1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 14 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 15 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 16 #include "mlir/Dialect/Linalg/Utils/Utils.h" 17 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 18 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 19 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 20 #include "mlir/Dialect/Vector/VectorOps.h" 21 #include "mlir/IR/AffineExpr.h" 22 #include "mlir/IR/Matchers.h" 23 #include "mlir/IR/PatternMatch.h" 24 #include "mlir/Pass/Pass.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/RegionUtils.h" 27 #include "llvm/ADT/ScopeExit.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <type_traits> 31 32 using namespace mlir; 33 using namespace mlir::edsc; 34 using namespace mlir::edsc::intrinsics; 35 using namespace mlir::linalg; 36 37 using llvm::dbgs; 38 39 #define DEBUG_TYPE "linalg-vectorization" 40 41 /// Return the unique instance of OpType in `block` if it is indeed unique. 42 /// Return null if none or more than 1 instances exist. 43 template <typename OpType> 44 static OpType getSingleOpOfType(Block &block) { 45 OpType res; 46 block.walk([&](OpType op) { 47 if (res) { 48 res = nullptr; 49 return WalkResult::interrupt(); 50 } 51 res = op; 52 return WalkResult::advance(); 53 }); 54 return res; 55 } 56 57 /// Helper data structure to represent the result of vectorization. 58 /// In certain specific cases, like terminators, we do not want to propagate/ 59 enum VectorizationStatus { 60 /// Op failed to vectorize. 61 Failure = 0, 62 /// Op vectorized and custom function took care of replacement logic 63 NoReplace, 64 /// Op vectorized into a new Op whose results will replace original Op's 65 /// results. 66 NewOp 67 // TODO: support values if Op vectorized to Many-Ops whose results we need to 68 // aggregate for replacement. 69 }; 70 struct VectorizationResult { 71 /// Return status from vectorizing the current op. 72 enum VectorizationStatus status = VectorizationStatus::Failure; 73 /// New vectorized operation to replace the current op. 74 /// Replacement behavior is specified by `status`. 75 Operation *newOp; 76 }; 77 78 /// Return a vector type of the same shape and element type as the (assumed) 79 /// ShapedType of `v`. 80 static VectorType extractVectorTypeFromShapedValue(Value v) { 81 auto st = v.getType().cast<ShapedType>(); 82 if (st.isa<MemRefType>() && st.getShape().empty()) 83 return VectorType(); 84 return VectorType::get(st.getShape(), st.getElementType()); 85 } 86 87 /// Build a vector.transfer_read from `source` at indices set to all `0`. 88 /// If source has rank zero, build an memref.load. 89 /// Return the produced value. 90 static Value buildVectorRead(OpBuilder &builder, Value source, 91 VectorType vectorType, AffineMap map) { 92 edsc::ScopedContext scope(builder); 93 auto shapedType = source.getType().cast<ShapedType>(); 94 if (vectorType) { 95 SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0)); 96 if (map) 97 return vector_transfer_read(vectorType, source, indices, map); 98 return vector_transfer_read(vectorType, source, indices); 99 } 100 return memref_load(source); 101 } 102 103 /// Build a vector.transfer_write of `value` into `dest` at indices set to all 104 /// `0`. If `dest` has null rank, build an memref.store. 105 /// Return the produced value or null if no value is produced. 106 static Value buildVectorWrite(OpBuilder &builder, Value value, Value dest) { 107 edsc::ScopedContext scope(builder); 108 Operation *write; 109 auto shapedType = dest.getType().cast<ShapedType>(); 110 if (VectorType vectorType = extractVectorTypeFromShapedValue(dest)) { 111 SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0)); 112 if (vectorType != value.getType()) 113 value = vector_broadcast(vectorType, value); 114 write = vector_transfer_write(value, dest, indices); 115 } else { 116 write = memref_store(value, dest); 117 } 118 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write); 119 if (!write->getResults().empty()) 120 return write->getResult(0); 121 return Value(); 122 } 123 124 /// If value of assumed VectorType has a shape different than `shape`, buil and 125 /// return a new vector.broadcast to `shape`. 126 /// Otherwise, just return value. 127 static Value broadcastIfNeeded(OpBuilder &builder, Value value, 128 ArrayRef<int64_t> shape) { 129 auto vecType = value.getType().dyn_cast<VectorType>(); 130 if (shape.empty() || (vecType != nullptr && vecType.getShape() == shape)) 131 return value; 132 auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType() 133 : value.getType()); 134 return builder.create<vector::BroadcastOp>( 135 builder.getInsertionPoint()->getLoc(), newVecType, value); 136 } 137 138 // Custom vectorization function type. Produce a vector form of Operation* 139 // assuming all its vectorized operands are already in the BlockAndValueMapping. 140 // Return nullptr if the Operation cannot be vectorized. 141 using CustomVectorizationHook = std::function<VectorizationResult( 142 Operation *, const BlockAndValueMapping &)>; 143 144 /// Helper function to vectorize the terminator of a `linalgOp`. New result 145 /// vector values are appended to `newResults`. Return 146 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it 147 /// should not try to map produced operations and instead return the results 148 /// using the `newResults` vector making them available to the 149 /// vectorization algorithm for RAUW. This function is meant to be used as a 150 /// CustomVectorizationHook. 151 static VectorizationResult 152 vectorizeLinalgYield(OpBuilder &builder, Operation *op, 153 const BlockAndValueMapping &bvm, LinalgOp linalgOp, 154 SmallVectorImpl<Value> &newResults) { 155 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 156 if (!yieldOp) 157 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 158 for (auto outputs : llvm::enumerate(yieldOp.values())) { 159 // TODO: Scan for an opportunity for reuse. 160 // TODO: use a map. 161 Value vectorValue = bvm.lookup(outputs.value()); 162 Value newResult = buildVectorWrite(builder, vectorValue, 163 linalgOp.getOutput(outputs.index())); 164 if (newResult) 165 newResults.push_back(newResult); 166 } 167 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 168 } 169 170 /// Generic vectorization for a single operation `op`, given already vectorized 171 /// operands carried by `bvm`. Vectorization occurs as follows: 172 /// 1. Try to apply any of the `customVectorizationHooks` and return its 173 /// result on success. 174 /// 2. Clone any constant in the current scope without vectorization: each 175 /// consumer of the constant will later determine the shape to which the 176 /// constant needs to be broadcast to. 177 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 178 /// of the `customVectorizationHooks` to cover such cases. 179 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 180 /// operand of maximal rank. Other operands have smaller rank and are 181 /// broadcast accordingly. It is assumed this broadcast is always legal, 182 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 183 /// 184 /// This function assumes all operands of `op` have been vectorized and are in 185 /// the `bvm` mapping. As a consequence, this function is meant to be called on 186 /// a topologically-sorted list of ops. 187 /// This function does not update `bvm` but returns a VectorizationStatus that 188 /// instructs the caller what `bvm` update needs to occur. 189 static VectorizationResult 190 vectorizeOneOp(OpBuilder &builder, Operation *op, 191 const BlockAndValueMapping &bvm, 192 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 193 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op); 194 195 // 1. Try to apply any CustomVectorizationHook. 196 if (!customVectorizationHooks.empty()) { 197 for (auto &customFunc : customVectorizationHooks) { 198 VectorizationResult result = customFunc(op, bvm); 199 if (result.status == VectorizationStatus::Failure) 200 continue; 201 return result; 202 } 203 } 204 205 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 206 // Clone so that the constant is not confined to the linalgOp block . 207 if (isa<ConstantOp>(op)) 208 return VectorizationResult{VectorizationStatus::NewOp, builder.clone(*op)}; 209 210 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 211 if (!OpTrait::hasElementwiseMappableTraits(op)) 212 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 213 214 // 4. Generic vectorization path for ElementwiseMappable ops. 215 // a. first get the first max ranked shape. 216 SmallVector<int64_t, 4> firstMaxRankedShape; 217 for (Value operand : op->getOperands()) { 218 auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); 219 if (vt && firstMaxRankedShape.size() < vt.getShape().size()) 220 firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); 221 } 222 // b. broadcast each op if needed. 223 auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { 224 return firstMaxRankedShape.empty() 225 ? bvm.lookup(v) 226 : broadcastIfNeeded(builder, bvm.lookup(v), firstMaxRankedShape); 227 }); 228 // c. for elementwise, the result is the vector with the firstMaxRankedShape 229 auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { 230 return firstMaxRankedShape.empty() 231 ? t 232 : VectorType::get(firstMaxRankedShape, t); 233 }); 234 235 // Build and return the new op. 236 OperationState state(op->getLoc(), op->getName()); 237 state.addAttributes(op->getAttrs()); 238 state.addOperands(llvm::to_vector<4>(vectorizedOperands)); 239 state.addTypes(llvm::to_vector<4>(returnTypes)); 240 return VectorizationResult{VectorizationStatus::NewOp, 241 builder.createOperation(state)}; 242 } 243 244 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. 245 static bool hasOnlyScalarElementwiseOp(Region &r) { 246 if (!llvm::hasSingleElement(r)) 247 return false; 248 for (Operation &op : r.front()) { 249 if (!(isa<ConstantOp, linalg::YieldOp>(op) || 250 OpTrait::hasElementwiseMappableTraits(&op)) || 251 llvm::any_of(op.getResultTypes(), 252 [](Type type) { return !type.isIntOrIndexOrFloat(); })) 253 return false; 254 } 255 return true; 256 } 257 258 // Return true if the op is an element-wise linalg op. 259 static bool isElementwise(Operation *op) { 260 auto linalgOp = dyn_cast<linalg::LinalgOp>(op); 261 if (!linalgOp) 262 return false; 263 if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) 264 return false; 265 // TODO: relax the restrictions on indexing map. 266 for (unsigned i = 0, e = linalgOp.getNumOutputs(); i < e; i++) { 267 if (!linalgOp.getOutputIndexingMap(i).isIdentity()) 268 return false; 269 } 270 if (linalgOp->getNumRegions() != 1) 271 return false; 272 return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0)); 273 } 274 275 // Calculate the map to apply to transfer_read to convert the input shape into 276 // the output shape. 277 static AffineMap getTransferReadMap(LinalgOp linalgOp, unsigned argIndex) { 278 AffineMap linalgMap = linalgOp.getIndexingMap(argIndex); 279 MLIRContext *context = linalgMap.getContext(); 280 AffineExpr zero = mlir::getAffineConstantExpr(0, context); 281 SmallVector<AffineExpr, 4> exprs(linalgMap.getNumInputs(), zero); 282 for (unsigned i : llvm::seq(unsigned(0), linalgMap.getNumResults())) { 283 exprs[linalgMap.getDimPosition(i)] = getAffineDimExpr(i, context); 284 } 285 return AffineMap::get(linalgMap.getNumResults(), /*symbolCount=*/0, exprs, 286 context); 287 } 288 289 /// Generic vectorization function that rewrites the body of a `linalgOp` into 290 /// vector form. Generic vectorization proceeds as follows: 291 /// 1. Verify the `linalgOp` has one non-empty region. 292 /// 2. Values defined above the region are mapped to themselves and will be 293 /// broadcasted on a per-need basis by their consumers. 294 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 295 /// load). 296 /// TODO: Reuse opportunities for RAR dependencies. 297 /// 4. Register CustomVectorizationHook for YieldOp to capture the results. 298 /// 5. Iteratively call vectorizeOneOp on the region operations. 299 LogicalResult vectorizeAsLinalgGeneric( 300 OpBuilder &builder, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults, 301 ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) { 302 // 1. Fail to vectorize if the operation does not have one non-empty region. 303 if (linalgOp->getNumRegions() != 1 || linalgOp->getRegion(0).empty()) 304 return failure(); 305 auto &block = linalgOp->getRegion(0).front(); 306 307 BlockAndValueMapping bvm; 308 // 2. Values defined above the region can only be broadcast for now. Make them 309 // map to themselves. 310 llvm::SetVector<Value> valuesSet; 311 mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); 312 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 313 314 // 3. Turn all BBArgs into vector.transfer_read / load. 315 SmallVector<AffineMap> indexings; 316 for (auto bbarg : block.getArguments()) { 317 Value vectorArg = linalgOp.getShapedOperand(bbarg.getArgNumber()); 318 AffineMap map; 319 VectorType vectorType = extractVectorTypeFromShapedValue(vectorArg); 320 if (isElementwise(linalgOp) && 321 !linalgOp.getIndexingMap(bbarg.getArgNumber()).isMinorIdentity()) { 322 // Currently assume we don't support output permutations. 323 assert(linalgOp.getNumOutputs() > 0 && 324 linalgOp.getOutputIndexingMap(0).isIdentity()); 325 ArrayRef<int64_t> outputShape = 326 linalgOp.getOutputShapedType(0).getShape(); 327 vectorType = VectorType::get(outputShape, vectorType.getElementType()); 328 map = getTransferReadMap(linalgOp, bbarg.getArgNumber()); 329 } 330 Value vectorRead = buildVectorRead(builder, vectorArg, vectorType, map); 331 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" 332 << bbarg.getArgNumber() << "): " << vectorRead); 333 bvm.map(bbarg, vectorRead); 334 bvm.map(vectorArg, vectorRead); 335 } 336 337 // 4. Register CustomVectorizationHook for yieldOp. 338 CustomVectorizationHook vectorizeYield = 339 [&](Operation *op, 340 const BlockAndValueMapping &bvm) -> VectorizationResult { 341 return vectorizeLinalgYield(builder, op, bvm, linalgOp, newResults); 342 }; 343 // Append the vectorizeYield hook. 344 auto hooks = llvm::to_vector<4>(customVectorizationHooks); 345 hooks.push_back(vectorizeYield); 346 347 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 348 for (Operation &op : block.getOperations()) { 349 VectorizationResult result = vectorizeOneOp(builder, &op, bvm, hooks); 350 if (result.status == VectorizationStatus::Failure) { 351 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op); 352 return failure(); 353 } 354 if (result.status == VectorizationStatus::NewOp) { 355 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: " 356 << *result.newOp;); 357 bvm.map(op.getResults(), result.newOp->getResults()); 358 } 359 } 360 361 return success(); 362 } 363 364 static LogicalResult vectorizeContraction(OpBuilder &builder, LinalgOp linalgOp, 365 SmallVectorImpl<Value> &newResults) { 366 assert(isaContractionOpInterface(linalgOp) && 367 "expected vectorizeContraction preconditions to be met"); 368 Location loc = linalgOp.getLoc(); 369 // Vectorize other ops as vector contraction. 370 // TODO: interface. 371 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 372 << "Rewrite linalg op as vector.contract: "; 373 linalgOp.dump()); 374 // Special function that describes how to vectorize the multiplication op in a 375 // linalg contraction. 376 CustomVectorizationHook vectorizeContraction = 377 [&](Operation *op, 378 const BlockAndValueMapping &bvm) -> VectorizationResult { 379 if (!isa<MulIOp, MulFOp>(op)) 380 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 381 auto outShape = linalgOp.getOutputShapedType(0).getShape(); 382 auto vType = outShape.empty() 383 ? op->getResult(0).getType() 384 : VectorType::get(outShape, op->getResult(0).getType()); 385 auto zero = 386 builder.create<ConstantOp>(loc, vType, builder.getZeroAttr(vType)); 387 Operation *contract = builder.create<vector::ContractionOp>( 388 loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero, 389 linalgOp.indexing_maps(), linalgOp.iterator_types()); 390 return VectorizationResult{VectorizationStatus::NewOp, contract}; 391 }; 392 return vectorizeAsLinalgGeneric(builder, linalgOp, newResults, 393 {vectorizeContraction}); 394 } 395 396 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { 397 auto linalgOp = cast<linalg::LinalgOp>(op); 398 // All types must be static shape to go to vector. 399 for (Value operand : linalgOp.getShapedOperands()) 400 if (!operand.getType().cast<ShapedType>().hasStaticShape()) 401 return failure(); 402 for (Type outputTensorType : linalgOp.getOutputTensorTypes()) 403 if (!outputTensorType.cast<ShapedType>().hasStaticShape()) 404 return failure(); 405 // TODO: remove once index ops are supported. 406 if (linalgOp.hasIndexSemantics()) 407 return failure(); 408 if (isElementwise(op)) 409 return success(); 410 return success(isaContractionOpInterface(linalgOp)); 411 } 412 413 LogicalResult 414 mlir::linalg::vectorizeLinalgOp(OpBuilder &builder, Operation *op, 415 SmallVectorImpl<Value> &newResults) { 416 if (failed(vectorizeLinalgOpPrecondition(op))) 417 return failure(); 418 419 edsc::ScopedContext scope(builder, op->getLoc()); 420 if (isElementwise(op)) { 421 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 422 << "Vectorize linalg op as a generic: " << *op); 423 return vectorizeAsLinalgGeneric(builder, cast<LinalgOp>(op), newResults); 424 } 425 426 return vectorizeContraction(builder, cast<LinalgOp>(op), newResults); 427 } 428 429 //----------------------------------------------------------------------------// 430 // Misc. vectorization patterns. 431 //----------------------------------------------------------------------------// 432 433 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, TransferReadOp and 434 /// TransferWriteOp. For now, this only applies when all low and high paddings 435 /// are determined to be zero. 436 LogicalResult PadTensorOpVectorizationPattern::matchAndRewrite( 437 linalg::PadTensorOp padOp, PatternRewriter &rewriter) const { 438 // Helper function to determine whether an OpFoldResult is not a zero Index. 439 auto isNotZeroIndex = [](OpFoldResult ofr) { 440 if (Attribute attr = ofr.dyn_cast<Attribute>()) 441 return attr.cast<IntegerAttr>().getInt() != 0; 442 Value v = ofr.get<Value>(); 443 if (auto constOp = v.getDefiningOp<ConstantOp>()) 444 if (auto intAttr = constOp.getValue().dyn_cast<IntegerAttr>()) 445 return intAttr.getValue().getSExtValue() != 0; 446 return true; 447 }; 448 449 auto resultShapedType = padOp.result().getType().cast<ShapedType>(); 450 // Bail on non-static shapes. 451 if (!resultShapedType.hasStaticShape()) 452 return failure(); 453 454 // If any pad_low is not a static 0, needs a mask. Bail for now. 455 if (llvm::any_of(padOp.getMixedLowPad(), isNotZeroIndex)) 456 return failure(); 457 VectorType vectorType = extractVectorTypeFromShapedValue(padOp.result()); 458 if (!vectorType) 459 return failure(); 460 461 // Only support padding with a constant for now, i.e. either: 462 // 1. A BBarg from a different block. 463 // 2. A value defined outside of the current block. 464 Block &block = padOp.region().front(); 465 auto yieldOp = cast<YieldOp>(block.getTerminator()); 466 assert(yieldOp.getNumOperands() == 1 && "expected single operand yield"); 467 Value padValue = yieldOp.values().front(); 468 Operation *definingOp = padValue.getDefiningOp(); 469 if (definingOp && definingOp->getBlock() == &block) 470 return failure(); 471 if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block) 472 return failure(); 473 474 // TODO: if any pad_high is not a static 0, needs a mask. For now, just bail. 475 if (llvm::any_of(padOp.getMixedHighPad(), 476 [&](OpFoldResult ofr) { return isNotZeroIndex(ofr); })) 477 return failure(); 478 479 // Now we can rewrite as InitTensorOp + TransferReadOp@[0..0] + 480 // TransferWriteOp@[0..0]. 481 SmallVector<Value> indices( 482 resultShapedType.getRank(), 483 rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); 484 Value read = rewriter.create<vector::TransferReadOp>( 485 padOp.getLoc(), vectorType, padOp.source(), indices, padValue); 486 Value init = 487 rewriter.create<InitTensorOp>(padOp.getLoc(), resultShapedType.getShape(), 488 resultShapedType.getElementType()); 489 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(padOp, read, init, 490 indices); 491 492 return success(); 493 } 494 495 // TODO: cleanup all the convolution vectorization patterns. 496 template <class ConvOp, int N> 497 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite( 498 ConvOp op, PatternRewriter &rewriter) const { 499 Location loc = op.getLoc(); 500 MLIRContext *context = op.getContext(); 501 edsc::ScopedContext scope(rewriter, loc); 502 503 ShapedType inShapeType = op.getInputShapedType(0); 504 ShapedType kShapeType = op.getInputShapedType(1); 505 506 ArrayRef<int64_t> inShape = inShapeType.getShape(); 507 ArrayRef<int64_t> kShape = kShapeType.getShape(); 508 509 if (!inShapeType.hasStaticShape() || !kShapeType.hasStaticShape()) 510 return failure(); 511 512 SmallVector<AffineExpr, 4> mapping; 513 SmallVector<int64_t, 4> vectorDims; 514 // Fail to apply when the size of not vectorized dimension is not 1. 515 for (unsigned i = 0; i < N; i++) { 516 if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) 517 return failure(); 518 519 if (mask[i] && inShape[i] != kShape[i]) 520 return failure(); 521 522 if (mask[i]) { 523 mapping.push_back(getAffineDimExpr(i, context)); 524 vectorDims.push_back(inShape[i]); 525 } 526 } 527 528 Value input = op.getInput(0); 529 Value kernel = op.getInput(1); 530 Value output = op.getOutputBuffer(0); 531 532 unsigned rank = inShapeType.getRank(); 533 unsigned numDims = mapping.size(); 534 Type elemType = inShapeType.getElementType(); 535 536 auto map = AffineMap::get(rank, 0, mapping, context); 537 SmallVector<Value, 4> zeros(rank, std_constant_index(0)); 538 auto vecType = VectorType::get(vectorDims, elemType); 539 540 auto inputVec = vector_transfer_read(vecType, input, zeros, map); 541 auto kernelVec = vector_transfer_read(vecType, kernel, zeros, map); 542 543 auto acc = std_constant(elemType, rewriter.getZeroAttr(elemType)); 544 545 std::array<AffineMap, 3> indexingMaps{ 546 AffineMap::getMultiDimIdentityMap(numDims, context), 547 AffineMap::getMultiDimIdentityMap(numDims, context), 548 AffineMap::get(numDims, 0, {}, context)}; 549 550 std::vector<StringRef> iteratorTypes(numDims, "reduction"); 551 552 auto result = rewriter.create<vector::ContractionOp>( 553 loc, inputVec, kernelVec, acc, 554 rewriter.getAffineMapArrayAttr(indexingMaps), 555 rewriter.getStrArrayAttr(iteratorTypes)); 556 557 rewriter.create<memref::StoreOp>(loc, result, output, ValueRange(zeros)); 558 rewriter.eraseOp(op); 559 return success(); 560 } 561 562 using ConvOpConst = ConvOpVectorization<ConvWOp, 1>; 563 564 /// Inserts tiling, promotion and vectorization pattern for ConvOp 565 /// conversion into corresponding pattern lists. 566 template <typename ConvOp, unsigned N> 567 static void populateVectorizationPatterns( 568 RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns, 569 RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) { 570 auto *context = tilingPatterns.getContext(); 571 if (tileSizes.size() < N) 572 return; 573 574 constexpr static StringRef kTiledMarker = "TILED"; 575 constexpr static StringRef kPromotedMarker = "PROMOTED"; 576 tilingPatterns.add<LinalgTilingPattern<ConvOp>>( 577 context, LinalgTilingOptions().setTileSizes(tileSizes), 578 LinalgTransformationFilter(ArrayRef<Identifier>{}, 579 Identifier::get(kTiledMarker, context))); 580 581 promotionPatterns.add<LinalgPromotionPattern<ConvOp>>( 582 context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), 583 LinalgTransformationFilter(Identifier::get(kTiledMarker, context), 584 Identifier::get(kPromotedMarker, context))); 585 586 SmallVector<bool, 4> mask(N); 587 int offset = tileSizes.size() - N; 588 std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), 589 [](int64_t i) -> bool { return i > 1; }); 590 591 vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask); 592 } 593 594 void mlir::linalg::populateConvVectorizationPatterns( 595 MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns, 596 ArrayRef<int64_t> tileSizes) { 597 RewritePatternSet tiling(context); 598 RewritePatternSet promotion(context); 599 RewritePatternSet vectorization(context); 600 populateVectorizationPatterns<ConvWOp, 1>(tiling, promotion, vectorization, 601 tileSizes); 602 603 populateVectorizationPatterns<ConvNWCOp, 3>(tiling, promotion, vectorization, 604 tileSizes); 605 populateVectorizationPatterns<ConvInputNWCFilterWCFOp, 3>( 606 tiling, promotion, vectorization, tileSizes); 607 608 populateVectorizationPatterns<ConvNCWOp, 3>(tiling, promotion, vectorization, 609 tileSizes); 610 populateVectorizationPatterns<ConvInputNCWFilterWCFOp, 3>( 611 tiling, promotion, vectorization, tileSizes); 612 613 populateVectorizationPatterns<ConvHWOp, 2>(tiling, promotion, vectorization, 614 tileSizes); 615 616 populateVectorizationPatterns<ConvNHWCOp, 4>(tiling, promotion, vectorization, 617 tileSizes); 618 populateVectorizationPatterns<ConvInputNHWCFilterHWCFOp, 4>( 619 tiling, promotion, vectorization, tileSizes); 620 621 populateVectorizationPatterns<ConvNCHWOp, 4>(tiling, promotion, vectorization, 622 tileSizes); 623 populateVectorizationPatterns<ConvInputNCHWFilterHWCFOp, 4>( 624 tiling, promotion, vectorization, tileSizes); 625 626 populateVectorizationPatterns<ConvDHWOp, 3>(tiling, promotion, vectorization, 627 tileSizes); 628 629 populateVectorizationPatterns<ConvNDHWCOp, 5>(tiling, promotion, 630 vectorization, tileSizes); 631 populateVectorizationPatterns<ConvInputNDHWCFilterDHWCFOp, 5>( 632 tiling, promotion, vectorization, tileSizes); 633 634 populateVectorizationPatterns<ConvNCDHWOp, 5>(tiling, promotion, 635 vectorization, tileSizes); 636 populateVectorizationPatterns<ConvInputNCDHWFilterDHWCFOp, 5>( 637 tiling, promotion, vectorization, tileSizes); 638 639 patterns.push_back(std::move(tiling)); 640 patterns.push_back(std::move(promotion)); 641 patterns.push_back(std::move(vectorization)); 642 } 643 644 //----------------------------------------------------------------------------// 645 // Forwarding patterns 646 //----------------------------------------------------------------------------// 647 648 /// Check whether there is any interleaved use of any `values` between `firstOp` 649 /// and `secondOp`. Conservatively return `true` if any op or value is in a 650 /// different block. 651 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 652 ValueRange values) { 653 if (firstOp->getBlock() != secondOp->getBlock() || 654 !firstOp->isBeforeInBlock(secondOp)) { 655 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 656 << "interleavedUses precondition failed, firstOp: " 657 << *firstOp << ", second op: " << *secondOp); 658 return true; 659 } 660 for (auto v : values) { 661 for (auto &u : v.getUses()) { 662 Operation *owner = u.getOwner(); 663 if (owner == firstOp || owner == secondOp) 664 continue; 665 // TODO: this is too conservative, use dominance info in the future. 666 if (owner->getBlock() == firstOp->getBlock() && 667 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 668 continue; 669 LLVM_DEBUG(llvm::dbgs() 670 << "\n[" DEBUG_TYPE "]: " 671 << " found interleaved op " << *owner 672 << ", firstOp: " << *firstOp << ", second op: " << *secondOp); 673 return true; 674 } 675 } 676 return false; 677 } 678 679 /// Return the unique subview use of `v` if it is indeed unique, null otherwise. 680 static memref::SubViewOp getSubViewUseIfUnique(Value v) { 681 memref::SubViewOp subViewOp; 682 for (auto &u : v.getUses()) { 683 if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { 684 if (subViewOp) 685 return memref::SubViewOp(); 686 subViewOp = newSubViewOp; 687 } 688 } 689 return subViewOp; 690 } 691 692 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 693 /// when available. 694 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 695 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 696 697 // Transfer into `view`. 698 Value viewOrAlloc = xferOp.source(); 699 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 700 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 701 return failure(); 702 703 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << viewOrAlloc); 704 705 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 706 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 707 if (!subViewOp) 708 return failure(); 709 Value subView = subViewOp.getResult(); 710 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 711 << "with subView " << subView); 712 713 // Find the copy into `subView` without interleaved uses. 714 CopyOp copyOp; 715 for (auto &u : subView.getUses()) { 716 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 717 if (newCopyOp.getOutputBuffer(0) != subView) 718 continue; 719 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 720 << "copy candidate " << *newCopyOp); 721 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 722 continue; 723 copyOp = newCopyOp; 724 break; 725 } 726 } 727 if (!copyOp) 728 return failure(); 729 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 730 << "with copy " << *copyOp); 731 732 // Find the fill into `viewOrAlloc` without interleaved uses before the copy. 733 FillOp maybeFillOp; 734 for (auto &u : viewOrAlloc.getUses()) { 735 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 736 if (newFillOp.getOutputBuffer(0) != viewOrAlloc) 737 continue; 738 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 739 << "fill candidate " << *newFillOp); 740 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 741 continue; 742 maybeFillOp = newFillOp; 743 break; 744 } 745 } 746 // Ensure padding matches. 747 if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) 748 return failure(); 749 if (maybeFillOp) 750 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 751 << "with maybeFillOp " << *maybeFillOp); 752 753 // `in` is the subview that linalg.copy reads. Replace it. 754 Value in = copyOp.getInput(0); 755 756 // linalg.copy + linalg.fill can be used to create a padded local buffer. 757 // The `masked` attribute is only valid on this padded buffer. 758 // When forwarding to vector.transfer_read, the attribute must be reset 759 // conservatively. 760 Value res = rewriter.create<vector::TransferReadOp>( 761 xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), 762 xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); 763 764 if (maybeFillOp) 765 rewriter.eraseOp(maybeFillOp); 766 rewriter.eraseOp(copyOp); 767 rewriter.replaceOp(xferOp, res); 768 769 return success(); 770 } 771 772 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 773 /// when available. 774 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 775 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 776 // Transfer into `viewOrAlloc`. 777 Value viewOrAlloc = xferOp.source(); 778 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 779 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 780 return failure(); 781 782 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 783 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 784 if (!subViewOp) 785 return failure(); 786 Value subView = subViewOp.getResult(); 787 788 // Find the copy from `subView` without interleaved uses. 789 CopyOp copyOp; 790 for (auto &u : subViewOp.getResult().getUses()) { 791 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 792 if (newCopyOp.getInput(0) != subView) 793 continue; 794 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 795 continue; 796 copyOp = newCopyOp; 797 break; 798 } 799 } 800 if (!copyOp) 801 return failure(); 802 803 // `out` is the subview copied into that we replace. 804 Value out = copyOp.getOutputBuffer(0); 805 806 // Forward vector.transfer into copy. 807 // linalg.copy + linalg.fill can be used to create a padded local buffer. 808 // The `masked` attribute is only valid on this padded buffer. 809 // When forwarding to vector.transfer_write, the attribute must be reset 810 // conservatively. 811 rewriter.create<vector::TransferWriteOp>( 812 xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), 813 xferOp.permutation_map(), ArrayAttr()); 814 815 rewriter.eraseOp(copyOp); 816 rewriter.eraseOp(xferOp); 817 818 return success(); 819 } 820