1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 14 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 15 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 16 #include "mlir/Dialect/Linalg/Utils/Utils.h" 17 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 18 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 19 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 20 #include "mlir/Dialect/Vector/VectorOps.h" 21 #include "mlir/IR/AffineExpr.h" 22 #include "mlir/IR/Matchers.h" 23 #include "mlir/IR/PatternMatch.h" 24 #include "mlir/Pass/Pass.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/RegionUtils.h" 27 #include "llvm/ADT/ScopeExit.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <type_traits> 31 32 using namespace mlir; 33 using namespace mlir::edsc; 34 using namespace mlir::edsc::intrinsics; 35 using namespace mlir::linalg; 36 37 using llvm::dbgs; 38 39 #define DEBUG_TYPE "linalg-vectorization" 40 41 /// Return the unique instance of OpType in `block` if it is indeed unique. 42 /// Return null if none or more than 1 instances exist. 43 template <typename OpType> 44 static OpType getSingleOpOfType(Block &block) { 45 OpType res; 46 block.walk([&](OpType op) { 47 if (res) { 48 res = nullptr; 49 return WalkResult::interrupt(); 50 } 51 res = op; 52 return WalkResult::advance(); 53 }); 54 return res; 55 } 56 57 /// Helper data structure to represent the result of vectorization. 58 /// In certain specific cases, like terminators, we do not want to propagate/ 59 enum VectorizationStatus { 60 /// Op failed to vectorize. 61 Failure = 0, 62 /// Op vectorized and custom function took care of replacement logic 63 NoReplace, 64 /// Op vectorized into a new Op whose results will replace original Op's 65 /// results. 66 NewOp 67 // TODO: support values if Op vectorized to Many-Ops whose results we need to 68 // aggregate for replacement. 69 }; 70 struct VectorizationResult { 71 /// Return status from vectorizing the current op. 72 enum VectorizationStatus status = VectorizationStatus::Failure; 73 /// New vectorized operation to replace the current op. 74 /// Replacement behavior is specified by `status`. 75 Operation *newOp; 76 }; 77 78 /// Return a vector type of the same shape and element type as the (assumed) 79 /// ShapedType of `v`. 80 static VectorType extractVectorTypeFromShapedValue(Value v) { 81 auto st = v.getType().cast<ShapedType>(); 82 if (st.isa<MemRefType>() && st.getShape().empty()) 83 return VectorType(); 84 return VectorType::get(st.getShape(), st.getElementType()); 85 } 86 87 /// Build a vector.transfer_read from `source` at indices set to all `0`. 88 /// If source has rank zero, build an std.load. 89 /// Return the produced value. 90 static Value buildVectorRead(OpBuilder &builder, Value source) { 91 edsc::ScopedContext scope(builder); 92 auto shapedType = source.getType().cast<ShapedType>(); 93 if (VectorType vectorType = extractVectorTypeFromShapedValue(source)) { 94 SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0)); 95 return vector_transfer_read(vectorType, source, indices); 96 } 97 return std_load(source); 98 } 99 100 /// Build a vector.transfer_write of `value` into `dest` at indices set to all 101 /// `0`. If `dest` has null rank, build an std.store. 102 /// Return the produced value or null if no value is produced. 103 static Value buildVectorWrite(OpBuilder &builder, Value value, Value dest) { 104 edsc::ScopedContext scope(builder); 105 Operation *write; 106 auto shapedType = dest.getType().cast<ShapedType>(); 107 if (VectorType vectorType = extractVectorTypeFromShapedValue(dest)) { 108 SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0)); 109 if (vectorType != value.getType()) 110 value = vector_broadcast(vectorType, value); 111 write = vector_transfer_write(value, dest, indices); 112 } else { 113 write = std_store(value, dest); 114 } 115 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write); 116 if (!write->getResults().empty()) 117 return write->getResult(0); 118 return Value(); 119 } 120 121 /// If value of assumed VectorType has a shape different than `shape`, buil and 122 /// return a new vector.broadcast to `shape`. 123 /// Otherwise, just return value. 124 static Value broadcastIfNeeded(OpBuilder &builder, Value value, 125 ArrayRef<int64_t> shape) { 126 auto vecType = value.getType().dyn_cast<VectorType>(); 127 if (shape.empty() || (vecType != nullptr && vecType.getShape() == shape)) 128 return value; 129 auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType() 130 : value.getType()); 131 return builder.create<vector::BroadcastOp>( 132 builder.getInsertionPoint()->getLoc(), newVecType, value); 133 } 134 135 // Custom vectorization function type. Produce a vector form of Operation* 136 // assuming all its vectorized operands are already in the BlockAndValueMapping. 137 // Return nullptr if the Operation cannot be vectorized. 138 using CustomVectorizationHook = std::function<VectorizationResult( 139 Operation *, const BlockAndValueMapping &)>; 140 141 /// Helper function to vectorize the terminator of a `linalgOp`. New result 142 /// vector values are appended to `results`. 143 /// Return VectorizationStatus::NoReplace to signal the vectorization algorithm 144 /// that it should not try to map produced operations: this is the purpose of 145 /// the `results` argument to capture such values and make them available for 146 /// RAUW to the vectorization algorithm. 147 /// This function is meant to be used as a CustomVectorizationHook. 148 static VectorizationResult 149 vectorizeLinalgYield(OpBuilder &builder, Operation *op, 150 const BlockAndValueMapping &bvm, LinalgOp linalgOp, 151 SmallVectorImpl<Value> &results) { 152 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 153 if (!yieldOp) 154 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 155 for (auto outputs : llvm::enumerate(yieldOp.values())) { 156 // TODO: Scan for an opportunity for reuse. 157 // TODO: use a map. 158 Value vectorValue = bvm.lookup(outputs.value()); 159 Value result = buildVectorWrite(builder, vectorValue, 160 linalgOp.getOutput(outputs.index())); 161 if (result) 162 results.push_back(result); 163 } 164 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 165 } 166 167 /// Generic vectorization for a single operation `op`, given already vectorized 168 /// operands carried by `bvm`. Vectorization occurs as follows: 169 /// 1. Try to apply any of the `customVectorizationHooks` and return its 170 /// result on success. 171 /// 2. Clone any constant in the current scope without vectorization: each 172 /// consumer of the constant will later determine the shape to which the 173 /// constant needs to be broadcast to. 174 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 175 /// of the `customVectorizationHooks` to cover such cases. 176 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 177 /// operand of maximal rank. Other operands have smaller rank and are 178 /// broadcast accordingly. It is assumed this broadcast is always legal, 179 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 180 /// 181 /// This function assumes all operands of `op` have been vectorized and are in 182 /// the `bvm` mapping. As a consequence, this function is meant to be called on 183 /// a topologically-sorted list of ops. 184 /// This function does not update `bvm` but returns a VectorizationStatus that 185 /// instructs the caller what `bvm` update needs to occur. 186 static VectorizationResult 187 vectorizeOneOp(OpBuilder &builder, Operation *op, 188 const BlockAndValueMapping &bvm, 189 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 190 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op); 191 192 // 1. Try to apply any CustomVectorizationHook. 193 if (!customVectorizationHooks.empty()) { 194 for (auto &customFunc : customVectorizationHooks) { 195 VectorizationResult result = customFunc(op, bvm); 196 if (result.status == VectorizationStatus::Failure) 197 continue; 198 return result; 199 } 200 } 201 202 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 203 // Clone so that the constant is not confined to the linalgOp block . 204 if (isa<ConstantOp>(op)) 205 return VectorizationResult{VectorizationStatus::NewOp, builder.clone(*op)}; 206 207 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 208 if (!op->hasTrait<OpTrait::ElementwiseMappable>()) 209 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 210 211 // 4. Generic vectorization path for ElementwiseMappable ops. 212 // a. first get the first max ranked shape. 213 SmallVector<int64_t, 4> firstMaxRankedShape; 214 for (Value operand : op->getOperands()) { 215 auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); 216 if (vt && firstMaxRankedShape.size() < vt.getShape().size()) 217 firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); 218 } 219 // b. broadcast each op if needed. 220 auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { 221 return firstMaxRankedShape.empty() 222 ? bvm.lookup(v) 223 : broadcastIfNeeded(builder, bvm.lookup(v), firstMaxRankedShape); 224 }); 225 // c. for elementwise, the result is the vector with the firstMaxRankedShape 226 auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { 227 return firstMaxRankedShape.empty() 228 ? t 229 : VectorType::get(firstMaxRankedShape, t); 230 }); 231 232 // Build and return the new op. 233 OperationState state(op->getLoc(), op->getName()); 234 state.addAttributes(op->getAttrs()); 235 state.addOperands(llvm::to_vector<4>(vectorizedOperands)); 236 state.addTypes(llvm::to_vector<4>(returnTypes)); 237 return VectorizationResult{VectorizationStatus::NewOp, 238 builder.createOperation(state)}; 239 } 240 241 /// Generic vectorization function that rewrites the body of a `linalgOp` into 242 /// vector form. Generic vectorization proceeds as follows: 243 /// 1. The region for the linalg op is created if necessary. 244 /// 2. Values defined above the region are mapped to themselves and will be 245 /// broadcasted on a per-need basis by their consumers. 246 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 247 /// load). 248 /// TODO: Reuse opportunities for RAR dependencies. 249 /// 4. Register CustomVectorizationHook for YieldOp to capture the results. 250 /// 5. Iteratively call vectorizeOneOp on the region operations. 251 /// 6. RAUW the linalg op by the results captured vectorizing the YieldOp. 252 static LogicalResult vectorizeAsLinalgGeneric( 253 OpBuilder &builder, LinalgOp linalgOp, 254 ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) { 255 // 1. Certain Linalg ops do not have a region but only a region builder. 256 // If so, build the region so we can vectorize. 257 std::unique_ptr<Region> owningRegion; 258 Region *region; 259 if (linalgOp->getNumRegions() > 0) { 260 region = &linalgOp->getRegion(0); 261 } else { 262 // RAII avoid remaining in block. 263 OpBuilder::InsertionGuard g(builder); 264 owningRegion = std::make_unique<Region>(); 265 region = owningRegion.get(); 266 Block *block = builder.createBlock(region); 267 auto elementTypes = llvm::to_vector<4>( 268 llvm::map_range(linalgOp.getShapedOperandTypes(), 269 [](ShapedType t) { return t.getElementType(); })); 270 block->addArguments(elementTypes); 271 linalgOp.getRegionBuilder()(*block); 272 } 273 Block *block = ®ion->front(); 274 275 BlockAndValueMapping bvm; 276 // 2. Values defined above the region can only be broadcast for now. Make them 277 // map to themselves. 278 llvm::SetVector<Value> valuesSet; 279 mlir::getUsedValuesDefinedAbove(*region, valuesSet); 280 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 281 282 // 3. Turn all BBArgs into vector.transfer_read / load. 283 SmallVector<AffineMap> indexings; 284 for (auto bbarg : block->getArguments()) { 285 Value vectorArg = linalgOp.getShapedOperand(bbarg.getArgNumber()); 286 Value vectorRead = buildVectorRead(builder, vectorArg); 287 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" 288 << bbarg.getArgNumber() << "): " << vectorRead); 289 bvm.map(bbarg, vectorRead); 290 bvm.map(vectorArg, vectorRead); 291 } 292 293 // 4. Register CustomVectorizationHook for yieldOp. 294 SmallVector<Value> results; 295 CustomVectorizationHook vectorizeYield = 296 [&](Operation *op, 297 const BlockAndValueMapping &bvm) -> VectorizationResult { 298 return vectorizeLinalgYield(builder, op, bvm, linalgOp, results); 299 }; 300 // Append the vectorizeYield hook. 301 auto hooks = llvm::to_vector<4>(customVectorizationHooks); 302 hooks.push_back(vectorizeYield); 303 304 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 305 for (Operation &op : block->getOperations()) { 306 VectorizationResult result = vectorizeOneOp(builder, &op, bvm, hooks); 307 if (result.status == VectorizationStatus::Failure) { 308 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op); 309 return failure(); 310 } 311 if (result.status == VectorizationStatus::NewOp) { 312 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: " 313 << *result.newOp;); 314 bvm.map(op.getResults(), result.newOp->getResults()); 315 } 316 } 317 318 // 6. RAUW the linalg op by the results captured vectorizing the YieldOp. 319 if (!results.empty()) 320 linalgOp->replaceAllUsesWith(results); 321 return success(); 322 } 323 324 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. 325 static bool hasOnlyScalarElementwiseOp(Region &r) { 326 if (!llvm::hasSingleElement(r)) 327 return false; 328 for (Operation &op : r.front()) { 329 if (!(isa<ConstantOp, linalg::YieldOp>(op) || 330 op.hasTrait<OpTrait::ElementwiseMappable>()) || 331 llvm::any_of(op.getResultTypes(), 332 [](Type type) { return !type.isIntOrIndexOrFloat(); })) 333 return false; 334 } 335 return true; 336 } 337 338 // Return true if the op is an element-wise linalg op. 339 static bool isElementwise(Operation *op) { 340 auto genericOp = dyn_cast<linalg::GenericOp>(op); 341 if (!genericOp) 342 return false; 343 if (genericOp.getNumLoops() != genericOp.getNumParallelLoops()) 344 return false; 345 // TODO: relax the restrictions on indexing map. 346 for (unsigned i = 0, e = genericOp.getNumOutputs(); i < e; i++) { 347 if (!genericOp.getOutputIndexingMap(i).isIdentity()) 348 return false; 349 } 350 // Currently bound the input indexing map to minor identity as other 351 // permutations might require adding transpose ops to convert the vector read 352 // to the right shape. 353 for (unsigned i = 0, e = genericOp.getNumInputs(); i < e; i++) { 354 if (!genericOp.getInputIndexingMap(i).isMinorIdentity()) 355 return false; 356 } 357 return hasOnlyScalarElementwiseOp(genericOp.getRegion()); 358 } 359 360 static void vectorizeContraction(OpBuilder &builder, LinalgOp linalgOp) { 361 assert(isaContractionOpInterface(linalgOp) && 362 "expected vectorizeContraction preconditions to be met"); 363 Location loc = linalgOp.getLoc(); 364 // Vectorize other ops as vector contraction. 365 // TODO: interface. 366 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 367 << "Rewrite linalg op as vector.contract: "; 368 linalgOp.dump()); 369 // Special function that describes how to vectorize the multiplication op in a 370 // linalg contraction. 371 CustomVectorizationHook vectorizeContraction = 372 [&](Operation *op, 373 const BlockAndValueMapping &bvm) -> VectorizationResult { 374 if (!isa<MulIOp, MulFOp>(op)) 375 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 376 auto outShape = linalgOp.getOutputShapedType(0).getShape(); 377 auto vType = outShape.empty() 378 ? op->getResult(0).getType() 379 : VectorType::get(outShape, op->getResult(0).getType()); 380 auto zero = 381 builder.create<ConstantOp>(loc, vType, builder.getZeroAttr(vType)); 382 Operation *contract = builder.create<vector::ContractionOp>( 383 loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero, 384 linalgOp.indexing_maps(), linalgOp.iterator_types()); 385 return VectorizationResult{VectorizationStatus::NewOp, contract}; 386 }; 387 auto status = 388 vectorizeAsLinalgGeneric(builder, linalgOp, {vectorizeContraction}); 389 (void)status; 390 assert(succeeded(status) && 391 "Unexpected vectorization failed despite preconditions"); 392 } 393 394 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { 395 auto linalgOp = cast<linalg::LinalgOp>(op); 396 // All types must be static shape to go to vector. 397 for (Value operand : linalgOp.getShapedOperands()) 398 if (!operand.getType().cast<ShapedType>().hasStaticShape()) 399 return failure(); 400 for (Type outputTensorType : linalgOp.getOutputTensorTypes()) 401 if (!outputTensorType.cast<ShapedType>().hasStaticShape()) 402 return failure(); 403 404 if (isa<linalg::FillOp, linalg::CopyOp>(op)) 405 return success(); 406 if (isElementwise(op)) 407 return success(); 408 return success(isaContractionOpInterface(linalgOp)); 409 } 410 411 void mlir::linalg::vectorizeLinalgOp(OpBuilder &builder, Operation *op) { 412 assert(succeeded(vectorizeLinalgOpPrecondition(op))); 413 414 edsc::ScopedContext scope(builder, op->getLoc()); 415 // In the case of 0-D memrefs, return null and special case to scalar load or 416 // store later. 417 if (auto fillOp = dyn_cast<linalg::FillOp>(op)) { 418 // Vectorize fill as a vector.broadcast. 419 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 420 << "Rewrite linalg.fill as vector.broadcast: " << *op); 421 buildVectorWrite(builder, fillOp.value(), fillOp.output()); 422 return; 423 } 424 if (auto copyOp = dyn_cast<linalg::CopyOp>(op)) { 425 // Vectorize copy as a vector.transfer_read+vector.transfer_write. 426 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 427 << "Rewrite linalg.copy as vector.transfer_read + " 428 "vector.transfer_write: " 429 << *op); 430 Value vector = buildVectorRead(builder, copyOp.input()); 431 buildVectorWrite(builder, vector, copyOp.output()); 432 return; 433 } 434 435 if (isElementwise(op)) { 436 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 437 << "Rewrite linalg op as vector.transfer_read + " << *op); 438 auto status = vectorizeAsLinalgGeneric(builder, cast<LinalgOp>(op)); 439 (void)status; 440 assert(succeeded(status) && 441 "Unexpected vectorization failed despite preconditions"); 442 return; 443 } 444 445 vectorizeContraction(builder, cast<LinalgOp>(op)); 446 } 447 448 //----------------------------------------------------------------------------// 449 // Misc. conv vectorization patterns. 450 //----------------------------------------------------------------------------// 451 // TODO: cleanup all this. 452 template <class ConvOp, int N> 453 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite( 454 ConvOp op, PatternRewriter &rewriter) const { 455 Location loc = op.getLoc(); 456 MLIRContext *context = op.getContext(); 457 edsc::ScopedContext scope(rewriter, loc); 458 459 ShapedType inShapeType = op.getInputShapedType(0); 460 ShapedType kShapeType = op.getInputShapedType(1); 461 462 ArrayRef<int64_t> inShape = inShapeType.getShape(); 463 ArrayRef<int64_t> kShape = kShapeType.getShape(); 464 465 if (!inShapeType.hasStaticShape() || !kShapeType.hasStaticShape()) 466 return failure(); 467 468 SmallVector<AffineExpr, 4> mapping; 469 SmallVector<int64_t, 4> vectorDims; 470 // Fail to apply when the size of not vectorized dimension is not 1. 471 for (unsigned i = 0; i < N; i++) { 472 if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) 473 return failure(); 474 475 if (mask[i] && inShape[i] != kShape[i]) 476 return failure(); 477 478 if (mask[i]) { 479 mapping.push_back(getAffineDimExpr(i, context)); 480 vectorDims.push_back(inShape[i]); 481 } 482 } 483 484 Value input = op.getInput(0); 485 Value kernel = op.getInput(1); 486 Value output = op.getOutputBuffer(0); 487 488 unsigned rank = inShapeType.getRank(); 489 unsigned numDims = mapping.size(); 490 Type elemType = inShapeType.getElementType(); 491 492 auto map = AffineMap::get(rank, 0, mapping, context); 493 SmallVector<Value, 4> zeros(rank, std_constant_index(0)); 494 auto vecType = VectorType::get(vectorDims, elemType); 495 496 auto inputVec = vector_transfer_read(vecType, input, zeros, map); 497 auto kernelVec = vector_transfer_read(vecType, kernel, zeros, map); 498 499 auto acc = std_constant(elemType, rewriter.getZeroAttr(elemType)); 500 501 std::array<AffineMap, 3> indexingMaps{ 502 AffineMap::getMultiDimIdentityMap(numDims, context), 503 AffineMap::getMultiDimIdentityMap(numDims, context), 504 AffineMap::get(numDims, 0, {}, context)}; 505 506 std::vector<StringRef> iteratorTypes(numDims, "reduction"); 507 508 auto result = rewriter.create<vector::ContractionOp>( 509 loc, inputVec, kernelVec, acc, 510 rewriter.getAffineMapArrayAttr(indexingMaps), 511 rewriter.getStrArrayAttr(iteratorTypes)); 512 513 rewriter.create<StoreOp>(loc, result, output, ValueRange(zeros)); 514 rewriter.eraseOp(op); 515 return success(); 516 } 517 518 using ConvOpConst = ConvOpVectorization<ConvWOp, 1>; 519 520 /// Inserts tiling, promotion and vectorization pattern for ConvOp 521 /// conversion into corresponding pattern lists. 522 template <typename ConvOp, unsigned N> 523 static void 524 populateVectorizationPatterns(OwningRewritePatternList &tilingPatterns, 525 OwningRewritePatternList &promotionPatterns, 526 OwningRewritePatternList &vectorizationPatterns, 527 ArrayRef<int64_t> tileSizes, 528 MLIRContext *context) { 529 if (tileSizes.size() < N) 530 return; 531 532 constexpr static StringRef kTiledMarker = "TILED"; 533 constexpr static StringRef kPromotedMarker = "PROMOTED"; 534 tilingPatterns.insert<LinalgTilingPattern<ConvOp>>( 535 context, LinalgTilingOptions().setTileSizes(tileSizes), 536 LinalgTransformationFilter(ArrayRef<Identifier>{}, 537 Identifier::get(kTiledMarker, context))); 538 539 promotionPatterns.insert<LinalgPromotionPattern<ConvOp>>( 540 context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), 541 LinalgTransformationFilter(Identifier::get(kTiledMarker, context), 542 Identifier::get(kPromotedMarker, context))); 543 544 SmallVector<bool, 4> mask(N); 545 int offset = tileSizes.size() - N; 546 std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), 547 [](int64_t i) -> bool { return i > 1; }); 548 549 vectorizationPatterns.insert<ConvOpVectorization<ConvOp, N>>(context, mask); 550 } 551 552 void mlir::linalg::populateConvVectorizationPatterns( 553 MLIRContext *context, SmallVectorImpl<OwningRewritePatternList> &patterns, 554 ArrayRef<int64_t> tileSizes) { 555 OwningRewritePatternList tiling, promotion, vectorization; 556 populateVectorizationPatterns<ConvWOp, 1>(tiling, promotion, vectorization, 557 tileSizes, context); 558 559 populateVectorizationPatterns<ConvNWCOp, 3>(tiling, promotion, vectorization, 560 tileSizes, context); 561 562 populateVectorizationPatterns<ConvNCWOp, 3>(tiling, promotion, vectorization, 563 tileSizes, context); 564 565 populateVectorizationPatterns<ConvHWOp, 2>(tiling, promotion, vectorization, 566 tileSizes, context); 567 568 populateVectorizationPatterns<ConvNHWCOp, 4>(tiling, promotion, vectorization, 569 tileSizes, context); 570 571 populateVectorizationPatterns<ConvNCHWOp, 4>(tiling, promotion, vectorization, 572 tileSizes, context); 573 574 populateVectorizationPatterns<ConvDHWOp, 3>(tiling, promotion, vectorization, 575 tileSizes, context); 576 577 populateVectorizationPatterns<ConvNDHWCOp, 5>( 578 tiling, promotion, vectorization, tileSizes, context); 579 580 populateVectorizationPatterns<ConvNCDHWOp, 5>( 581 tiling, promotion, vectorization, tileSizes, context); 582 583 patterns.push_back(std::move(tiling)); 584 patterns.push_back(std::move(promotion)); 585 patterns.push_back(std::move(vectorization)); 586 } 587 588 //----------------------------------------------------------------------------// 589 // Forwarding patterns 590 //----------------------------------------------------------------------------// 591 592 /// Check whether there is any interleaved use of any `values` between `firstOp` 593 /// and `secondOp`. Conservatively return `true` if any op or value is in a 594 /// different block. 595 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 596 ValueRange values) { 597 if (firstOp->getBlock() != secondOp->getBlock() || 598 !firstOp->isBeforeInBlock(secondOp)) { 599 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 600 << "interleavedUses precondition failed, firstOp: " 601 << *firstOp << ", second op: " << *secondOp); 602 return true; 603 } 604 for (auto v : values) { 605 for (auto &u : v.getUses()) { 606 Operation *owner = u.getOwner(); 607 if (owner == firstOp || owner == secondOp) 608 continue; 609 // TODO: this is too conservative, use dominance info in the future. 610 if (owner->getBlock() == firstOp->getBlock() && 611 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 612 continue; 613 LLVM_DEBUG(llvm::dbgs() 614 << "\n[" DEBUG_TYPE "]: " 615 << " found interleaved op " << *owner 616 << ", firstOp: " << *firstOp << ", second op: " << *secondOp); 617 return true; 618 } 619 } 620 return false; 621 } 622 623 /// Return the unique subview use of `v` if it is indeed unique, null otherwise. 624 static SubViewOp getSubViewUseIfUnique(Value v) { 625 SubViewOp subViewOp; 626 for (auto &u : v.getUses()) { 627 if (auto newSubViewOp = dyn_cast<SubViewOp>(u.getOwner())) { 628 if (subViewOp) 629 return SubViewOp(); 630 subViewOp = newSubViewOp; 631 } 632 } 633 return subViewOp; 634 } 635 636 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 637 /// when available. 638 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 639 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 640 641 // Transfer into `view`. 642 Value viewOrAlloc = xferOp.source(); 643 if (!viewOrAlloc.getDefiningOp<ViewOp>() && 644 !viewOrAlloc.getDefiningOp<AllocOp>()) 645 return failure(); 646 647 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << viewOrAlloc); 648 649 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 650 SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 651 if (!subViewOp) 652 return failure(); 653 Value subView = subViewOp.getResult(); 654 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 655 << "with subView " << subView); 656 657 // Find the copy into `subView` without interleaved uses. 658 CopyOp copyOp; 659 for (auto &u : subView.getUses()) { 660 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 661 if (newCopyOp.getOutputBuffer(0) != subView) 662 continue; 663 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 664 << "copy candidate " << *newCopyOp); 665 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 666 continue; 667 copyOp = newCopyOp; 668 break; 669 } 670 } 671 if (!copyOp) 672 return failure(); 673 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 674 << "with copy " << *copyOp); 675 676 // Find the fill into `viewOrAlloc` without interleaved uses before the copy. 677 FillOp maybeFillOp; 678 for (auto &u : viewOrAlloc.getUses()) { 679 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 680 if (newFillOp.getOutputBuffer(0) != viewOrAlloc) 681 continue; 682 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 683 << "fill candidate " << *newFillOp); 684 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 685 continue; 686 maybeFillOp = newFillOp; 687 break; 688 } 689 } 690 // Ensure padding matches. 691 if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) 692 return failure(); 693 if (maybeFillOp) 694 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 695 << "with maybeFillOp " << *maybeFillOp); 696 697 // `in` is the subview that linalg.copy reads. Replace it. 698 Value in = copyOp.getInput(0); 699 700 // linalg.copy + linalg.fill can be used to create a padded local buffer. 701 // The `masked` attribute is only valid on this padded buffer. 702 // When forwarding to vector.transfer_read, the attribute must be reset 703 // conservatively. 704 Value res = rewriter.create<vector::TransferReadOp>( 705 xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), 706 xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); 707 708 if (maybeFillOp) 709 rewriter.eraseOp(maybeFillOp); 710 rewriter.eraseOp(copyOp); 711 rewriter.replaceOp(xferOp, res); 712 713 return success(); 714 } 715 716 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 717 /// when available. 718 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 719 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 720 // Transfer into `viewOrAlloc`. 721 Value viewOrAlloc = xferOp.source(); 722 if (!viewOrAlloc.getDefiningOp<ViewOp>() && 723 !viewOrAlloc.getDefiningOp<AllocOp>()) 724 return failure(); 725 726 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 727 SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 728 if (!subViewOp) 729 return failure(); 730 Value subView = subViewOp.getResult(); 731 732 // Find the copy from `subView` without interleaved uses. 733 CopyOp copyOp; 734 for (auto &u : subViewOp.getResult().getUses()) { 735 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 736 if (newCopyOp.getInput(0) != subView) 737 continue; 738 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 739 continue; 740 copyOp = newCopyOp; 741 break; 742 } 743 } 744 if (!copyOp) 745 return failure(); 746 747 // `out` is the subview copied into that we replace. 748 Value out = copyOp.getOutputBuffer(0); 749 750 // Forward vector.transfer into copy. 751 // linalg.copy + linalg.fill can be used to create a padded local buffer. 752 // The `masked` attribute is only valid on this padded buffer. 753 // When forwarding to vector.transfer_write, the attribute must be reset 754 // conservatively. 755 rewriter.create<vector::TransferWriteOp>( 756 xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), 757 xferOp.permutation_map(), ArrayAttr()); 758 759 rewriter.eraseOp(copyOp); 760 rewriter.eraseOp(xferOp); 761 762 return success(); 763 } 764