1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Vectorization transformations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Analysis/LoopAnalysis.h"
14 #include "mlir/Analysis/SliceAnalysis.h"
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
17 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/Tensor/IR/Tensor.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/Dialect/Vector/VectorOps.h"
23 #include "mlir/Dialect/Vector/VectorTransforms.h"
24 #include "mlir/IR/AffineExpr.h"
25 #include "mlir/IR/Matchers.h"
26 #include "mlir/IR/PatternMatch.h"
27 #include "mlir/Pass/Pass.h"
28 #include "mlir/Support/LLVM.h"
29 #include "mlir/Transforms/RegionUtils.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/ADT/Sequence.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/TypeSwitch.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <type_traits>
37 
38 using namespace mlir;
39 using namespace mlir::linalg;
40 
41 using llvm::dbgs;
42 
43 #define DEBUG_TYPE "linalg-vectorization"
44 
45 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
46 #define LDBG(X) LLVM_DEBUG(DBGS() << X)
47 
48 // Forward declarations.
49 static LogicalResult vectorizeContraction(OpBuilder &b, LinalgOp linalgOp,
50                                           SmallVectorImpl<Value> &newResults);
51 static FailureOr<Operation *>
52 vectorizeConvolution(OpBuilder &b, ConvolutionOpInterface convOp);
53 
54 /// Return the unique instance of OpType in `block` if it is indeed unique.
55 /// Return null if none or more than 1 instances exist.
56 template <typename OpType>
57 static OpType getSingleOpOfType(Block &block) {
58   OpType res;
59   block.walk([&](OpType op) {
60     if (res) {
61       res = nullptr;
62       return WalkResult::interrupt();
63     }
64     res = op;
65     return WalkResult::advance();
66   });
67   return res;
68 }
69 
70 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a
71 /// projectedPermutation, compress the unused dimensions to serve as a
72 /// permutation_map for a vector transfer operation.
73 /// For example, given a linalg op such as:
74 ///
75 /// ```
76 ///   %0 = linalg.generic {
77 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>,
78 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)>
79 ///      }
80 ///     ins(%0 : tensor<2x3x4xf32>)
81 ///    outs(%1 : tensor<5x6xf32>)
82 /// ```
83 ///
84 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine
85 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second
86 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`.
87 static AffineMap reindexIndexingMap(AffineMap map) {
88   assert(map.isProjectedPermutation(/*allowZerosInResults=*/true) &&
89          "expected projected permutation");
90   auto res = compressUnusedDims(map);
91   assert(res.getNumDims() == res.getNumResults() &&
92          "expected reindexed map with same number of dims and results");
93   return res;
94 }
95 
96 /// Helper data structure to represent the result of vectorization.
97 /// In certain specific cases, like terminators, we do not want to propagate/
98 enum VectorizationStatus {
99   /// Op failed to vectorize.
100   Failure = 0,
101   /// Op vectorized and custom function took care of replacement logic
102   NoReplace,
103   /// Op vectorized into a new Op whose results will replace original Op's
104   /// results.
105   NewOp
106   // TODO: support values if Op vectorized to Many-Ops whose results we need to
107   // aggregate for replacement.
108 };
109 struct VectorizationResult {
110   /// Return status from vectorizing the current op.
111   enum VectorizationStatus status = VectorizationStatus::Failure;
112   /// New vectorized operation to replace the current op.
113   /// Replacement behavior is specified by `status`.
114   Operation *newOp;
115 };
116 
117 /// Return a vector type of the same shape and element type as the (assumed)
118 /// ShapedType of `v`.
119 static VectorType extractVectorTypeFromShapedValue(Value v) {
120   auto st = v.getType().cast<ShapedType>();
121   if (st.getShape().empty())
122     return VectorType();
123   return VectorType::get(st.getShape(), st.getElementType());
124 }
125 
126 static llvm::Optional<vector::CombiningKind>
127 getKindForOp(Operation *reductionOp) {
128   if (!reductionOp)
129     return llvm::None;
130   return llvm::TypeSwitch<Operation *, llvm::Optional<vector::CombiningKind>>(
131              reductionOp)
132       .Case<arith::AddIOp, arith::AddFOp>(
133           [&](auto op) { return vector::CombiningKind::ADD; })
134       .Case<arith::AndIOp>([&](auto op) { return vector::CombiningKind::AND; })
135       .Case<MaxSIOp>([&](auto op) { return vector::CombiningKind::MAXSI; })
136       .Case<MaxFOp>([&](auto op) { return vector::CombiningKind::MAXF; })
137       .Case<MinSIOp>([&](auto op) { return vector::CombiningKind::MINSI; })
138       .Case<MinFOp>([&](auto op) { return vector::CombiningKind::MINF; })
139       .Case<arith::MulIOp, arith::MulFOp>(
140           [&](auto op) { return vector::CombiningKind::MUL; })
141       .Case<arith::OrIOp>([&](auto op) { return vector::CombiningKind::OR; })
142       .Case<arith::XOrIOp>([&](auto op) { return vector::CombiningKind::XOR; })
143       .Default([&](auto op) { return llvm::None; });
144 }
145 
146 /// Check whether `outputOperand` is a reduction with a single combiner
147 /// operation. Return the combiner operation of the reduction. Return
148 /// nullptr otherwise. Multiple reduction operations would impose an
149 /// ordering between reduction dimensions and is currently unsupported in
150 /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) !=
151 /// max(min(X))
152 // TODO: use in LinalgOp verification, there is a circular dependency atm.
153 static Operation *matchLinalgReduction(OpOperand *outputOperand) {
154   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
155   unsigned outputPos =
156       outputOperand->getOperandNumber() - linalgOp.getNumInputs();
157   // Only single combiner operations are supported for now.
158   SmallVector<Operation *, 4> combinerOps;
159   if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) ||
160       combinerOps.size() != 1)
161     return nullptr;
162 
163   // Return the combiner operation.
164   return combinerOps[0];
165 }
166 
167 /// Broadcast `value` to a vector of `shape` if possible. Return value
168 /// otherwise.
169 static Value broadcastIfNeeded(OpBuilder &b, Value value,
170                                ArrayRef<int64_t> shape) {
171   // If no shape to broadcast to, just return `value`.
172   if (shape.empty())
173     return value;
174   VectorType targetVectorType =
175       VectorType::get(shape, getElementTypeOrSelf(value));
176   if (vector::isBroadcastableTo(value.getType(), targetVectorType) !=
177       vector::BroadcastableToResult::Success)
178     return value;
179   Location loc = b.getInsertionPoint()->getLoc();
180   return b.createOrFold<vector::BroadcastOp>(loc, targetVectorType, value);
181 }
182 
183 /// Build a vector.transfer_read from `source` at indices set to all `0`.
184 /// If source has rank zero, build a `vector<1xt> transfer_read + extract`.
185 /// Return the produced value.
186 static Value buildVectorRead(OpBuilder &b, Value source, Type readType,
187                              AffineMap map) {
188   Location loc = source.getLoc();
189   auto shapedType = source.getType().cast<ShapedType>();
190   SmallVector<Value> indices(shapedType.getRank(),
191                              b.create<arith::ConstantIndexOp>(loc, 0));
192   if (auto vectorType = readType.dyn_cast<VectorType>())
193     return b.create<vector::TransferReadOp>(loc, vectorType, source, indices,
194                                             map);
195   return vector::TransferReadOp::createScalarOp(b, loc, source, indices);
196 }
197 
198 /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This
199 /// assumes that `reductionOp` has two operands and one of them is the reduction
200 /// initial value.
201 static Value buildMultiDimReduce(OpBuilder &b, Operation *reduceOp,
202                                  Value valueToReduce,
203                                  const SmallVector<bool> &reductionMask) {
204   auto maybeKind = getKindForOp(reduceOp);
205   assert(maybeKind && "Failed precondition: could not get reduction kind");
206   return b.create<vector::MultiDimReductionOp>(
207       reduceOp->getLoc(), valueToReduce, reductionMask, *maybeKind);
208 }
209 
210 static SmallVector<bool> getReductionMask(LinalgOp linalgOp) {
211   unsigned idx = 0;
212   SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false);
213   for (auto attr : linalgOp.iterator_types()) {
214     if (isReductionIterator(attr))
215       reductionMask[idx] = true;
216     ++idx;
217   }
218   return reductionMask;
219 }
220 
221 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set
222 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp
223 /// currently being vectorized. If `dest` has null rank, build an memref.store.
224 /// Return the produced value or null if no value is produced.
225 static Value buildVectorWrite(OpBuilder &b, Value value,
226                               OpOperand *outputOperand) {
227   Operation *write;
228   Location loc = value.getLoc();
229   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
230   if (VectorType vectorType =
231           extractVectorTypeFromShapedValue(outputOperand->get())) {
232     AffineMap map =
233         reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand));
234     SmallVector<int64_t> transposeShape =
235         applyPermutationMap(inversePermutation(map), vectorType.getShape());
236     assert(!transposeShape.empty() && "unexpected empty transpose shape");
237     vectorType = VectorType::get(transposeShape, vectorType.getElementType());
238     SmallVector<Value> indices(linalgOp.getRank(outputOperand),
239                                b.create<arith::ConstantIndexOp>(loc, 0));
240     value = broadcastIfNeeded(b, value, vectorType.getShape());
241     write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(),
242                                               indices, map);
243   } else {
244     write = vector::TransferWriteOp::createScalarOp(
245         b, loc, value, outputOperand->get(), ValueRange{});
246   }
247   LDBG("vectorized op: " << *write);
248   if (!write->getResults().empty())
249     return write->getResult(0);
250   return Value();
251 }
252 
253 // Custom vectorization function type. Produce a vector form of Operation*
254 // assuming all its vectorized operands are already in the BlockAndValueMapping.
255 // Return nullptr if the Operation cannot be vectorized.
256 using CustomVectorizationHook = std::function<VectorizationResult(
257     Operation *, const BlockAndValueMapping &)>;
258 
259 /// Helper function to vectorize the terminator of a `linalgOp`. New result
260 /// vector values are appended to `newResults`. Return
261 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it
262 /// should not try to map produced operations and instead return the results
263 /// using the `newResults` vector making them available to the
264 /// vectorization algorithm for RAUW. This function is meant to be used as a
265 /// CustomVectorizationHook.
266 static VectorizationResult
267 vectorizeLinalgYield(OpBuilder &b, Operation *op,
268                      const BlockAndValueMapping &bvm, LinalgOp linalgOp,
269                      SmallVectorImpl<Value> &newResults) {
270   auto yieldOp = dyn_cast<linalg::YieldOp>(op);
271   if (!yieldOp)
272     return VectorizationResult{VectorizationStatus::Failure, nullptr};
273   for (auto outputs : llvm::enumerate(yieldOp.values())) {
274     // TODO: Scan for an opportunity for reuse.
275     // TODO: use a map.
276     Value vectorValue = bvm.lookup(outputs.value());
277     Value newResult = buildVectorWrite(
278         b, vectorValue, linalgOp.getOutputOperand(outputs.index()));
279     if (newResult)
280       newResults.push_back(newResult);
281   }
282   return VectorizationResult{VectorizationStatus::NoReplace, nullptr};
283 }
284 
285 /// Helper function to vectorize the index operations of a `linalgOp`. Return
286 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it
287 /// should map the produced operations. This function is meant to be used as a
288 /// CustomVectorizationHook.
289 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op,
290                                                 LinalgOp linalgOp) {
291   IndexOp indexOp = dyn_cast<linalg::IndexOp>(op);
292   if (!indexOp)
293     return VectorizationResult{VectorizationStatus::Failure, nullptr};
294   auto loc = indexOp.getLoc();
295   // Compute the static loop sizes of the index op.
296   auto targetShape = linalgOp.computeStaticLoopSizes();
297   // Compute a one-dimensional index vector for the index op dimension.
298   SmallVector<int64_t> constantSeq =
299       llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()]));
300   auto constantOp =
301       b.create<arith::ConstantOp>(loc, b.getIndexVectorAttr(constantSeq));
302   // Return the one-dimensional index vector if it lives in the trailing
303   // dimension of the iteration space since the vectorization algorithm in this
304   // case can handle the broadcast.
305   if (indexOp.dim() == targetShape.size() - 1)
306     return VectorizationResult{VectorizationStatus::NewOp, constantOp};
307   // Otherwise permute the targetShape to move the index dimension last,
308   // broadcast the one-dimensional index vector to the permuted shape, and
309   // finally transpose the broadcasted index vector to undo the permutation.
310   std::swap(targetShape[indexOp.dim()], targetShape.back());
311   auto broadCastOp = b.create<vector::BroadcastOp>(
312       loc, VectorType::get(targetShape, b.getIndexType()), constantOp);
313   SmallVector<int64_t> transposition =
314       llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops()));
315   std::swap(transposition.back(), transposition[indexOp.dim()]);
316   auto transposeOp =
317       b.create<vector::TransposeOp>(loc, broadCastOp, transposition);
318   return VectorizationResult{VectorizationStatus::NewOp, transposeOp};
319 }
320 
321 /// Create a new vectorized verstion of `op` with the given operands and types.
322 static Operation *createVectorizedOp(OpBuilder &b, Operation *op,
323                                      ValueRange newOperands,
324                                      ArrayRef<Type> types) {
325   OperationState state(op->getLoc(), op->getName());
326   state.addAttributes(op->getAttrs());
327   state.addOperands(newOperands);
328   state.addTypes(types);
329   return b.createOperation(state);
330 }
331 
332 /// Emit reduction operations if the shapes of the value to reduce is different
333 /// that the result shape.
334 static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op,
335                                  Value reduceValue, Value initialValue,
336                                  const BlockAndValueMapping &bvm) {
337   Value reduceVec = bvm.lookup(reduceValue);
338   Value outputVec = bvm.lookup(initialValue);
339   auto reduceType = reduceVec.getType().dyn_cast<VectorType>();
340   auto outputType = outputVec.getType().dyn_cast<VectorType>();
341   // Reduce only if needed as the value may already have been reduce for
342   // contraction vectorization.
343   if (!reduceType ||
344       (outputType && reduceType.getShape() == outputType.getShape()))
345     return nullptr;
346   SmallVector<bool> reductionMask = getReductionMask(linalgOp);
347   Value reduce = buildMultiDimReduce(b, op, reduceVec, reductionMask);
348   return createVectorizedOp(b, op, {reduce, outputVec}, reduce.getType());
349 }
350 
351 /// Generic vectorization for a single operation `op`, given already vectorized
352 /// operands carried by `bvm`. Vectorization occurs as follows:
353 ///   1. Try to apply any of the `customVectorizationHooks` and return its
354 ///   result on success.
355 ///   2. Clone any constant in the current scope without vectorization: each
356 ///   consumer of the constant will later determine the shape to which the
357 ///   constant needs to be broadcast to.
358 ///   3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
359 ///   of the `customVectorizationHooks` to cover such cases.
360 ///   4. Clone `op` in vector form to a vector of shape prescribed by the first
361 ///   operand of maximal rank. Other operands have smaller rank and are
362 ///   broadcast accordingly. It is assumed this broadcast is always legal,
363 ///   otherwise, it means one of the `customVectorizationHooks` is incorrect.
364 ///
365 /// This function assumes all operands of `op` have been vectorized and are in
366 /// the `bvm` mapping. As a consequence, this function is meant to be called on
367 /// a topologically-sorted list of ops.
368 /// This function does not update `bvm` but returns a VectorizationStatus that
369 /// instructs the caller what `bvm` update needs to occur.
370 static VectorizationResult
371 vectorizeOneOp(OpBuilder &b, LinalgOp linalgOp, Operation *op,
372                const BlockAndValueMapping &bvm,
373                ArrayRef<CustomVectorizationHook> customVectorizationHooks) {
374   LDBG("vectorize op " << *op);
375 
376   // 1. Try to apply any CustomVectorizationHook.
377   if (!customVectorizationHooks.empty()) {
378     for (auto &customFunc : customVectorizationHooks) {
379       VectorizationResult result = customFunc(op, bvm);
380       if (result.status == VectorizationStatus::Failure)
381         continue;
382       return result;
383     }
384   }
385 
386   // 2. Constant ops don't get vectorized but rather broadcasted at their users.
387   // Clone so that the constant is not confined to the linalgOp block .
388   if (isa<arith::ConstantOp, ConstantOp>(op))
389     return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)};
390 
391   // 3. Only ElementwiseMappable are allowed in the generic vectorization.
392   if (!OpTrait::hasElementwiseMappableTraits(op))
393     return VectorizationResult{VectorizationStatus::Failure, nullptr};
394 
395   // 4 . Check if the operation is a reduction.
396   SmallVector<std::pair<Value, Value>> reductionOperands;
397   for (Value operand : op->getOperands()) {
398     auto arg = operand.dyn_cast<BlockArgument>();
399     if (!arg || arg.getArgNumber() < linalgOp.getNumInputs())
400       continue;
401     SmallVector<Operation *> reductionOps;
402     Value reduceValue = matchReduction(
403         linalgOp.getRegionOutputArgs(),
404         arg.getArgNumber() - linalgOp.getNumInputs(), reductionOps);
405     if (!reduceValue)
406       continue;
407     reductionOperands.push_back(std::make_pair(reduceValue, operand));
408   }
409   if (!reductionOperands.empty()) {
410     assert(reductionOperands.size() == 1);
411     Operation *reduceOp =
412         reduceIfNeeded(b, linalgOp, op, reductionOperands[0].first,
413                        reductionOperands[0].second, bvm);
414     if (reduceOp)
415       return VectorizationResult{VectorizationStatus::NewOp, reduceOp};
416   }
417 
418   // 5. Generic vectorization path for ElementwiseMappable ops.
419   //   a. first get the first max ranked shape.
420   SmallVector<int64_t, 4> firstMaxRankedShape;
421   for (Value operand : op->getOperands()) {
422     auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>();
423     if (vt && firstMaxRankedShape.size() < vt.getShape().size())
424       firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end());
425   }
426   //   b. broadcast each op if needed.
427   auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) {
428     return firstMaxRankedShape.empty()
429                ? bvm.lookup(v)
430                : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape);
431   });
432   //   c. for elementwise, the result is the vector with the firstMaxRankedShape
433   auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) {
434     return firstMaxRankedShape.empty()
435                ? t
436                : VectorType::get(firstMaxRankedShape, t);
437   });
438 
439   // Build and return the new op.
440   return VectorizationResult{
441       VectorizationStatus::NewOp,
442       createVectorizedOp(b, op, llvm::to_vector<4>(vectorizedOperands),
443                          llvm::to_vector<4>(returnTypes))};
444 }
445 
446 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp.
447 static bool hasOnlyScalarElementwiseOp(Region &r) {
448   if (!llvm::hasSingleElement(r))
449     return false;
450   for (Operation &op : r.front()) {
451     if (!(isa<arith::ConstantOp, ConstantOp, linalg::YieldOp, linalg::IndexOp>(
452               op) ||
453           OpTrait::hasElementwiseMappableTraits(&op)) ||
454         llvm::any_of(op.getResultTypes(),
455                      [](Type type) { return !type.isIntOrIndexOrFloat(); }))
456       return false;
457   }
458   return true;
459 }
460 
461 // Return true if the op is an element-wise linalg op.
462 static bool isElementwise(Operation *op) {
463   auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
464   if (!linalgOp)
465     return false;
466   if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops())
467     return false;
468   // TODO: relax the restrictions on indexing map.
469   for (OpOperand *opOperand : linalgOp.getOutputOperands()) {
470     if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity())
471       return false;
472   }
473   return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0));
474 }
475 
476 /// Generic vectorization function that rewrites the body of a `linalgOp` into
477 /// vector form. Generic vectorization proceeds as follows:
478 ///   1. Verify the `linalgOp` has one non-empty region.
479 ///   2. Values defined above the region are mapped to themselves and will be
480 ///   broadcasted on a per-need basis by their consumers.
481 ///   3. Each region argument is vectorized into a vector.transfer_read (or 0-d
482 ///   load).
483 ///   TODO: Reuse opportunities for RAR dependencies.
484 ///   4a. Register CustomVectorizationHook for YieldOp to capture the results.
485 ///   4b. Register CustomVectorizationHook for IndexOp to access the iteration
486 ///   indices.
487 ///   5. Iteratively call vectorizeOneOp on the region operations.
488 ///
489 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is
490 /// performed to the maximal common vector size implied by the `linalgOp`
491 /// iteration space. This eager broadcasting is introduced in the
492 /// permutation_map of the vector.transfer_read operations. The eager
493 /// broadcasting makes it trivial to detrmine where broadcast, transposes and
494 /// reductions should occur, without any bookkeeping. The tradeoff is that, in
495 /// the absence of good canonicalizations, the amount of work increases.
496 /// This is not deemed a problem as we expect canonicalizations and foldings to
497 /// aggressively clean up the useless work.
498 LogicalResult vectorizeAsLinalgGeneric(
499     OpBuilder &b, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults,
500     bool broadcastToMaximalCommonShape = false,
501     ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) {
502   Block *block = linalgOp.getBlock();
503 
504   // 2. Values defined above the region can only be broadcast for now. Make them
505   // map to themselves.
506   BlockAndValueMapping bvm;
507   SetVector<Value> valuesSet;
508   mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet);
509   bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef());
510 
511   if (linalgOp.getNumOutputs() == 0)
512     return failure();
513 
514   // TODO: the common vector shape is equal to the static loop sizes only when
515   // all indexing maps are projected permutations. For convs and stencils the
516   // logic will need to evolve.
517   SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes();
518 
519   // 3. Turn all BBArgs into vector.transfer_read / load.
520   SmallVector<AffineMap> indexings;
521   for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) {
522     BlockArgument bbarg = block->getArgument(opOperand->getOperandNumber());
523     if (linalgOp.isScalar(opOperand)) {
524       bvm.map(bbarg, opOperand->get());
525       continue;
526     }
527     // TODO: 0-d vectors.
528     Type readType;
529     AffineMap map;
530     if (linalgOp.getShape(opOperand).empty()) {
531       readType = bbarg.getType();
532     } else {
533       if (broadcastToMaximalCommonShape &&
534           opOperand->getOperandNumber() < linalgOp.getNumInputs()) {
535         map = inverseAndBroadcastProjectedPermuation(
536             linalgOp.getTiedIndexingMap(opOperand));
537         readType = VectorType::get(commonVectorShape,
538                                    getElementTypeOrSelf(opOperand->get()));
539       } else {
540         map = inversePermutation(
541             reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand)));
542         readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)),
543                                    getElementTypeOrSelf(opOperand->get()));
544       }
545     }
546     Value readValue = buildVectorRead(b, opOperand->get(), readType, map);
547     LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue);
548     bvm.map(bbarg, readValue);
549     bvm.map(opOperand->get(), readValue);
550   }
551 
552   auto hooks = llvm::to_vector<4>(customVectorizationHooks);
553   // 4a. Register CustomVectorizationHook for yieldOp.
554   CustomVectorizationHook vectorizeYield =
555       [&](Operation *op,
556           const BlockAndValueMapping &bvm) -> VectorizationResult {
557     return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults);
558   };
559   hooks.push_back(vectorizeYield);
560 
561   // 4b. Register CustomVectorizationHook for indexOp.
562   CustomVectorizationHook vectorizeIndex =
563       [&](Operation *op,
564           const BlockAndValueMapping &bvm) -> VectorizationResult {
565     return vectorizeLinalgIndex(b, op, linalgOp);
566   };
567   hooks.push_back(vectorizeIndex);
568 
569   // 5. Iteratively call `vectorizeOneOp` to each op in the slice.
570   for (Operation &op : block->getOperations()) {
571     VectorizationResult result = vectorizeOneOp(b, linalgOp, &op, bvm, hooks);
572     if (result.status == VectorizationStatus::Failure) {
573       LDBG("failed to vectorize: " << op);
574       return failure();
575     }
576     if (result.status == VectorizationStatus::NewOp) {
577       LDBG("new vector op: " << *result.newOp;);
578       bvm.map(op.getResults(), result.newOp->getResults());
579     }
580   }
581 
582   return success();
583 }
584 
585 /// Helper function to vectorize a `linalgOp` with contraction semantics in a
586 /// generic fashion.
587 /// This helper is needed atm because the truly generic implementation requires
588 /// good vector.multi_reduce folding patterns that are currently NYI.
589 // TODO: drop reliance on a specific pattern.
590 static LogicalResult vectorizeContraction(OpBuilder &b, LinalgOp linalgOp,
591                                           SmallVectorImpl<Value> &newResults) {
592   assert(isaContractionOpInterface(linalgOp) &&
593          "expected vectorizeContraction preconditions to be met");
594   Location loc = linalgOp.getLoc();
595   // Vectorize other ops as vector contraction.
596   // TODO: interface.
597   LDBG(""
598            << "Rewrite linalg op as vector.contract: ";
599        linalgOp.dump());
600   // Special function that describes how to vectorize the multiplication op in a
601   // linalg contraction.
602   CustomVectorizationHook vectorizeContraction =
603       [&](Operation *op,
604           const BlockAndValueMapping &bvm) -> VectorizationResult {
605     if (!isa<arith::MulIOp, arith::MulFOp>(op))
606       return VectorizationResult{VectorizationStatus::Failure, nullptr};
607     ArrayRef<int64_t> outShape =
608         linalgOp.getShape(linalgOp.getOutputOperand(0));
609     Type vType;
610     if (outShape.empty()) {
611       vType = op->getResult(0).getType();
612     } else {
613       SmallVector<int64_t> resultShape = applyPermutationMap(
614           inversePermutation(reindexIndexingMap(
615               linalgOp.getTiedIndexingMap(linalgOp.getOutputOperand(0)))),
616           outShape);
617       vType = VectorType::get(resultShape, op->getResult(0).getType());
618     }
619     auto zero = b.create<arith::ConstantOp>(loc, vType, b.getZeroAttr(vType));
620     // Indexing maps at the time of vector.transfer_read are adjusted to order
621     // vector dimensions in the same order as the canonical linalg op iteration
622     // space order.
623     // The indexings for the contraction therefore need to be adjusted.
624     // TODO: consider dropping contraction special casing altogether, this will
625     // require more advanced canonicalizations involving vector.multi_reduction
626     // that are not yet available.
627     SmallVector<AffineMap> indexingMaps;
628     indexingMaps.reserve(linalgOp.getNumInputsAndOutputs());
629     llvm::transform(linalgOp.getIndexingMaps(),
630                     std::back_inserter(indexingMaps),
631                     [](AffineMap indexingMap) {
632                       return inversePermutation(reindexIndexingMap(indexingMap))
633                           .compose(indexingMap);
634                     });
635     Operation *contract = b.create<vector::ContractionOp>(
636         loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero,
637         b.getAffineMapArrayAttr(indexingMaps), linalgOp.iterator_types());
638     return VectorizationResult{VectorizationStatus::NewOp, contract};
639   };
640   return vectorizeAsLinalgGeneric(b, linalgOp, newResults,
641                                   /*broadcastToMaximalCommonShape=*/false,
642                                   {vectorizeContraction});
643 }
644 
645 static bool allIndexingsAreProjectedPermutation(LinalgOp op) {
646   return llvm::all_of(op.getIndexingMaps(), [](AffineMap m) {
647     return m.isProjectedPermutation(/*allowZerosInResults=*/true);
648   });
649 }
650 
651 // TODO: probably need some extra checks for reduction followed by consumer
652 // ops that may not commute (e.g. linear reduction + non-linear instructions).
653 static LogicalResult reductionPreconditions(LinalgOp op) {
654   if (llvm::none_of(op.iterator_types(), isReductionIterator)) {
655     LDBG("reduction precondition failed: no reduction iterator");
656     return failure();
657   }
658   for (OpOperand *opOperand : op.getOutputOperands()) {
659     Operation *reduceOp = matchLinalgReduction(opOperand);
660     if (!reduceOp || !getKindForOp(reduceOp)) {
661       LDBG("reduction precondition failed: reduction detection failed");
662       return failure();
663     }
664   }
665   return success();
666 }
667 
668 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) {
669   auto linalgOp = cast<linalg::LinalgOp>(op);
670   // All types must be static shape to go to vector.
671   if (linalgOp.hasDynamicShape()) {
672     LDBG("precondition failed: dynamic shape");
673     return failure();
674   }
675   if (isElementwise(op))
676     return success();
677   if (isaContractionOpInterface(linalgOp))
678     return success();
679   // TODO: isaConvolutionOpInterface that can also infer from generic features.
680   // But we will still need stride/dilation attributes that will be annoying to
681   // reverse-engineer...
682   if (isa<ConvolutionOpInterface>(op))
683     return success();
684   // TODO: the common vector shape is equal to the static loop sizes only when
685   // all indexing maps are projected permutations. For convs and stencils the
686   // logic will need to evolve.
687   if (!allIndexingsAreProjectedPermutation(linalgOp)) {
688     LDBG("precondition failed: not projected permutations");
689     return failure();
690   }
691   if (failed(reductionPreconditions(linalgOp))) {
692     LDBG("precondition failed: reduction preconditions");
693     return failure();
694   }
695   return success();
696 }
697 
698 LogicalResult
699 mlir::linalg::vectorizeLinalgOp(OpBuilder &b, Operation *op,
700                                 SmallVectorImpl<Value> &newResults) {
701   if (failed(vectorizeLinalgOpPrecondition(op)))
702     return failure();
703 
704   auto linalgOp = cast<LinalgOp>(op);
705   if (isaContractionOpInterface(linalgOp))
706     return vectorizeContraction(b, linalgOp, newResults);
707 
708   // TODO: isaConvolutionOpInterface that can also infer from generic features.
709   // But we will still need stride/dilation attributes that will be annoying to
710   // reverse-engineer...
711   if (auto convOp = dyn_cast<ConvolutionOpInterface>(op)) {
712     FailureOr<Operation *> resultOrFail = vectorizeConvolution(b, convOp);
713     if (failed(resultOrFail))
714       return failure();
715     Operation *newOp = *resultOrFail;
716     llvm::append_range(newResults, newOp->getResults());
717     return success();
718   }
719 
720   LDBG(""
721        << "Vectorize linalg op as a generic by broadcasting to "
722           "maximal common shape: "
723        << *op);
724   return vectorizeAsLinalgGeneric(b, linalgOp, newResults,
725                                   /*broadcastToMaximalCommonShape=*/true);
726 }
727 
728 //----------------------------------------------------------------------------//
729 // Misc. vectorization patterns.
730 //----------------------------------------------------------------------------//
731 
732 /// Helper function that retrieves the value of an IntegerAttr.
733 static int64_t getIntFromAttr(Attribute attr) {
734   return attr.cast<IntegerAttr>().getInt();
735 }
736 
737 /// Given an ArrayRef of OpFoldResults, return a vector of Values. IntegerAttrs
738 /// are converted to ConstantIndexOps. Other attribute types are not supported.
739 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc,
740                                            ArrayRef<OpFoldResult> ofrs) {
741   SmallVector<Value> result;
742   llvm::for_each(ofrs, [&](auto o) {
743     if (auto val = o.template dyn_cast<Value>()) {
744       result.push_back(val);
745     } else {
746       result.push_back(builder.create<arith::ConstantIndexOp>(
747           loc, getIntFromAttr(o.template get<Attribute>())));
748     }
749   });
750   return result;
751 }
752 
753 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and
754 /// InsertSliceOp. For now, only constant padding values are supported.
755 /// If there is enough static type information, TransferReadOps and
756 /// TransferWriteOps may be generated instead of InsertSliceOps.
757 struct GenericPadTensorOpVectorizationPattern
758     : public GeneralizePadTensorOpPattern {
759   GenericPadTensorOpVectorizationPattern(MLIRContext *context,
760                                          PatternBenefit benefit = 1)
761       : GeneralizePadTensorOpPattern(context, tryVectorizeCopy, benefit) {}
762   /// Vectorize the copying of a PadTensorOp's source. This is possible if each
763   /// dimension size is statically know in the source type or the result type
764   /// (or both).
765   static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter,
766                                         PadTensorOp padOp, Value dest) {
767     auto sourceType = padOp.getSourceType();
768     auto resultType = padOp.getResultType();
769 
770     // Copy cannot be vectorized if pad value is non-constant and source shape
771     // is dynamic. In case of a dynamic source shape, padding must be appended
772     // by TransferReadOp, but TransferReadOp supports only constant padding.
773     auto padValue = padOp.getConstantPaddingValue();
774     if (!padValue) {
775       if (!sourceType.hasStaticShape())
776         return failure();
777       // Create dummy padding value.
778       auto elemType = sourceType.getElementType();
779       padValue = rewriter.create<arith::ConstantOp>(
780           padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType));
781     }
782 
783     SmallVector<int64_t> vecShape;
784     SmallVector<bool> readInBounds;
785     SmallVector<bool> writeInBounds;
786     for (unsigned i = 0; i < sourceType.getRank(); ++i) {
787       if (!sourceType.isDynamicDim(i)) {
788         vecShape.push_back(sourceType.getDimSize(i));
789         // Source shape is statically known: Neither read nor write are out-of-
790         // bounds.
791         readInBounds.push_back(true);
792         writeInBounds.push_back(true);
793       } else if (!resultType.isDynamicDim(i)) {
794         // Source shape is not statically known, but result shape is. Vectorize
795         // with size of result shape. This may be larger than the source size.
796         vecShape.push_back(resultType.getDimSize(i));
797         // Read may be out-of-bounds because the result size could be larger
798         // than the source size.
799         readInBounds.push_back(false);
800         // Write is out-of-bounds if low padding > 0.
801         writeInBounds.push_back(
802             getConstantIntValue(padOp.getMixedLowPad()[i]) ==
803             static_cast<int64_t>(0));
804       } else {
805         // Neither source nor result dim of padOp is static. Cannot vectorize
806         // the copy.
807         return failure();
808       }
809     }
810     auto vecType = VectorType::get(vecShape, sourceType.getElementType());
811 
812     // Generate TransferReadOp.
813     SmallVector<Value> readIndices(
814         vecType.getRank(),
815         rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
816     auto read = rewriter.create<vector::TransferReadOp>(
817         padOp.getLoc(), vecType, padOp.source(), readIndices, padValue,
818         readInBounds);
819 
820     // If `dest` is a FillOp and the TransferWriteOp would overwrite the entire
821     // tensor, write directly to the FillOp's operand.
822     if (llvm::equal(vecShape, resultType.getShape()) &&
823         llvm::all_of(writeInBounds, [](bool b) { return b; }))
824       if (auto fill = dest.getDefiningOp<FillOp>())
825         dest = fill.output();
826 
827     // Generate TransferWriteOp.
828     auto writeIndices =
829         ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad());
830     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
831         padOp, read, dest, writeIndices, writeInBounds);
832 
833     return success();
834   }
835 };
836 
837 /// Base pattern for rewriting PadTensorOps whose result is consumed by a given
838 /// operation type OpTy.
839 template <typename OpTy>
840 struct VectorizePadTensorOpUserPattern : public OpRewritePattern<PadTensorOp> {
841   using OpRewritePattern<PadTensorOp>::OpRewritePattern;
842 
843   LogicalResult matchAndRewrite(PadTensorOp padOp,
844                                 PatternRewriter &rewriter) const final {
845     bool changed = false;
846     // Insert users in vector, because some users may be replaced/removed.
847     for (auto *user : llvm::to_vector<4>(padOp->getUsers()))
848       if (auto op = dyn_cast<OpTy>(user))
849         changed |= rewriteUser(rewriter, padOp, op).succeeded();
850     return success(changed);
851   }
852 
853 protected:
854   virtual LogicalResult rewriteUser(PatternRewriter &rewriter,
855                                     PadTensorOp padOp, OpTy op) const = 0;
856 };
857 
858 /// Rewrite use of PadTensorOp result in TransferReadOp. E.g.:
859 /// ```
860 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32>
861 /// %r = vector.transfer_read %0[%c0, %c0], %cst
862 ///     {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32>
863 /// ```
864 /// is rewritten to:
865 /// ```
866 /// %r = vector.transfer_read %src[%c0, %c0], %padding
867 ///     {in_bounds = [true, true]}
868 ///     : tensor<?x?xf32>, vector<17x5xf32>
869 /// ```
870 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be
871 /// sure that the original padding value %cst was never used.
872 ///
873 /// This rewrite is possible if:
874 /// - `xferOp` has no out-of-bounds dims or mask.
875 /// - Low padding is static 0.
876 /// - Single, scalar padding value.
877 struct PadTensorOpVectorizationWithTransferReadPattern
878     : public VectorizePadTensorOpUserPattern<vector::TransferReadOp> {
879   using VectorizePadTensorOpUserPattern<
880       vector::TransferReadOp>::VectorizePadTensorOpUserPattern;
881 
882   LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
883                             vector::TransferReadOp xferOp) const override {
884     // Low padding must be static 0.
885     if (!padOp.hasZeroLowPad())
886       return failure();
887     // Pad value must be a constant.
888     auto padValue = padOp.getConstantPaddingValue();
889     if (!padValue)
890       return failure();
891     // Padding value of existing `xferOp` is unused.
892     if (xferOp.hasOutOfBoundsDim() || xferOp.mask())
893       return failure();
894 
895     rewriter.updateRootInPlace(xferOp, [&]() {
896       SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
897       xferOp->setAttr(xferOp.getInBoundsAttrName(),
898                       rewriter.getBoolArrayAttr(inBounds));
899       xferOp.sourceMutable().assign(padOp.source());
900       xferOp.paddingMutable().assign(padValue);
901     });
902 
903     return success();
904   }
905 };
906 
907 /// Rewrite use of PadTensorOp result in TransferWriteOp.
908 /// This pattern rewrites TransferWriteOps that write to a padded tensor value,
909 /// where the same amount of padding is immediately removed again after the
910 /// write. In such cases, the TransferWriteOp can write to the non-padded tensor
911 /// value and apply out-of-bounds masking. E.g.:
912 /// ```
913 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
914 ///     : tensor<...> to tensor<?x?xf32>
915 /// %1 = linalg.pad_tensor %0 ... : tensor<?x?xf32> to tensor<17x5xf32>
916 /// %2 = vector.transfer_write %vec, %1[...]
917 ///     : vector<17x5xf32>, tensor<17x5xf32>
918 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1]
919 ///     : tensor<17x5xf32> to tensor<?x?xf32>
920 /// ```
921 /// is rewritten to:
922 /// ```
923 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
924 ///     : tensor<...> to tensor<?x?xf32>
925 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, tensor<?x?xf32>
926 /// ```
927 /// Note: It is important that the ExtractSliceOp %r resizes the result of the
928 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an even
929 /// smaller size). Otherwise, %r's new (dynamic) dimensions would differ from
930 /// %r's old dimensions.
931 ///
932 /// This rewrite is possible if:
933 /// - Low padding is static 0.
934 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This
935 ///   ExtractSliceOp trims the same amount of padding that was added beforehand.
936 /// - Single, scalar padding value.
937 struct PadTensorOpVectorizationWithTransferWritePattern
938     : public VectorizePadTensorOpUserPattern<vector::TransferWriteOp> {
939   using VectorizePadTensorOpUserPattern<
940       vector::TransferWriteOp>::VectorizePadTensorOpUserPattern;
941 
942   LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
943                             vector::TransferWriteOp xferOp) const override {
944     // Low padding must be static 0.
945     if (!padOp.hasZeroLowPad())
946       return failure();
947     // Pad value must be a constant.
948     auto padValue = padOp.getConstantPaddingValue();
949     if (!padValue)
950       return failure();
951     // TransferWriteOp result must be directly consumed by an ExtractSliceOp.
952     if (!xferOp->hasOneUse())
953       return failure();
954     auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin());
955     if (!trimPadding)
956       return failure();
957     // Only static zero offsets supported when trimming padding.
958     if (!trimPadding.hasZeroOffset())
959       return failure();
960     // trimPadding must remove the amount of padding that was added earlier.
961     if (!hasSameTensorSize(padOp.source(), trimPadding))
962       return failure();
963 
964     // Insert the new TransferWriteOp at position of the old TransferWriteOp.
965     rewriter.setInsertionPoint(xferOp);
966 
967     SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
968     auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
969         xferOp, padOp.source().getType(), xferOp.vector(), padOp.source(),
970         xferOp.indices(), xferOp.permutation_mapAttr(), xferOp.mask(),
971         rewriter.getBoolArrayAttr(inBounds));
972     rewriter.replaceOp(trimPadding, newXferOp->getResult(0));
973 
974     return success();
975   }
976 
977   /// Check if `beforePadding` and `afterTrimming` have the same tensor size,
978   /// i.e., same dimensions.
979   ///
980   /// Dimensions may be static, dynamic or mix of both. In case of dynamic
981   /// dimensions, this function tries to infer the (static) tensor size by
982   /// looking at the defining op and utilizing op-specific knowledge.
983   ///
984   /// This is a conservative analysis. In case equal tensor sizes cannot be
985   /// proven statically, this analysis returns `false` even though the tensor
986   /// sizes may turn out to be equal at runtime.
987   bool hasSameTensorSize(Value beforePadding,
988                          tensor::ExtractSliceOp afterTrimming) const {
989     // If the input to PadTensorOp is a CastOp, try with with both CastOp result
990     // and CastOp operand.
991     if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>())
992       if (hasSameTensorSize(castOp.source(), afterTrimming))
993         return true;
994 
995     auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>();
996     auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>();
997     // Only RankedTensorType supported.
998     if (!t1 || !t2)
999       return false;
1000     // Rank of both values must be the same.
1001     if (t1.getRank() != t2.getRank())
1002       return false;
1003 
1004     // All static dimensions must be the same. Mixed cases (e.g., dimension
1005     // static in `t1` but dynamic in `t2`) are not supported.
1006     for (unsigned i = 0; i < t1.getRank(); ++i) {
1007       if (t1.isDynamicDim(i) != t2.isDynamicDim(i))
1008         return false;
1009       if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i))
1010         return false;
1011     }
1012 
1013     // Nothing more to check if all dimensions are static.
1014     if (t1.getNumDynamicDims() == 0)
1015       return true;
1016 
1017     // All dynamic sizes must be the same. The only supported case at the moment
1018     // is when `beforePadding` is an ExtractSliceOp (or a cast thereof).
1019 
1020     // Apart from CastOp, only ExtractSliceOp is supported.
1021     auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>();
1022     if (!beforeSlice)
1023       return false;
1024 
1025     assert(static_cast<size_t>(t1.getRank()) ==
1026            beforeSlice.getMixedSizes().size());
1027     assert(static_cast<size_t>(t2.getRank()) ==
1028            afterTrimming.getMixedSizes().size());
1029 
1030     for (unsigned i = 0; i < t1.getRank(); ++i) {
1031       // Skip static dimensions.
1032       if (!t1.isDynamicDim(i))
1033         continue;
1034       auto size1 = beforeSlice.getMixedSizes()[i];
1035       auto size2 = afterTrimming.getMixedSizes()[i];
1036 
1037       // Case 1: Same value or same constant int.
1038       if (isEqualConstantIntOrValue(size1, size2))
1039         continue;
1040 
1041       // Other cases: Take a deeper look at defining ops of values.
1042       auto v1 = size1.dyn_cast<Value>();
1043       auto v2 = size2.dyn_cast<Value>();
1044       if (!v1 || !v2)
1045         return false;
1046 
1047       // Case 2: Both values are identical AffineMinOps. (Should not happen if
1048       // CSE is run.)
1049       auto minOp1 = v1.getDefiningOp<AffineMinOp>();
1050       auto minOp2 = v2.getDefiningOp<AffineMinOp>();
1051       if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() &&
1052           minOp1.operands() == minOp2.operands())
1053         continue;
1054 
1055       // Add additional cases as needed.
1056     }
1057 
1058     // All tests passed.
1059     return true;
1060   }
1061 };
1062 
1063 /// Rewrite use of PadTensorOp result in InsertSliceOp. E.g.:
1064 /// ```
1065 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32>
1066 /// %r = tensor.insert_slice %0
1067 ///     into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1]
1068 ///     : tensor<17x5xf32> into tensor<?x?x17x5xf32>
1069 /// ```
1070 /// is rewritten to:
1071 /// ```
1072 /// %0 = vector.transfer_read %src[%c0, %c0], %padding
1073 ///     : tensor<?x?xf32>, vector<17x5xf32>
1074 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0]
1075 ///     {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32>
1076 /// ```
1077 ///
1078 /// This rewrite is possible if:
1079 /// - Low padding is static 0.
1080 /// - `padOp` result shape is static.
1081 /// - The entire padded tensor is inserted.
1082 ///   (Implies that sizes of `insertOp` are all static.)
1083 /// - Only unit strides in `insertOp`.
1084 /// - Single, scalar padding value.
1085 struct PadTensorOpVectorizationWithInsertSlicePattern
1086     : public VectorizePadTensorOpUserPattern<tensor::InsertSliceOp> {
1087   using VectorizePadTensorOpUserPattern<
1088       tensor::InsertSliceOp>::VectorizePadTensorOpUserPattern;
1089 
1090   LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
1091                             tensor::InsertSliceOp insertOp) const override {
1092     // Low padding must be static 0.
1093     if (!padOp.hasZeroLowPad())
1094       return failure();
1095     // Only unit stride supported.
1096     if (!insertOp.hasUnitStride())
1097       return failure();
1098     // Pad value must be a constant.
1099     auto padValue = padOp.getConstantPaddingValue();
1100     if (!padValue)
1101       return failure();
1102     // Dynamic shapes not supported.
1103     if (!padOp.result().getType().cast<ShapedType>().hasStaticShape())
1104       return failure();
1105 
1106     auto vecType = VectorType::get(padOp.getType().getShape(),
1107                                    padOp.getType().getElementType());
1108     unsigned vecRank = vecType.getRank();
1109     unsigned tensorRank = insertOp.getType().getRank();
1110 
1111     // Check if sizes match: Insert the entire tensor into most minor dims.
1112     // (No permutations allowed.)
1113     SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1);
1114     expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end());
1115     if (!llvm::all_of(
1116             llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) {
1117               return getConstantIntValue(std::get<0>(it)) == std::get<1>(it);
1118             }))
1119       return failure();
1120 
1121     // Insert the TransferReadOp and TransferWriteOp at the position of the
1122     // InsertSliceOp.
1123     rewriter.setInsertionPoint(insertOp);
1124 
1125     // Generate TransferReadOp: Read entire source tensor and add high padding.
1126     SmallVector<Value> readIndices(
1127         vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
1128     auto read = rewriter.create<vector::TransferReadOp>(
1129         padOp.getLoc(), vecType, padOp.source(), readIndices, padValue);
1130 
1131     // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at
1132     // specified offsets. Write is fully in-bounds because a InsertSliceOp's
1133     // source must fit into the destination at the specified offsets.
1134     auto writeIndices =
1135         ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets());
1136     SmallVector<bool> inBounds(vecRank, true);
1137     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
1138         insertOp, read, insertOp.dest(), writeIndices, inBounds);
1139 
1140     return success();
1141   }
1142 };
1143 
1144 void mlir::linalg::populatePadTensorOpVectorizationPatterns(
1145     RewritePatternSet &patterns, PatternBenefit baseBenefit) {
1146   patterns.add<GenericPadTensorOpVectorizationPattern>(patterns.getContext(),
1147                                                        baseBenefit);
1148   // Try these specialized patterns first before resorting to the generic one.
1149   patterns.add<PadTensorOpVectorizationWithTransferReadPattern,
1150                PadTensorOpVectorizationWithTransferWritePattern,
1151                PadTensorOpVectorizationWithInsertSlicePattern>(
1152       patterns.getContext(), baseBenefit.getBenefit() + 1);
1153 }
1154 
1155 // TODO: cleanup all the convolution vectorization patterns.
1156 template <class ConvOp, int N>
1157 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite(
1158     ConvOp op, PatternRewriter &rewriter) const {
1159   Location loc = op.getLoc();
1160   MLIRContext *context = op.getContext();
1161 
1162   OpOperand *input = op.getInputOperand(0);
1163   OpOperand *kernel = op.getInputOperand(1);
1164   OpOperand *output = op.getOutputOperand(0);
1165   ArrayRef<int64_t> inShape = op.getShape(input);
1166   ArrayRef<int64_t> kShape = op.getShape(kernel);
1167 
1168   if (llvm::any_of(inShape, ShapedType::isDynamic) ||
1169       llvm::any_of(kShape, ShapedType::isDynamic))
1170     return failure();
1171 
1172   SmallVector<AffineExpr, 4> mapping;
1173   SmallVector<int64_t, 4> vectorDims;
1174   // Fail to apply when the size of not vectorized dimension is not 1.
1175   for (unsigned i = 0; i < N; i++) {
1176     if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1))
1177       return failure();
1178 
1179     if (mask[i] && inShape[i] != kShape[i])
1180       return failure();
1181 
1182     if (mask[i]) {
1183       mapping.push_back(getAffineDimExpr(i, context));
1184       vectorDims.push_back(inShape[i]);
1185     }
1186   }
1187 
1188   int64_t rank = op.getRank(input);
1189   int64_t numDims = mapping.size();
1190   Type elemType = getElementTypeOrSelf(input->get());
1191 
1192   auto map = AffineMap::get(rank, 0, mapping, context);
1193   SmallVector<Value, 4> zeros(rank,
1194                               rewriter.create<arith::ConstantIndexOp>(loc, 0));
1195   auto vecType = VectorType::get(vectorDims, elemType);
1196 
1197   auto inputVec = rewriter.create<vector::TransferReadOp>(
1198       loc, vecType, input->get(), zeros, map);
1199   auto kernelVec = rewriter.create<vector::TransferReadOp>(
1200       loc, vecType, kernel->get(), zeros, map);
1201 
1202   auto acc = rewriter.create<arith::ConstantOp>(loc, elemType,
1203                                                 rewriter.getZeroAttr(elemType));
1204 
1205   std::array<AffineMap, 3> indexingMaps{
1206       AffineMap::getMultiDimIdentityMap(numDims, context),
1207       AffineMap::getMultiDimIdentityMap(numDims, context),
1208       AffineMap::get(numDims, 0, {}, context)};
1209 
1210   std::vector<StringRef> iteratorTypes(numDims, "reduction");
1211 
1212   auto result = rewriter.create<vector::ContractionOp>(
1213       loc, inputVec, kernelVec, acc,
1214       rewriter.getAffineMapArrayAttr(indexingMaps),
1215       rewriter.getStrArrayAttr(iteratorTypes));
1216 
1217   rewriter.create<memref::StoreOp>(loc, result, output->get(),
1218                                    ValueRange(zeros));
1219   rewriter.eraseOp(op);
1220   return success();
1221 }
1222 
1223 /// Inserts tiling, promotion and vectorization pattern for ConvOp
1224 /// conversion into corresponding pattern lists.
1225 template <typename ConvOp, unsigned N>
1226 static void populateVectorizationPatterns(
1227     RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns,
1228     RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) {
1229   auto *context = tilingPatterns.getContext();
1230   if (tileSizes.size() < N)
1231     return;
1232 
1233   constexpr static StringRef kTiledMarker = "TILED";
1234   constexpr static StringRef kPromotedMarker = "PROMOTED";
1235   tilingPatterns.add<LinalgTilingPattern<ConvOp>>(
1236       context, LinalgTilingOptions().setTileSizes(tileSizes),
1237       LinalgTransformationFilter(ArrayRef<Identifier>{},
1238                                  Identifier::get(kTiledMarker, context)));
1239 
1240   promotionPatterns.add<LinalgPromotionPattern<ConvOp>>(
1241       context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
1242       LinalgTransformationFilter(Identifier::get(kTiledMarker, context),
1243                                  Identifier::get(kPromotedMarker, context)));
1244 
1245   SmallVector<bool, 4> mask(N);
1246   int offset = tileSizes.size() - N;
1247   std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(),
1248                  [](int64_t i) -> bool { return i > 1; });
1249 
1250   vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask);
1251 }
1252 
1253 void mlir::linalg::populateConvVectorizationPatterns(
1254     MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns,
1255     ArrayRef<int64_t> tileSizes) {
1256   RewritePatternSet tiling(context);
1257   RewritePatternSet promotion(context);
1258   RewritePatternSet vectorization(context);
1259   populateVectorizationPatterns<Conv1DOp, 1>(tiling, promotion, vectorization,
1260                                              tileSizes);
1261 
1262   populateVectorizationPatterns<Conv2DOp, 2>(tiling, promotion, vectorization,
1263                                              tileSizes);
1264 
1265   populateVectorizationPatterns<Conv3DOp, 3>(tiling, promotion, vectorization,
1266                                              tileSizes);
1267 
1268   populateVectorizationPatterns<Conv1DNwcWcfOp, 3>(tiling, promotion,
1269                                                    vectorization, tileSizes);
1270 
1271   populateVectorizationPatterns<Conv2DNhwcHwcfOp, 4>(tiling, promotion,
1272                                                      vectorization, tileSizes);
1273 
1274   populateVectorizationPatterns<Conv3DNdhwcDhwcfOp, 5>(
1275       tiling, promotion, vectorization, tileSizes);
1276 
1277   patterns.push_back(std::move(tiling));
1278   patterns.push_back(std::move(promotion));
1279   patterns.push_back(std::move(vectorization));
1280 }
1281 
1282 //----------------------------------------------------------------------------//
1283 // Forwarding patterns
1284 //----------------------------------------------------------------------------//
1285 
1286 /// Check whether there is any interleaved use of any `values` between `firstOp`
1287 /// and `secondOp`. Conservatively return `true` if any op or value is in a
1288 /// different block.
1289 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
1290                                     ValueRange values) {
1291   if (firstOp->getBlock() != secondOp->getBlock() ||
1292       !firstOp->isBeforeInBlock(secondOp)) {
1293     LDBG("interleavedUses precondition failed, firstOp: "
1294          << *firstOp << ", second op: " << *secondOp);
1295     return true;
1296   }
1297   for (auto v : values) {
1298     for (auto &u : v.getUses()) {
1299       Operation *owner = u.getOwner();
1300       if (owner == firstOp || owner == secondOp)
1301         continue;
1302       // TODO: this is too conservative, use dominance info in the future.
1303       if (owner->getBlock() == firstOp->getBlock() &&
1304           (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
1305         continue;
1306       LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp
1307                                     << ", second op: " << *secondOp);
1308       return true;
1309     }
1310   }
1311   return false;
1312 }
1313 
1314 /// Return the unique subview use of `v` if it is indeed unique, null otherwise.
1315 static memref::SubViewOp getSubViewUseIfUnique(Value v) {
1316   memref::SubViewOp subViewOp;
1317   for (auto &u : v.getUses()) {
1318     if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) {
1319       if (subViewOp)
1320         return memref::SubViewOp();
1321       subViewOp = newSubViewOp;
1322     }
1323   }
1324   return subViewOp;
1325 }
1326 
1327 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1328 /// when available.
1329 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
1330     vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {
1331 
1332   // Transfer into `view`.
1333   Value viewOrAlloc = xferOp.source();
1334   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1335       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1336     return failure();
1337 
1338   LDBG(viewOrAlloc);
1339 
1340   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1341   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1342   if (!subViewOp)
1343     return failure();
1344   Value subView = subViewOp.getResult();
1345   LDBG("with subView " << subView);
1346 
1347   // Find the copy into `subView` without interleaved uses.
1348   CopyOp copyOp;
1349   for (auto &u : subView.getUses()) {
1350     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
1351       assert(newCopyOp.output().getType().isa<MemRefType>());
1352       if (newCopyOp.output() != subView)
1353         continue;
1354       LDBG("copy candidate " << *newCopyOp);
1355       if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
1356         continue;
1357       copyOp = newCopyOp;
1358       break;
1359     }
1360   }
1361   if (!copyOp)
1362     return failure();
1363   LDBG("with copy " << *copyOp);
1364 
1365   // Find the fill into `viewOrAlloc` without interleaved uses before the copy.
1366   FillOp maybeFillOp;
1367   for (auto &u : viewOrAlloc.getUses()) {
1368     if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
1369       assert(newFillOp.output().getType().isa<MemRefType>());
1370       if (newFillOp.output() != viewOrAlloc)
1371         continue;
1372       LDBG("fill candidate " << *newFillOp);
1373       if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
1374         continue;
1375       maybeFillOp = newFillOp;
1376       break;
1377     }
1378   }
1379   // Ensure padding matches.
1380   if (maybeFillOp && xferOp.padding() != maybeFillOp.value())
1381     return failure();
1382   if (maybeFillOp)
1383     LDBG("with maybeFillOp " << *maybeFillOp);
1384 
1385   // `in` is the subview that linalg.copy reads. Replace it.
1386   Value in = copyOp.input();
1387 
1388   // linalg.copy + linalg.fill can be used to create a padded local buffer.
1389   // The `masked` attribute is only valid on this padded buffer.
1390   // When forwarding to vector.transfer_read, the attribute must be reset
1391   // conservatively.
1392   Value res = rewriter.create<vector::TransferReadOp>(
1393       xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(),
1394       xferOp.permutation_map(), xferOp.padding(), ArrayAttr());
1395 
1396   if (maybeFillOp)
1397     rewriter.eraseOp(maybeFillOp);
1398   rewriter.eraseOp(copyOp);
1399   rewriter.replaceOp(xferOp, res);
1400 
1401   return success();
1402 }
1403 
1404 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1405 /// when available.
1406 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
1407     vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
1408   // Transfer into `viewOrAlloc`.
1409   Value viewOrAlloc = xferOp.source();
1410   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1411       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1412     return failure();
1413 
1414   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1415   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1416   if (!subViewOp)
1417     return failure();
1418   Value subView = subViewOp.getResult();
1419 
1420   // Find the copy from `subView` without interleaved uses.
1421   CopyOp copyOp;
1422   for (auto &u : subViewOp.getResult().getUses()) {
1423     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
1424       if (newCopyOp.getInputOperand(0)->get() != subView)
1425         continue;
1426       if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
1427         continue;
1428       copyOp = newCopyOp;
1429       break;
1430     }
1431   }
1432   if (!copyOp)
1433     return failure();
1434 
1435   // `out` is the subview copied into that we replace.
1436   assert(copyOp.output().getType().isa<MemRefType>());
1437   Value out = copyOp.output();
1438 
1439   // Forward vector.transfer into copy.
1440   // linalg.copy + linalg.fill can be used to create a padded local buffer.
1441   // The `masked` attribute is only valid on this padded buffer.
1442   // When forwarding to vector.transfer_write, the attribute must be reset
1443   // conservatively.
1444   rewriter.create<vector::TransferWriteOp>(
1445       xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(),
1446       xferOp.permutation_map(), ArrayAttr());
1447 
1448   rewriter.eraseOp(copyOp);
1449   rewriter.eraseOp(xferOp);
1450 
1451   return success();
1452 }
1453 
1454 //===----------------------------------------------------------------------===//
1455 // Convolution vectorization patterns
1456 //===----------------------------------------------------------------------===//
1457 namespace {
1458 /// Generate a vector implementation for:
1459 /// ```
1460 ///   Op def: (     n,     w,     c,    kw,    f  )
1461 ///    Iters: ({Par(), Par(), Par(), Red(), Red()})
1462 ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1463 /// ```
1464 /// w and kw are unrolled.
1465 /// TODO: do not unroll w (resp. kw) when the strideW ( resp. dilationW) is > 1.
1466 struct Conv1D_NWC_WCF_Generator : public StructuredGenerator<LinalgOp> {
1467   Conv1D_NWC_WCF_Generator(OpBuilder &builder, LinalgOp linalgOp, int strideW,
1468                            int dilationW)
1469       : StructuredGenerator<LinalgOp>(builder, linalgOp), valid(false),
1470         strideW(strideW), dilationW(dilationW) {
1471     // Determine whether `linalgOp` can be generated with this generator
1472     if (linalgOp.getNumInputs() != 2 || linalgOp.getNumOutputs() != 1)
1473       return;
1474     lhsShaped = linalgOp.inputs()[0];
1475     rhsShaped = linalgOp.inputs()[1];
1476     resShaped = linalgOp.outputs()[0];
1477     lhsShapedType = lhsShaped.getType().dyn_cast<ShapedType>();
1478     rhsShapedType = rhsShaped.getType().dyn_cast<ShapedType>();
1479     resShapedType = resShaped.getType().dyn_cast<ShapedType>();
1480     if (!lhsShapedType || !rhsShapedType || !resShapedType)
1481       return;
1482     if (lhsShapedType.getRank() != 3 || rhsShapedType.getRank() != 3 ||
1483         resShapedType.getRank() != 3)
1484       return;
1485 
1486     // Check for reduction `add` preceded by `mul`.
1487     Operation *reduceOp = matchLinalgReduction(linalgOp.getOutputOperand(0));
1488     if (!reduceOp)
1489       return;
1490     llvm::Optional<vector::CombiningKind> maybeKind;
1491     maybeKind = getKindForOp(reduceOp);
1492     if (!maybeKind || *maybeKind != vector::CombiningKind::ADD)
1493       return;
1494     maybeKind = getKindForOp(&(linalgOp->getRegion(0).front().front()));
1495     if (!maybeKind || *maybeKind != vector::CombiningKind::MUL)
1496       return;
1497 
1498     // The op is now known to be valid.
1499     valid = true;
1500   }
1501 
1502   /// Generate a vector implementation for:
1503   /// ```
1504   ///   Op def: (     n,     w,     c,    kw,    f  )
1505   ///    Iters: ({Par(), Par(), Par(), Red(), Red()})
1506   ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1507   /// ```
1508   /// kw is always unrolled.
1509   /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is > 1.
1510   FailureOr<Operation *> conv() {
1511     if (!valid)
1512       return failure();
1513 
1514     int nSize = lhsShapedType.getShape()[0];
1515     int wSize = resShapedType.getShape()[1];
1516     int cSize = lhsShapedType.getShape()[2];
1517     int kwSize = rhsShapedType.getShape()[0];
1518     int fSize = rhsShapedType.getShape()[2];
1519 
1520     vector::TransferWriteOp write;
1521     Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
1522 
1523     int64_t wSizeStep = strideW == 1 ? wSize : 1;
1524 
1525     // Unroll along kw and read slices of lhs and rhs.
1526     // Alternatively we could preload both 3-d slices and extract smaller slices
1527     // iteratively without touching memory. But this will quickly spill.
1528     for (int64_t kw = 0; kw < kwSize; ++kw) {
1529       // Read rhs slice of size {c, f} @ [kw, 0, 0].
1530       Value kwVal = builder.create<arith::ConstantIndexOp>(loc, kw);
1531       VectorType rhsType =
1532           VectorType::get({cSize, fSize}, rhsShapedType.getElementType());
1533       Value rhs = builder.create<vector::TransferReadOp>(
1534           loc, rhsType, rhsShaped, ValueRange{kwVal, zero, zero});
1535 
1536       for (int64_t w_iv = 0; w_iv < wSize; w_iv += wSizeStep) {
1537         // Read lhs slice of size {n, wSizeStep, c}
1538         //   @ [0, sw * w + dw * kw, 0].
1539         Value lhsStridedIdx = builder.create<arith::ConstantIndexOp>(
1540             loc, strideW * w_iv + dilationW * kw);
1541         VectorType lhsType = VectorType::get({nSize, wSizeStep, cSize},
1542                                              lhsShapedType.getElementType());
1543         Value lhs = builder.create<vector::TransferReadOp>(
1544             loc, lhsType, lhsShaped, ValueRange{zero, lhsStridedIdx, zero});
1545 
1546         // Read res slice: {n, wSizeStep, f} @ [0, w, 0].
1547         Value wVal = builder.create<arith::ConstantIndexOp>(loc, w_iv);
1548         VectorType resType = VectorType::get({nSize, wSizeStep, fSize},
1549                                              resShapedType.getElementType());
1550         // When operating on tensors, reading from the updated value is required
1551         // for vector.transfer_read/write hoisting to function as expected.
1552         Value res = builder.create<vector::TransferReadOp>(
1553             loc, resType, resShaped, ValueRange{zero, wVal, zero});
1554 
1555         // Compute contraction: I{n, w, c} * F{c, f} -> O{n, w, f}
1556         StringRef par = Par().strRef, red = Red().strRef;
1557         AffineExpr n, w, f, c;
1558         bindDims(ctx, n, w, f, c);
1559         // clang-format off
1560         res = builder.create<vector::ContractionOp>(
1561           loc, lhs, rhs, res,
1562           /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}},
1563           /*iteratorTypes=*/ArrayRef<StringRef>{par, par, par, red});
1564         // clang-format on
1565 
1566         // Write back res slice: {n, wSizeStep, f} @ [0, w, 0].
1567         write = builder.create<vector::TransferWriteOp>(
1568             loc, res, resShaped, ValueRange{zero, wVal, zero});
1569         if (write.getNumResults() == 1)
1570           resShaped = write->getResult(0);
1571       }
1572     }
1573 
1574     return write.getOperation();
1575   }
1576 
1577   /// Entry point that transposes into the common form:
1578   ///   {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1579   FailureOr<Operation *> generateConv() {
1580     AffineExpr n, w, f, kw, c;
1581     bindDims(ctx, n, w, f, kw, c);
1582 
1583     if (!iters({Par(), Par(), Par(), Red(), Red()}))
1584       return failure();
1585 
1586     // No transposition needed.
1587     if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
1588                 /*rhsIndex*/ {kw, c, f},
1589                 /*resIndex*/ {n, w, f}}))
1590       return conv();
1591     return failure();
1592   }
1593 
1594 private:
1595   bool valid;
1596   int strideW, dilationW;
1597   Value lhsShaped, rhsShaped, resShaped;
1598   ShapedType lhsShapedType, rhsShapedType, resShapedType;
1599 };
1600 } // namespace
1601 
1602 /// Helper function to vectorize a `linalgOp` with convolution semantics.
1603 // TODO: extend the generic vectorization to support windows and drop this.
1604 static FailureOr<Operation *>
1605 vectorizeConvolution(OpBuilder &b, ConvolutionOpInterface convOp) {
1606   // TODO: these are legitimately part of ConvolutionOpInterface.
1607   auto strides = convOp->getAttrOfType<DenseIntElementsAttr>("strides");
1608   auto dilations = convOp->getAttrOfType<DenseIntElementsAttr>("dilations");
1609   auto stride = strides ? *strides.getValues<uint64_t>().begin() : 1;
1610   auto dilation = dilations ? *dilations.getValues<uint64_t>().begin() : 1;
1611   LinalgOp linalgOp = cast<LinalgOp>(convOp.getOperation());
1612   Conv1D_NWC_WCF_Generator e(b, linalgOp, stride, dilation);
1613   return e.generateConv();
1614 }
1615 
1616 struct VectorizeConvolution
1617     : public OpInterfaceRewritePattern<ConvolutionOpInterface> {
1618   using OpInterfaceRewritePattern::OpInterfaceRewritePattern;
1619 
1620   LogicalResult matchAndRewrite(ConvolutionOpInterface convOp,
1621                                 PatternRewriter &rewriter) const override {
1622     FailureOr<Operation *> resultOrFail =
1623         vectorizeConvolution(rewriter, convOp);
1624     if (failed(resultOrFail))
1625       return failure();
1626     Operation *newOp = *resultOrFail;
1627     if (newOp->getNumResults() == 0) {
1628       rewriter.eraseOp(convOp.getOperation());
1629       return success();
1630     }
1631     assert(newOp->getNumResults() == 1 && "expected single result");
1632     rewriter.replaceOp(convOp.getOperation(), newOp->getResult(0));
1633     return success();
1634   }
1635 };
1636 
1637 void mlir::linalg::populateConvolutionVectorizationPatterns(
1638     RewritePatternSet &patterns, PatternBenefit benefit) {
1639   patterns.add<VectorizeConvolution>(patterns.getContext(), benefit);
1640 }
1641