266 // When forwarding to vector.transfer_write, the attribute must be reset 1267 // conservatively. 1268 rewriter.create<vector::TransferWriteOp>( 1269 xferOp.getLoc(), xferOp.getVector(), out, xferOp.getIndices(), 1270 xferOp.getPermutationMapAttr(), xferOp.getMask(), 1271 // in_bounds is explicitly reset 1272 /*inBoundsAttr=*/ArrayAttr()); 1273 1274 rewriter.eraseOp(copyOp); 1275 rewriter.eraseOp(xferOp); 1276 1277 return success(); 1278 } 1279 1280 //===----------------------------------------------------------------------===// 1281 // Convolution vectorization patterns 1282 //===----------------------------------------------------------------------===// 1283 1284 template <int N> 1285 static void bindShapeDims(ShapedType shapedType) {} 1286 1287 template <int N, typename IntTy, typename... IntTy2> 1288 static void bindShapeDims(ShapedType shapedType, IntTy &val, IntTy2 &...vals) { 1289 val = shapedType.getShape()[N]; 1290 bindShapeDims<N + 1, IntTy2 &...>(shapedType, vals...); 1291 } 1292 1293 /// Bind a pack of int& to the leading dimensions of shapedType.getShape(). 1294 template <typename... IntTy> 1295 static void bindShapeDims(ShapedType shapedType, IntTy &...vals) { 1296 bindShapeDims<0>(shapedType, vals...); 1297 } 1298 1299 namespace { 1300 /// Generate a vector implementation for either: 1301 /// ``` 1302 /// Op def: ( n, w, c, kw, f ) 1303 /// Iters: ({Par(), Par(), Par(), Red(), Red()}) 1304 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} 1305 /// ``` 1306 /// kw is unrolled, w is unrolled iff dilationW > 1. 1307 /// 1308 /// or 1309 /// 1310 /// ``` 1311 /// Op def: ( n, w, c, kw ) 1312 /// Iters: ({Par(), Par(), Par(), Red()}) 1313 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} 1314 /// ``` 1315 /// kw is unrolled, w is unrolled iff dilationW > 1. 1316 struct Conv1DNwcGenerator : public StructuredGenerator<LinalgOp> { 1317 Conv1DNwcGenerator(OpBuilder &builder, LinalgOp linalgOp, int strideW, 1318 int dilationW) 1319 : StructuredGenerator<LinalgOp>(builder, linalgOp), strideW(strideW), 1320 dilationW(dilationW) { 1321 // Determine whether `linalgOp` can be generated with this generator 1322 if (linalgOp.getNumInputs() != 2 || linalgOp.getNumOutputs() != 1) 1323 return; 1324 lhsShaped = linalgOp.inputs()[0]; 1325 rhsShaped = linalgOp.inputs()[1]; 1326 resShaped = linalgOp.outputs()[0]; 1327 lhsShapedType = lhsShaped.getType().dyn_cast<ShapedType>(); 1328 rhsShapedType = rhsShaped.getType().dyn_cast<ShapedType>(); 1329 resShapedType = resShaped.getType().dyn_cast<ShapedType>(); 1330 if (!lhsShapedType || !rhsShapedType || !resShapedType) 1331 return; 1332 if (lhsShapedType.getRank() != 3 || 1333 (rhsShapedType.getRank() != 2 && rhsShapedType.getRank() != 3) || 1334 resShapedType.getRank() != 3) 1335 return; 1336 1337 // Check for reduction `add` preceded by `mul`. 1338 Operation *reduceOp = matchLinalgReduction(linalgOp.getOutputOperand(0)); 1339 if (!reduceOp) 1340 return; 1341 llvm::Optional<vector::CombiningKind> maybeKind; 1342 maybeKind = getCombinerOpKind(reduceOp); 1343 if (!maybeKind || *maybeKind != vector::CombiningKind::ADD) 1344 return; 1345 // Check for single `mul` predecessor. The `mul` operands must be block 1346 // arguments or extension of block arguments. 1347 Operation *mulOp = nullptr; 1348 for (Value operand : reduceOp->getOperands()) { 1349 if (operand.isa<BlockArgument>()) 1350 continue; 1351 if (mulOp) 1352 return; 1353 mulOp = operand.getDefiningOp(); 1354 if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp)) 1355 return; 1356 } 1357 if (!mulOp) 1358 return; 1359 for (Value operand : mulOp->getOperands()) { 1360 if (Operation *def = operand.getDefiningOp()) { 1361 if (!isa<arith::ExtFOp>(def)) 1362 return; 1363 operand = def->getOperand(0); 1364 } 1365 if (!operand.isa<BlockArgument>()) 1366 return; 1367 } 1368 // The op is now known to be valid. 1369 valid = true; 1370 } 1371 1372 /// Generate a vector implementation for: 1373 /// ``` 1374 /// Op def: ( n, w, c, kw, f ) 1375 /// Iters: ({Par(), Par(), Par(), Red(), Red()}) 1376 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} 1377 /// ``` 1378 /// kw is always unrolled. 1379 /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is 1380 /// > 1. 1381 FailureOr<Operation *> conv() { 1382 if (!valid) 1383 return failure(); 1384 1385 int64_t nSize, wSize, cSize, kwSize, fSize; 1386 // kernel{kw, c, f} 1387 bindShapeDims(rhsShapedType, kwSize, cSize, fSize); 1388 // out{n, w, f} 1389 bindShapeDims(resShapedType, nSize, wSize); 1390 1391 vector::TransferWriteOp write; 1392 Value zero = builder.create<arith::ConstantIndexOp>(loc, 0); 1393 1394 // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. 1395 // When strideW == 1, we can batch the contiguous loads and avoid 1396 // unrolling 1397 int64_t wSizeStep = strideW == 1 ? wSize : 1; 1398 1399 Type lhsEltType = lhsShapedType.getElementType(); 1400 Type rhsEltType = rhsShapedType.getElementType(); 1401 Type resEltType = resShapedType.getElementType(); 1402 VectorType lhsType = VectorType::get( 1403 {nSize, 1404 // iw = ow * sw + kw * dw - 1 1405 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) 1406 // Perform the proper inclusive -> exclusive -> inclusive. 1407 ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1, 1408 cSize}, 1409 lhsEltType); 1410 VectorType rhsType = VectorType::get({kwSize, cSize, fSize}, rhsEltType); 1411 VectorType resType = VectorType::get({nSize, wSize, fSize}, resEltType); 1412 1413 // Read lhs slice of size {w * strideW + kw * dilationW, c, f} @ [0, 0, 1414 // 0]. 1415 Value lhs = builder.create<vector::TransferReadOp>( 1416 loc, lhsType, lhsShaped, ValueRange{zero, zero, zero}); 1417 // Read rhs slice of size {kw, c, f} @ [0, 0, 0]. 1418 Value rhs = builder.create<vector::TransferReadOp>( 1419 loc, rhsType, rhsShaped, ValueRange{zero, zero, zero}); 1420 // Read res slice of size {n, w, f} @ [0, 0, 0]. 1421 Value res = builder.create<vector::TransferReadOp>( 1422 loc, resType, resShaped, ValueRange{zero, zero, zero}); 1423 1424 //===------------------------------------------------------------------===// 1425 // Begin vector-only rewrite part 1426 //===------------------------------------------------------------------===// 1427 // Unroll along kw and read slices of lhs and rhs. 1428 SmallVector<Value> lhsVals, rhsVals, resVals; 1429 // Extract lhs slice of size {n, wSizeStep, c} @ [0, sw * w + dw * kw, 0]. 1430 for (int64_t kw = 0; kw < kwSize; ++kw) { 1431 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1432 lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>( 1433 loc, lhs, 1434 /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0}, 1435 /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize}, 1436 /*strides=*/ArrayRef<int64_t>{1, 1, 1})); 1437 } 1438 } 1439 // Extract rhs slice of size {c, f} @ [kw]. 1440 for (int64_t kw = 0; kw < kwSize; ++kw) { 1441 rhsVals.push_back(builder.create<vector::ExtractOp>( 1442 loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw})); 1443 } 1444 // Extract res slice: {n, wSizeStep, f} @ [0, w, 0]. 1445 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1446 resVals.push_back(builder.create<vector::ExtractStridedSliceOp>( 1447 loc, res, 1448 /*offsets=*/ArrayRef<int64_t>{0, w, 0}, 1449 /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, fSize}, 1450 /*strides=*/ArrayRef<int64_t>{1, 1, 1})); 1451 } 1452 1453 auto linearIndex = [&](int64_t kw, int64_t w) { 1454 return kw * (wSize / wSizeStep) + w; 1455 }; 1456 1457 // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f} 1458 for (int64_t kw = 0; kw < kwSize; ++kw) { 1459 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1460 resVals[w] = conv1dSliceAsContraction( 1461 builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]); 1462 } 1463 } 1464 1465 // Write back res slice: {n, wSizeStep, f} @ [0, w, 0]. 1466 // This does not depend on kw. 1467 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1468 res = builder.create<vector::InsertStridedSliceOp>( 1469 loc, resVals[w], res, 1470 /*offsets=*/ArrayRef<int64_t>{0, w, 0}, 1471 /*strides=*/ArrayRef<int64_t>{1, 1, 1}); 1472 } 1473 //===------------------------------------------------------------------===// 1474 // End vector-only rewrite part 1475 //===------------------------------------------------------------------===// 1476 1477 // Write back res slice of size {n, w, f} @ [0, 0, 0]. 1478 return builder 1479 .create<vector::TransferWriteOp>(loc, res, resShaped, 1480 ValueRange{zero, zero, zero}) 1481 .getOperation(); 1482 } 1483 1484 // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f} 1485 Value conv1dSliceAsContraction(OpBuilder &b, Location loc, Value lhs, 1486 Value rhs, Value res) { 1487 StringRef par = Par().strRef, red = Red().strRef; 1488 AffineExpr n, w, f, c; 1489 bindDims(ctx, n, w, f, c); 1490 return builder.create<vector::ContractionOp>( 1491 loc, lhs, rhs, res, 1492 /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}}, 1493 /*iteratorTypes=*/ArrayRef<StringRef>{par, par, par, red}); 1494 } 1495 1496 /// Generate a vector implementation for: 1497 /// ``` 1498 /// Op def: ( n, w, c, kw) 1499 /// Iters: ({Par(), Par(), Par(), Red()}) 1500 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} 1501 /// ``` 1502 /// kw is always unrolled. 1503 /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is 1504 /// > 1. 1505 FailureOr<Operation *> depthwiseConv() { 1506 if (!valid) 1507 return failure(); 1508 1509 int64_t nSize, wSize, cSize, kwSize; 1510 // kernel{kw, c} 1511 bindShapeDims(rhsShapedType, kwSize, cSize); 1512 // out{n, w, c} 1513 bindShapeDims(resShapedType, nSize, wSize); 1514 1515 vector::TransferWriteOp write; 1516 Value zero = builder.create<arith::ConstantIndexOp>(loc, 0); 1517 1518 // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. 1519 // When strideW == 1, we can batch the contiguous loads and avoid 1520 // unrolling 1521 int64_t wSizeStep = strideW == 1 ? wSize : 1; 1522 1523 Type lhsEltType = lhsShapedType.getElementType(); 1524 Type rhsEltType = rhsShapedType.getElementType(); 1525 Type resEltType = resShapedType.getElementType(); 1526 VectorType lhsType = VectorType::get( 1527 {nSize, 1528 // iw = ow * sw + kw * dw - 1 1529 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) 1530 ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1, 1531 cSize}, 1532 lhsEltType); 1533 VectorType rhsType = VectorType::get({kwSize, cSize}, rhsEltType); 1534 VectorType resType = VectorType::get({nSize, wSize, cSize}, resEltType); 1535 1536 // Read lhs slice of size {n, w * strideW + kw * dilationW, c} @ [0, 0, 1537 // 0]. 1538 Value lhs = builder.create<vector::TransferReadOp>( 1539 loc, lhsType, lhsShaped, ValueRange{zero, zero, zero}); 1540 // Read rhs slice of size {kw, c} @ [0, 0]. 1541 Value rhs = builder.create<vector::TransferReadOp>(loc, rhsType, rhsShaped, 1542 ValueRange{zero, zero}); 1543 // Read res slice of size {n, w, c} @ [0, 0, 0]. 1544 Value res = builder.create<vector::TransferReadOp>( 1545 loc, resType, resShaped, ValueRange{zero, zero, zero}); 1546 1547 //===------------------------------------------------------------------===// 1548 // Begin vector-only rewrite part 1549 //===------------------------------------------------------------------===// 1550 // Unroll along kw and read slices of lhs and rhs. 1551 SmallVector<Value> lhsVals, rhsVals, resVals; 1552 // Extract lhs slice of size {n, wSizeStep, c} 1553 // @ [0, sw * w + dw * kw, 0]. 1554 for (int64_t kw = 0; kw < kwSize; ++kw) { 1555 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1556 lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>( 1557 loc, lhs, 1558 /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0}, 1559 /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize}, 1560 /*strides=*/ArrayRef<int64_t>{1, 1, 1})); 1561 } 1562 } 1563 // Extract rhs slice of size {c} @ [kw]. 1564 for (int64_t kw = 0; kw < kwSize; ++kw) { 1565 rhsVals.push_back(builder.create<vector::ExtractOp>( 1566 loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw})); 1567 } 1568 // Extract res slice: {n, wSizeStep, c} @ [0, w, 0]. 1569 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1570 resVals.push_back(builder.create<vector::ExtractStridedSliceOp>( 1571 loc, res, 1572 /*offsets=*/ArrayRef<int64_t>{0, w, 0}, 1573 /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize}, 1574 /*strides=*/ArrayRef<int64_t>{1, 1, 1})); 1575 } 1576 1577 auto linearIndex = [&](int64_t kw, int64_t w) { 1578 return kw * (wSize / wSizeStep) + w; 1579 }; 1580 1581 // Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c} 1582 for (int64_t kw = 0; kw < kwSize; ++kw) { 1583 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1584 resVals[w] = depthwiseConv1dSliceAsFma( 1585 builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]); 1586 } 1587 } 1588 1589 // Write back res slice: {n, wSizeStep, c} @ [0, w, 0]. 1590 // This does not depend on kw. 1591 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1592 res = builder.create<vector::InsertStridedSliceOp>( 1593 loc, resVals[w], res, 1594 /*offsets=*/ArrayRef<int64_t>{0, w, 0}, 1595 /*strides=*/ArrayRef<int64_t>{1, 1, 1}); 1596 } 1597 //===------------------------------------------------------------------===// 1598 // End vector-only rewrite part 1599 //===------------------------------------------------------------------===// 1600 1601 // Write back res slice of size {n, w, c} @ [0, 0, 0]. 1602 return builder 1603 .create<vector::TransferWriteOp>(loc, res, resShaped, 1604 ValueRange{zero, zero, zero}) 1605 .getOperation(); 1606 } 1607 1608 /// Lower lhs{n, w, c} * rhs{c} -> res{n, w, c} to fma. 1609 Value depthwiseConv1dSliceAsFma(OpBuilder &b, Location loc, Value lhs, 1610 Value rhs, Value res) { 1611 Value bcast = builder.create<vector::BroadcastOp>(loc, res.getType(), rhs); 1612 return b.create<vector::FMAOp>(loc, lhs, bcast, res); 1613 } 1614 1615 /// Entry point that transposes into the common form: 1616 /// {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} 1617 FailureOr<Operation *> generateConv() { 1618 AffineExpr n, w, f, kw, c; 1619 bindDims(ctx, n, w, f, kw, c); 1620 if (!iters({Par(), Par(), Par(), Red(), Red()})) 1621 return failure(); 1622 1623 // No transposition needed. 1624 if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, 1625 /*rhsIndex*/ {kw, c, f}, 1626 /*resIndex*/ {n, w, f}})) 1627 return conv(); 1628 return failure(); 1629 } 1630 1631 /// Entry point that transposes into the common form: 1632 /// {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} 1633 FailureOr<Operation *> generateDilatedConv() { 1634 AffineExpr n, w, c, kw; 1635 bindDims(ctx, n, w, c, kw); 1636 if (!iters({Par(), Par(), Par(), Red()})) 1637 return failure(); 1638 1639 // No transposition needed. 1640 if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, 1641 /*rhsIndex*/ {kw, c}, 1642 /*resIndex*/ {n, w, c}})) 1643 return depthwiseConv(); 1644 return failure(); 1645 } 1646 1647 private: 1648 bool valid = false; 1649 int strideW, dilationW; 1650 Value lhsShaped, rhsShaped, resShaped; 1651 ShapedType lhsShapedType, rhsShapedType, resShapedType; 1652 }; 1653 } // namespace 1654 1655 /// Helper function to vectorize a LinalgOp with convolution semantics. 1656 // TODO: extend the generic vectorization to support windows and drop this. 1657 static FailureOr<Operation *> vectorizeConvolution(OpBuilder &b, LinalgOp op) { 1658 // The ConvolutionOpInterface gives us guarantees of existence for 1659 // strides/dilations. However, we do not need to rely on those, we can simply 1660 // use them if present, otherwise use the default and let the generic conv. 1661 // matcher in the ConvGenerator succeed or fail. 1662 auto strides = op->getAttrOfType<DenseIntElementsAttr>("strides"); 1663 auto dilations = op->getAttrOfType<DenseIntElementsAttr>("dilations"); 1664 auto stride = strides ? *strides.getValues<uint64_t>().begin() : 1; 1665 auto dilation = dilations ? *dilations.getValues<uint64_t>().begin() : 1; 1666 Conv1DNwcGenerator e(b, op, stride, dilation); 1667 auto res = e.generateConv(); 1668 if (succeeded(res)) 1669 return res; 1670 return e.generateDilatedConv(); 1671 } 1672 1673 struct VectorizeConvolution : public OpInterfaceRewritePattern<LinalgOp> { 1674 using OpInterfaceRewritePattern::OpInterfaceRewritePattern; 1675 1676 LogicalResult matchAndRewrite(LinalgOp op, 1677 PatternRewriter &rewriter) const override { 1678 FailureOr<Operation *> resultOrFail = vectorizeConvolution(rewriter, op); 1679 if (failed(resultOrFail)) 1680 return failure(); 1681 Operation *newOp = *resultOrFail; 1682 if (newOp->getNumResults() == 0) { 1683 rewriter.eraseOp(op.getOperation()); 1684 return success(); 1685 } 1686 assert(newOp->getNumResults() == 1 && "expected single result"); 1687 rewriter.replaceOp(op.getOperation(), newOp->getResult(0)); 1688 return success(); 1689 } 1690 }; 1691 1692 void mlir::linalg::populateConvolutionVectorizationPatterns( 1693 RewritePatternSet &patterns, PatternBenefit benefit) { 1694 patterns.add<VectorizeConvolution>(patterns.getContext(), benefit); 1695 } 1696