1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Analysis/LoopAnalysis.h" 14 #include "mlir/Analysis/SliceAnalysis.h" 15 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 18 #include "mlir/Dialect/Linalg/Utils/Utils.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 21 #include "mlir/Dialect/Vector/VectorOps.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/Matchers.h" 24 #include "mlir/IR/PatternMatch.h" 25 #include "mlir/Pass/Pass.h" 26 #include "mlir/Support/LLVM.h" 27 #include "mlir/Transforms/RegionUtils.h" 28 #include "llvm/ADT/ScopeExit.h" 29 #include "llvm/ADT/Sequence.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/TypeSwitch.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <type_traits> 35 36 using namespace mlir; 37 using namespace mlir::linalg; 38 39 using llvm::dbgs; 40 41 #define DEBUG_TYPE "linalg-vectorization" 42 43 /// Return the unique instance of OpType in `block` if it is indeed unique. 44 /// Return null if none or more than 1 instances exist. 45 template <typename OpType> 46 static OpType getSingleOpOfType(Block &block) { 47 OpType res; 48 block.walk([&](OpType op) { 49 if (res) { 50 res = nullptr; 51 return WalkResult::interrupt(); 52 } 53 res = op; 54 return WalkResult::advance(); 55 }); 56 return res; 57 } 58 59 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a 60 /// projectedPermutation, compress the unused dimensions to serve as a 61 /// permutation_map for a vector transfer operation. 62 /// For example, given a linalg op such as: 63 /// 64 /// ``` 65 /// %0 = linalg.generic { 66 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, 67 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> 68 /// } 69 /// ins(%0 : tensor<2x3x4xf32>) 70 /// outs(%1 : tensor<5x6xf32>) 71 /// ``` 72 /// 73 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine 74 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second 75 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. 76 static AffineMap reindexIndexingMap(AffineMap map) { 77 assert(map.isProjectedPermutation() && "expected projected permutation"); 78 auto res = compressUnusedDims(map); 79 assert(res.getNumDims() == res.getNumResults() && 80 "expected reindexed map with same number of dims and results"); 81 return res; 82 } 83 84 /// Helper data structure to represent the result of vectorization. 85 /// In certain specific cases, like terminators, we do not want to propagate/ 86 enum VectorizationStatus { 87 /// Op failed to vectorize. 88 Failure = 0, 89 /// Op vectorized and custom function took care of replacement logic 90 NoReplace, 91 /// Op vectorized into a new Op whose results will replace original Op's 92 /// results. 93 NewOp 94 // TODO: support values if Op vectorized to Many-Ops whose results we need to 95 // aggregate for replacement. 96 }; 97 struct VectorizationResult { 98 /// Return status from vectorizing the current op. 99 enum VectorizationStatus status = VectorizationStatus::Failure; 100 /// New vectorized operation to replace the current op. 101 /// Replacement behavior is specified by `status`. 102 Operation *newOp; 103 }; 104 105 /// Return a vector type of the same shape and element type as the (assumed) 106 /// ShapedType of `v`. 107 static VectorType extractVectorTypeFromShapedValue(Value v) { 108 auto st = v.getType().cast<ShapedType>(); 109 if (st.isa<MemRefType>() && st.getShape().empty()) 110 return VectorType(); 111 return VectorType::get(st.getShape(), st.getElementType()); 112 } 113 114 static llvm::Optional<vector::CombiningKind> 115 getKindForOp(Operation *reductionOp) { 116 if (!reductionOp) 117 return llvm::None; 118 return llvm::TypeSwitch<Operation *, llvm::Optional<vector::CombiningKind>>( 119 reductionOp) 120 .Case<AddIOp, AddFOp>([&](auto op) { return vector::CombiningKind::ADD; }) 121 .Case<MaxSIOp>([&](auto op) { return vector::CombiningKind::MAXSI; }) 122 .Case<MaxFOp>([&](auto op) { return vector::CombiningKind::MAXF; }) 123 .Case<MinSIOp>([&](auto op) { return vector::CombiningKind::MINSI; }) 124 .Case<MinFOp>([&](auto op) { return vector::CombiningKind::MINF; }) 125 .Default([&](auto op) { return llvm::None; }); 126 } 127 128 /// Check whether `outputOperand` is a reduction with a single combiner 129 /// operation. Return the combiner operation kind of the reduction, if 130 /// supported. Return llvm::None, otherwise. Multiple reduction operations would 131 /// impose an ordering between reduction dimensions and is currently unsupported 132 /// in Linalg. This limitation is motivated by the fact that e.g. min(max(X)) != 133 /// max(min(X)) 134 // TODO: use in LinalgOp verification, there is a circular dependency atm. 135 static llvm::Optional<vector::CombiningKind> 136 matchLinalgReduction(OpOperand *outputOperand) { 137 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 138 unsigned outputPos = 139 outputOperand->getOperandNumber() - linalgOp.getNumInputs(); 140 // Only single combiner operatios are supported for now. 141 SmallVector<Operation *, 4> combinerOps; 142 if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) || 143 combinerOps.size() != 1) 144 return llvm::None; 145 146 // Return the combiner operation kind, if supported. 147 return getKindForOp(combinerOps[0]); 148 } 149 150 /// If `value` of assumed VectorType has a shape different than `shape`, try to 151 /// build and return a new vector.broadcast to `shape`. 152 /// Otherwise, just return `value`. 153 // TODO: this is best effort atm and there is currently no guarantee of 154 // correctness for the broadcast semantics. 155 static Value broadcastIfNeeded(OpBuilder &b, Value value, 156 ArrayRef<int64_t> shape) { 157 unsigned numDimsGtOne = std::count_if(shape.begin(), shape.end(), 158 [](int64_t val) { return val > 1; }); 159 auto vecType = value.getType().dyn_cast<VectorType>(); 160 if (shape.empty() || 161 (vecType != nullptr && 162 (vecType.getShape() == shape || vecType.getRank() > numDimsGtOne))) 163 return value; 164 auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType() 165 : value.getType()); 166 return b.create<vector::BroadcastOp>(b.getInsertionPoint()->getLoc(), 167 newVecType, value); 168 } 169 170 /// If value of assumed VectorType has a shape different than `shape`, build and 171 /// return a new vector.broadcast to `shape`. 172 /// Otherwise, just return value. 173 static Value reduceIfNeeded(OpBuilder &b, VectorType targetVectorType, 174 Value value, OpOperand *outputOperand) { 175 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 176 auto vecType = value.getType().dyn_cast<VectorType>(); 177 if (!vecType || vecType.getShape() == targetVectorType.getShape()) 178 return value; 179 180 unsigned pos = 0; 181 MLIRContext *ctx = b.getContext(); 182 SmallVector<AffineExpr> exprs; 183 for (auto s : linalgOp.iterator_types()) 184 if (isParallelIterator(s)) 185 exprs.push_back(getAffineDimExpr(pos++, ctx)); 186 auto loc = value.getLoc(); 187 188 // At this point, we know we need to reduce. Detect the reduction operator. 189 auto maybeKind = matchLinalgReduction(outputOperand); 190 assert(maybeKind && "Failed precondition: could not get reduction kind"); 191 unsigned idx = 0; 192 SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false); 193 for (auto attr : linalgOp.iterator_types()) { 194 if (isReductionIterator(attr)) 195 reductionMask[idx] = true; 196 ++idx; 197 } 198 return b.create<vector::MultiDimReductionOp>(loc, value, reductionMask, 199 *maybeKind); 200 } 201 202 /// Build a vector.transfer_read from `source` at indices set to all `0`. 203 /// If source has rank zero, build an memref.load. 204 /// Return the produced value. 205 static Value buildVectorRead(OpBuilder &b, Value source, VectorType vectorType, 206 AffineMap map) { 207 Location loc = source.getLoc(); 208 auto shapedType = source.getType().cast<ShapedType>(); 209 SmallVector<Value> indices(shapedType.getRank(), 210 b.create<ConstantIndexOp>(loc, 0)); 211 return b.create<vector::TransferReadOp>(loc, vectorType, source, indices, 212 map); 213 } 214 215 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set 216 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp 217 /// currently being vectorized. If `dest` has null rank, build an memref.store. 218 /// Return the produced value or null if no value is produced. 219 static Value buildVectorWrite(OpBuilder &b, Value value, 220 OpOperand *outputOperand) { 221 Operation *write; 222 Location loc = value.getLoc(); 223 if (VectorType vectorType = 224 extractVectorTypeFromShapedValue(outputOperand->get())) { 225 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 226 AffineMap map = 227 reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand)); 228 SmallVector<int64_t> transposeShape = 229 applyPermutationMap(inversePermutation(map), vectorType.getShape()); 230 vectorType = VectorType::get(transposeShape, vectorType.getElementType()); 231 SmallVector<Value> indices(linalgOp.getRank(outputOperand), 232 b.create<ConstantIndexOp>(loc, 0)); 233 value = broadcastIfNeeded(b, value, vectorType.getShape()); 234 value = reduceIfNeeded(b, vectorType, value, outputOperand); 235 write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(), 236 indices, map); 237 } else { 238 write = b.create<memref::StoreOp>(loc, value, outputOperand->get()); 239 } 240 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write); 241 if (!write->getResults().empty()) 242 return write->getResult(0); 243 return Value(); 244 } 245 246 // Custom vectorization function type. Produce a vector form of Operation* 247 // assuming all its vectorized operands are already in the BlockAndValueMapping. 248 // Return nullptr if the Operation cannot be vectorized. 249 using CustomVectorizationHook = std::function<VectorizationResult( 250 Operation *, const BlockAndValueMapping &)>; 251 252 /// Helper function to vectorize the terminator of a `linalgOp`. New result 253 /// vector values are appended to `newResults`. Return 254 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it 255 /// should not try to map produced operations and instead return the results 256 /// using the `newResults` vector making them available to the 257 /// vectorization algorithm for RAUW. This function is meant to be used as a 258 /// CustomVectorizationHook. 259 static VectorizationResult 260 vectorizeLinalgYield(OpBuilder &b, Operation *op, 261 const BlockAndValueMapping &bvm, LinalgOp linalgOp, 262 SmallVectorImpl<Value> &newResults) { 263 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 264 if (!yieldOp) 265 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 266 for (auto outputs : llvm::enumerate(yieldOp.values())) { 267 // TODO: Scan for an opportunity for reuse. 268 // TODO: use a map. 269 Value vectorValue = bvm.lookup(outputs.value()); 270 Value newResult = buildVectorWrite( 271 b, vectorValue, linalgOp.getOutputOperand(outputs.index())); 272 if (newResult) 273 newResults.push_back(newResult); 274 } 275 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 276 } 277 278 /// Helper function to vectorize the index operations of a `linalgOp`. Return 279 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it 280 /// should map the produced operations. This function is meant to be used as a 281 /// CustomVectorizationHook. 282 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op, 283 LinalgOp linalgOp) { 284 IndexOp indexOp = dyn_cast<linalg::IndexOp>(op); 285 if (!indexOp) 286 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 287 auto loc = indexOp.getLoc(); 288 // Compute the static loop sizes of the index op. 289 auto targetShape = linalgOp.computeStaticLoopSizes(); 290 // Compute a one-dimensional index vector for the index op dimension. 291 SmallVector<int64_t> constantSeq = 292 llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()])); 293 ConstantOp constantOp = 294 b.create<ConstantOp>(loc, b.getIndexVectorAttr(constantSeq)); 295 // Return the one-dimensional index vector if it lives in the trailing 296 // dimension of the iteration space since the vectorization algorithm in this 297 // case can handle the broadcast. 298 if (indexOp.dim() == targetShape.size() - 1) 299 return VectorizationResult{VectorizationStatus::NewOp, constantOp}; 300 // Otherwise permute the targetShape to move the index dimension last, 301 // broadcast the one-dimensional index vector to the permuted shape, and 302 // finally transpose the broadcasted index vector to undo the permutation. 303 std::swap(targetShape[indexOp.dim()], targetShape.back()); 304 auto broadCastOp = b.create<vector::BroadcastOp>( 305 loc, VectorType::get(targetShape, b.getIndexType()), constantOp); 306 SmallVector<int64_t> transposition = 307 llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops())); 308 std::swap(transposition.back(), transposition[indexOp.dim()]); 309 auto transposeOp = 310 b.create<vector::TransposeOp>(loc, broadCastOp, transposition); 311 return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; 312 } 313 314 /// Generic vectorization for a single operation `op`, given already vectorized 315 /// operands carried by `bvm`. Vectorization occurs as follows: 316 /// 1. Try to apply any of the `customVectorizationHooks` and return its 317 /// result on success. 318 /// 2. Clone any constant in the current scope without vectorization: each 319 /// consumer of the constant will later determine the shape to which the 320 /// constant needs to be broadcast to. 321 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 322 /// of the `customVectorizationHooks` to cover such cases. 323 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 324 /// operand of maximal rank. Other operands have smaller rank and are 325 /// broadcast accordingly. It is assumed this broadcast is always legal, 326 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 327 /// 328 /// This function assumes all operands of `op` have been vectorized and are in 329 /// the `bvm` mapping. As a consequence, this function is meant to be called on 330 /// a topologically-sorted list of ops. 331 /// This function does not update `bvm` but returns a VectorizationStatus that 332 /// instructs the caller what `bvm` update needs to occur. 333 static VectorizationResult 334 vectorizeOneOp(OpBuilder &b, Operation *op, const BlockAndValueMapping &bvm, 335 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 336 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op); 337 338 // 1. Try to apply any CustomVectorizationHook. 339 if (!customVectorizationHooks.empty()) { 340 for (auto &customFunc : customVectorizationHooks) { 341 VectorizationResult result = customFunc(op, bvm); 342 if (result.status == VectorizationStatus::Failure) 343 continue; 344 return result; 345 } 346 } 347 348 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 349 // Clone so that the constant is not confined to the linalgOp block . 350 if (isa<ConstantOp>(op)) 351 return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)}; 352 353 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 354 if (!OpTrait::hasElementwiseMappableTraits(op)) 355 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 356 357 // 4. Generic vectorization path for ElementwiseMappable ops. 358 // a. first get the first max ranked shape. 359 SmallVector<int64_t, 4> firstMaxRankedShape; 360 for (Value operand : op->getOperands()) { 361 auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); 362 if (vt && firstMaxRankedShape.size() < vt.getShape().size()) 363 firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); 364 } 365 // b. broadcast each op if needed. 366 auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { 367 return firstMaxRankedShape.empty() 368 ? bvm.lookup(v) 369 : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape); 370 }); 371 // c. for elementwise, the result is the vector with the firstMaxRankedShape 372 auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { 373 return firstMaxRankedShape.empty() 374 ? t 375 : VectorType::get(firstMaxRankedShape, t); 376 }); 377 378 // Build and return the new op. 379 OperationState state(op->getLoc(), op->getName()); 380 state.addAttributes(op->getAttrs()); 381 state.addOperands(llvm::to_vector<4>(vectorizedOperands)); 382 state.addTypes(llvm::to_vector<4>(returnTypes)); 383 return VectorizationResult{VectorizationStatus::NewOp, 384 b.createOperation(state)}; 385 } 386 387 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. 388 static bool hasOnlyScalarElementwiseOp(Region &r) { 389 if (!llvm::hasSingleElement(r)) 390 return false; 391 for (Operation &op : r.front()) { 392 if (!(isa<ConstantOp, linalg::YieldOp, linalg::IndexOp>(op) || 393 OpTrait::hasElementwiseMappableTraits(&op)) || 394 llvm::any_of(op.getResultTypes(), 395 [](Type type) { return !type.isIntOrIndexOrFloat(); })) 396 return false; 397 } 398 return true; 399 } 400 401 // Return true if the op is an element-wise linalg op. 402 static bool isElementwise(Operation *op) { 403 auto linalgOp = dyn_cast<linalg::LinalgOp>(op); 404 if (!linalgOp) 405 return false; 406 if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) 407 return false; 408 // TODO: relax the restrictions on indexing map. 409 for (OpOperand *opOperand : linalgOp.getOutputOperands()) { 410 if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity()) 411 return false; 412 } 413 if (linalgOp->getNumRegions() != 1) 414 return false; 415 return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0)); 416 } 417 418 /// Generic vectorization function that rewrites the body of a `linalgOp` into 419 /// vector form. Generic vectorization proceeds as follows: 420 /// 1. Verify the `linalgOp` has one non-empty region. 421 /// 2. Values defined above the region are mapped to themselves and will be 422 /// broadcasted on a per-need basis by their consumers. 423 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 424 /// load). 425 /// TODO: Reuse opportunities for RAR dependencies. 426 /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. 427 /// 4b. Register CustomVectorizationHook for IndexOp to access the iteration 428 /// indices. 429 /// 5. Iteratively call vectorizeOneOp on the region operations. 430 /// 431 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is 432 /// performed to the maximal common vector size implied by the `linalgOp` 433 /// iteration space. This eager broadcasting is introduced in the 434 /// permutation_map of the vector.transfer_read operations. The eager 435 /// broadcasting makes it trivial to detrmine where broadcast, transposes and 436 /// reductions should occur, without any bookkeeping. The tradeoff is that, in 437 /// the absence of good canonicalizations, the amount of work increases. 438 /// This is not deemed a problem as we expect canonicalizations and foldings to 439 /// aggressively clean up the useless work. 440 LogicalResult vectorizeAsLinalgGeneric( 441 OpBuilder &b, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults, 442 bool broadcastToMaximalCommonShape = false, 443 ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) { 444 // 1. Fail to vectorize if the operation does not have one non-empty region. 445 if (linalgOp->getNumRegions() != 1 || linalgOp->getRegion(0).empty()) 446 return failure(); 447 auto &block = linalgOp->getRegion(0).front(); 448 449 // 2. Values defined above the region can only be broadcast for now. Make them 450 // map to themselves. 451 BlockAndValueMapping bvm; 452 SetVector<Value> valuesSet; 453 mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); 454 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 455 456 if (linalgOp.getNumOutputs() == 0) 457 return failure(); 458 459 // TODO: the common vector shape is equal to the static loop sizes only when 460 // all indexing maps are projected permutations. For convs and stencils the 461 // logic will need to evolve. 462 SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes(); 463 464 // 3. Turn all BBArgs into vector.transfer_read / load. 465 SmallVector<AffineMap> indexings; 466 for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) { 467 BlockArgument bbarg = block.getArgument(opOperand->getOperandNumber()); 468 if (linalgOp.isScalar(opOperand)) { 469 bvm.map(bbarg, opOperand->get()); 470 continue; 471 } 472 // TODO: 0-d vectors. 473 if (linalgOp.getShape(opOperand).empty()) { 474 Value loaded = 475 b.create<memref::LoadOp>(linalgOp.getLoc(), opOperand->get()); 476 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" 477 << bbarg.getArgNumber() << "): " << loaded); 478 bvm.map(bbarg, loaded); 479 bvm.map(opOperand->get(), loaded); 480 continue; 481 } 482 AffineMap map; 483 VectorType vectorType; 484 if (broadcastToMaximalCommonShape) { 485 map = inverseAndBroadcastProjectedPermuation( 486 linalgOp.getTiedIndexingMap(opOperand)); 487 vectorType = VectorType::get(commonVectorShape, 488 getElementTypeOrSelf(opOperand->get())); 489 } else { 490 map = inversePermutation( 491 reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand))); 492 vectorType = VectorType::get(map.compose(linalgOp.getShape(opOperand)), 493 getElementTypeOrSelf(opOperand->get())); 494 } 495 Value vectorRead = buildVectorRead(b, opOperand->get(), vectorType, map); 496 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" 497 << bbarg.getArgNumber() << "): " << vectorRead); 498 bvm.map(bbarg, vectorRead); 499 bvm.map(opOperand->get(), vectorRead); 500 } 501 502 auto hooks = llvm::to_vector<4>(customVectorizationHooks); 503 // 4a. Register CustomVectorizationHook for yieldOp. 504 CustomVectorizationHook vectorizeYield = 505 [&](Operation *op, 506 const BlockAndValueMapping &bvm) -> VectorizationResult { 507 return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults); 508 }; 509 hooks.push_back(vectorizeYield); 510 511 // 4b. Register CustomVectorizationHook for indexOp. 512 CustomVectorizationHook vectorizeIndex = 513 [&](Operation *op, 514 const BlockAndValueMapping &bvm) -> VectorizationResult { 515 return vectorizeLinalgIndex(b, op, linalgOp); 516 }; 517 hooks.push_back(vectorizeIndex); 518 519 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 520 for (Operation &op : block.getOperations()) { 521 VectorizationResult result = vectorizeOneOp(b, &op, bvm, hooks); 522 if (result.status == VectorizationStatus::Failure) { 523 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op); 524 return failure(); 525 } 526 if (result.status == VectorizationStatus::NewOp) { 527 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: " 528 << *result.newOp;); 529 bvm.map(op.getResults(), result.newOp->getResults()); 530 } 531 } 532 533 return success(); 534 } 535 536 static LogicalResult vectorizeContraction(OpBuilder &b, LinalgOp linalgOp, 537 SmallVectorImpl<Value> &newResults) { 538 assert(isaContractionOpInterface(linalgOp) && 539 "expected vectorizeContraction preconditions to be met"); 540 Location loc = linalgOp.getLoc(); 541 // Vectorize other ops as vector contraction. 542 // TODO: interface. 543 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 544 << "Rewrite linalg op as vector.contract: "; 545 linalgOp.dump()); 546 // Special function that describes how to vectorize the multiplication op in a 547 // linalg contraction. 548 CustomVectorizationHook vectorizeContraction = 549 [&](Operation *op, 550 const BlockAndValueMapping &bvm) -> VectorizationResult { 551 if (!isa<MulIOp, MulFOp>(op)) 552 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 553 ArrayRef<int64_t> outShape = 554 linalgOp.getShape(linalgOp.getOutputOperand(0)); 555 Type vType; 556 if (outShape.empty()) { 557 vType = op->getResult(0).getType(); 558 } else { 559 SmallVector<int64_t> resultShape = applyPermutationMap( 560 inversePermutation(reindexIndexingMap( 561 linalgOp.getTiedIndexingMap(linalgOp.getOutputOperand(0)))), 562 outShape); 563 vType = VectorType::get(resultShape, op->getResult(0).getType()); 564 } 565 auto zero = b.create<ConstantOp>(loc, vType, b.getZeroAttr(vType)); 566 // Indexing maps at the time of vector.transfer_read are adjusted to order 567 // vector dimensions in the same order as the canonical linalg op iteration 568 // space order. 569 // The indexings for the contraction therefore need to be adjusted. 570 // TODO: consider dropping contraction special casing altogether, this will 571 // require more advanced canonicalizations involving vector.multi_reduction 572 // that are not yet available. 573 SmallVector<AffineMap> indexingMaps; 574 indexingMaps.reserve(linalgOp.getNumInputsAndOutputs()); 575 llvm::transform(linalgOp.getIndexingMaps(), 576 std::back_inserter(indexingMaps), 577 [](AffineMap indexingMap) { 578 return inversePermutation(reindexIndexingMap(indexingMap)) 579 .compose(indexingMap); 580 }); 581 Operation *contract = b.create<vector::ContractionOp>( 582 loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero, 583 b.getAffineMapArrayAttr(indexingMaps), linalgOp.iterator_types()); 584 return VectorizationResult{VectorizationStatus::NewOp, contract}; 585 }; 586 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 587 /*broadcastToMaximalCommonShape=*/false, 588 {vectorizeContraction}); 589 } 590 591 static bool allIndexingsAreProjectedPermutation(LinalgOp op) { 592 return llvm::all_of(op.getIndexingMaps(), 593 [](AffineMap m) { return m.isProjectedPermutation(); }); 594 } 595 596 // TODO: probably need some extra checks for reduction followed by consumer 597 // ops that may not commute (e.g. linear reduction + non-linear instructions). 598 static LogicalResult reductionPreconditions(LinalgOp op) { 599 if (llvm::none_of(op.iterator_types(), isReductionIterator)) 600 return failure(); 601 for (OpOperand *opOperand : op.getOutputOperands()) { 602 if (!matchLinalgReduction(opOperand)) 603 return failure(); 604 } 605 return success(); 606 } 607 608 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { 609 auto linalgOp = cast<linalg::LinalgOp>(op); 610 // All types must be static shape to go to vector. 611 if (linalgOp.hasDynamicShape()) 612 return failure(); 613 if (isElementwise(op)) 614 return success(); 615 if (isaContractionOpInterface(linalgOp)) 616 return success(); 617 // TODO: the common vector shape is equal to the static loop sizes only when 618 // all indexing maps are projected permutations. For convs and stencils the 619 // logic will need to evolve. 620 if (allIndexingsAreProjectedPermutation(linalgOp) && 621 succeeded(reductionPreconditions(linalgOp))) 622 return success(); 623 return failure(); 624 } 625 626 LogicalResult 627 mlir::linalg::vectorizeLinalgOp(OpBuilder &b, Operation *op, 628 SmallVectorImpl<Value> &newResults) { 629 if (failed(vectorizeLinalgOpPrecondition(op))) 630 return failure(); 631 632 auto linalgOp = cast<LinalgOp>(op); 633 if (isaContractionOpInterface(linalgOp)) 634 return vectorizeContraction(b, linalgOp, newResults); 635 636 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 637 << "Vectorize linalg op as a generic by broadcasting to " 638 "maximal common shape: " 639 << *op); 640 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 641 /*broadcastToMaximalCommonShape=*/true); 642 } 643 644 //----------------------------------------------------------------------------// 645 // Misc. vectorization patterns. 646 //----------------------------------------------------------------------------// 647 648 /// Helper function that retrieves the value of an IntegerAttr. 649 static int64_t getIntFromAttr(Attribute attr) { 650 return attr.cast<IntegerAttr>().getInt(); 651 } 652 653 /// Given an ArrayRef of OpFoldResults, return a vector of Values. IntegerAttrs 654 /// are converted to ConstantIndexOps. Other attribute types are not supported. 655 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc, 656 ArrayRef<OpFoldResult> ofrs) { 657 SmallVector<Value> result; 658 llvm::for_each(ofrs, [&](auto o) { 659 if (auto val = o.template dyn_cast<Value>()) { 660 result.push_back(val); 661 } else { 662 result.push_back(builder.create<ConstantIndexOp>( 663 loc, getIntFromAttr(o.template get<Attribute>()))); 664 } 665 }); 666 return result; 667 } 668 669 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and 670 /// InsertSliceOp. For now, only constant padding values are supported. 671 /// If there is enough static type information, TransferReadOps and 672 /// TransferWriteOps may be generated instead of InsertSliceOps. 673 struct GenericPadTensorOpVectorizationPattern 674 : public GeneralizePadTensorOpPattern { 675 GenericPadTensorOpVectorizationPattern(MLIRContext *context, 676 PatternBenefit benefit = 1) 677 : GeneralizePadTensorOpPattern(context, tryVectorizeCopy, benefit) {} 678 /// Vectorize the copying of a PadTensorOp's source. This is possible if each 679 /// dimension size is statically know in the source type or the result type 680 /// (or both). 681 static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter, 682 PadTensorOp padOp, Value dest) { 683 auto sourceType = padOp.getSourceType(); 684 auto resultType = padOp.getResultType(); 685 686 // Copy cannot be vectorized if pad value is non-constant and source shape 687 // is dynamic. In case of a dynamic source shape, padding must be appended 688 // by TransferReadOp, but TransferReadOp supports only constant padding. 689 auto padValue = padOp.getConstantPaddingValue(); 690 if (!padValue) { 691 if (!sourceType.hasStaticShape()) return failure(); 692 // Create dummy padding value. 693 auto elemType = sourceType.getElementType(); 694 padValue = rewriter.create<ConstantOp>(padOp.getLoc(), elemType, 695 rewriter.getZeroAttr(elemType)); 696 } 697 698 SmallVector<int64_t> vecShape; 699 SmallVector<bool> readInBounds; 700 SmallVector<bool> writeInBounds; 701 for (unsigned i = 0; i < sourceType.getRank(); ++i) { 702 if (!sourceType.isDynamicDim(i)) { 703 vecShape.push_back(sourceType.getDimSize(i)); 704 // Source shape is statically known: Neither read nor write are out-of- 705 // bounds. 706 readInBounds.push_back(true); 707 writeInBounds.push_back(true); 708 } else if (!resultType.isDynamicDim(i)) { 709 // Source shape is not statically known, but result shape is. Vectorize 710 // with size of result shape. This may be larger than the source size. 711 vecShape.push_back(resultType.getDimSize(i)); 712 // Read may be out-of-bounds because the result size could be larger 713 // than the source size. 714 readInBounds.push_back(false); 715 // Write is out-of-bounds if low padding > 0. 716 writeInBounds.push_back( 717 getConstantIntValue(padOp.getMixedLowPad()[i]) == 718 static_cast<int64_t>(0)); 719 } else { 720 // Neither source nor result dim of padOp is static. Cannot vectorize 721 // the copy. 722 return failure(); 723 } 724 } 725 auto vecType = VectorType::get(vecShape, sourceType.getElementType()); 726 727 // Generate TransferReadOp. 728 SmallVector<Value> readIndices( 729 vecType.getRank(), rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); 730 auto read = rewriter.create<vector::TransferReadOp>( 731 padOp.getLoc(), vecType, padOp.source(), readIndices, padValue, 732 readInBounds); 733 734 // If `dest` is a FillOp and the TransferWriteOp would overwrite the entire 735 // tensor, write directly to the FillOp's operand. 736 if (llvm::equal(vecShape, resultType.getShape()) 737 && llvm::all_of(writeInBounds, [](bool b) { return b; })) 738 if (auto fill = dest.getDefiningOp<FillOp>()) 739 dest = fill.output(); 740 741 // Generate TransferWriteOp. 742 auto writeIndices = ofrToIndexValues( 743 rewriter, padOp.getLoc(), padOp.getMixedLowPad()); 744 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 745 padOp, read, dest, writeIndices, writeInBounds); 746 747 return success(); 748 } 749 }; 750 751 /// Base pattern for rewriting PadTensorOps whose result is consumed by a given 752 /// operation type OpTy. 753 template <typename OpTy> 754 struct VectorizePadTensorOpUserPattern : public OpRewritePattern<PadTensorOp> { 755 using OpRewritePattern<PadTensorOp>::OpRewritePattern; 756 757 LogicalResult matchAndRewrite(PadTensorOp padOp, 758 PatternRewriter &rewriter) const final { 759 bool changed = false; 760 // Insert users in vector, because some users may be replaced/removed. 761 for (auto *user : llvm::to_vector<4>(padOp->getUsers())) 762 if (auto op = dyn_cast<OpTy>(user)) 763 changed |= rewriteUser(rewriter, padOp, op).succeeded(); 764 return success(changed); 765 } 766 767 protected: 768 virtual LogicalResult rewriteUser( 769 PatternRewriter &rewriter, PadTensorOp padOp, OpTy op) const = 0; 770 }; 771 772 /// Rewrite use of PadTensorOp result in TransferReadOp. E.g.: 773 /// ``` 774 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> 775 /// %r = vector.transfer_read %0[%c0, %c0], %cst 776 /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> 777 /// ``` 778 /// is rewritten to: 779 /// ``` 780 /// %r = vector.transfer_read %src[%c0, %c0], %padding 781 /// {in_bounds = [true, true]} 782 /// : tensor<?x?xf32>, vector<17x5xf32> 783 /// ``` 784 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be 785 /// sure that the original padding value %cst was never used. 786 /// 787 /// This rewrite is possible if: 788 /// - `xferOp` has no out-of-bounds dims or mask. 789 /// - Low padding is static 0. 790 /// - Single, scalar padding value. 791 struct PadTensorOpVectorizationWithTransferReadPattern 792 : public VectorizePadTensorOpUserPattern<vector::TransferReadOp> { 793 using VectorizePadTensorOpUserPattern<vector::TransferReadOp> 794 ::VectorizePadTensorOpUserPattern; 795 796 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 797 vector::TransferReadOp xferOp) const override { 798 // Low padding must be static 0. 799 if (!padOp.hasZeroLowPad()) return failure(); 800 // Pad value must be a constant. 801 auto padValue = padOp.getConstantPaddingValue(); 802 if (!padValue) return failure(); 803 // Padding value of existing `xferOp` is unused. 804 if (xferOp.hasOutOfBoundsDim() || xferOp.mask()) return failure(); 805 806 rewriter.updateRootInPlace(xferOp, [&]() { 807 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 808 xferOp->setAttr(xferOp.getInBoundsAttrName(), 809 rewriter.getBoolArrayAttr(inBounds)); 810 xferOp.sourceMutable().assign(padOp.source()); 811 xferOp.paddingMutable().assign(padValue); 812 }); 813 814 return success(); 815 } 816 }; 817 818 /// Rewrite use of PadTensorOp result in TransferWriteOp. 819 /// This pattern rewrites TransferWriteOps that write to a padded tensor value, 820 /// where the same amount of padding is immediately removed again after the 821 /// write. In such cases, the TransferWriteOp can write to the non-padded tensor 822 /// value and apply out-of-bounds masking. E.g.: 823 /// ``` 824 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 825 /// : tensor<...> to tensor<?x?xf32> 826 /// %1 = linalg.pad_tensor %0 ... : tensor<?x?xf32> to tensor<17x5xf32> 827 /// %2 = vector.transfer_write %vec, %1[...] 828 /// : vector<17x5xf32>, tensor<17x5xf32> 829 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] 830 /// : tensor<17x5xf32> to tensor<?x?xf32> 831 /// ``` 832 /// is rewritten to: 833 /// ``` 834 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 835 /// : tensor<...> to tensor<?x?xf32> 836 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, tensor<?x?xf32> 837 /// ``` 838 /// Note: It is important that the ExtractSliceOp %r resizes the result of the 839 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an even 840 /// smaller size). Otherwise, %r's new (dynamic) dimensions would differ from 841 /// %r's old dimensions. 842 /// 843 /// This rewrite is possible if: 844 /// - Low padding is static 0. 845 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This 846 /// ExtractSliceOp trims the same amount of padding that was added beforehand. 847 /// - Single, scalar padding value. 848 struct PadTensorOpVectorizationWithTransferWritePattern 849 : public VectorizePadTensorOpUserPattern<vector::TransferWriteOp> { 850 using VectorizePadTensorOpUserPattern<vector::TransferWriteOp> 851 ::VectorizePadTensorOpUserPattern; 852 853 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 854 vector::TransferWriteOp xferOp) const override { 855 // Low padding must be static 0. 856 if (!padOp.hasZeroLowPad()) return failure(); 857 // Pad value must be a constant. 858 auto padValue = padOp.getConstantPaddingValue(); 859 if (!padValue) return failure(); 860 // TransferWriteOp result must be directly consumed by an ExtractSliceOp. 861 if (!xferOp->hasOneUse()) return failure(); 862 auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin()); 863 if (!trimPadding) return failure(); 864 // Only static zero offsets supported when trimming padding. 865 if (!trimPadding.hasZeroOffset()) return failure(); 866 // trimPadding must remove the amount of padding that was added earlier. 867 if (!hasSameTensorSize(padOp.source(), trimPadding)) return failure(); 868 869 // Insert the new TransferWriteOp at position of the old TransferWriteOp. 870 rewriter.setInsertionPoint(xferOp); 871 872 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 873 auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 874 xferOp, padOp.source().getType(), xferOp.vector(), padOp.source(), 875 xferOp.indices(), xferOp.permutation_mapAttr(), xferOp.mask(), 876 rewriter.getBoolArrayAttr(inBounds)); 877 rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); 878 879 return success(); 880 } 881 882 /// Check if `beforePadding` and `afterTrimming` have the same tensor size, 883 /// i.e., same dimensions. 884 /// 885 /// Dimensions may be static, dynamic or mix of both. In case of dynamic 886 /// dimensions, this function tries to infer the (static) tensor size by 887 /// looking at the defining op and utilizing op-specific knowledge. 888 /// 889 /// This is a conservative analysis. In case equal tensor sizes cannot be 890 /// proven statically, this analysis returns `false` even though the tensor 891 /// sizes may turn out to be equal at runtime. 892 bool hasSameTensorSize(Value beforePadding, 893 tensor::ExtractSliceOp afterTrimming) const { 894 // If the input to PadTensorOp is a CastOp, try with with both CastOp result 895 // and CastOp operand. 896 if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>()) 897 if (hasSameTensorSize(castOp.source(), afterTrimming)) return true; 898 899 auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>(); 900 auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>(); 901 // Only RankedTensorType supported. 902 if (!t1 || !t2) return false; 903 // Rank of both values must be the same. 904 if (t1.getRank() != t2.getRank()) return false; 905 906 // All static dimensions must be the same. Mixed cases (e.g., dimension 907 // static in `t1` but dynamic in `t2`) are not supported. 908 for (unsigned i = 0; i < t1.getRank(); ++i) { 909 if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) 910 return false; 911 if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) 912 return false; 913 } 914 915 // Nothing more to check if all dimensions are static. 916 if (t1.getNumDynamicDims() == 0) return true; 917 918 // All dynamic sizes must be the same. The only supported case at the moment 919 // is when `beforePadding` is an ExtractSliceOp (or a cast thereof). 920 921 // Apart from CastOp, only ExtractSliceOp is supported. 922 auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>(); 923 if (!beforeSlice) 924 return false; 925 926 assert(static_cast<size_t>(t1.getRank()) == 927 beforeSlice.getMixedSizes().size()); 928 assert(static_cast<size_t>(t2.getRank()) 929 == afterTrimming.getMixedSizes().size()); 930 931 for (unsigned i = 0; i < t1.getRank(); ++i) { 932 // Skip static dimensions. 933 if (!t1.isDynamicDim(i)) continue; 934 auto size1 = beforeSlice.getMixedSizes()[i]; 935 auto size2 = afterTrimming.getMixedSizes()[i]; 936 937 // Case 1: Same value or same constant int. 938 if (isEqualConstantIntOrValue(size1, size2)) continue; 939 940 // Other cases: Take a deeper look at defining ops of values. 941 auto v1 = size1.dyn_cast<Value>(); 942 auto v2 = size2.dyn_cast<Value>(); 943 if (!v1 || !v2) return false; 944 945 // Case 2: Both values are identical AffineMinOps. (Should not happen if 946 // CSE is run.) 947 auto minOp1 = v1.getDefiningOp<AffineMinOp>(); 948 auto minOp2 = v2.getDefiningOp<AffineMinOp>(); 949 if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() 950 && minOp1.operands() == minOp2.operands()) continue; 951 952 // Add additional cases as needed. 953 } 954 955 // All tests passed. 956 return true; 957 } 958 }; 959 960 /// Rewrite use of PadTensorOp result in InsertSliceOp. E.g.: 961 /// ``` 962 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> 963 /// %r = tensor.insert_slice %0 964 /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] 965 /// : tensor<17x5xf32> into tensor<?x?x17x5xf32> 966 /// ``` 967 /// is rewritten to: 968 /// ``` 969 /// %0 = vector.transfer_read %src[%c0, %c0], %padding 970 /// : tensor<?x?xf32>, vector<17x5xf32> 971 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] 972 /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32> 973 /// ``` 974 /// 975 /// This rewrite is possible if: 976 /// - Low padding is static 0. 977 /// - `padOp` result shape is static. 978 /// - The entire padded tensor is inserted. 979 /// (Implies that sizes of `insertOp` are all static.) 980 /// - Only unit strides in `insertOp`. 981 /// - Single, scalar padding value. 982 struct PadTensorOpVectorizationWithInsertSlicePattern 983 : public VectorizePadTensorOpUserPattern<tensor::InsertSliceOp> { 984 using VectorizePadTensorOpUserPattern< 985 tensor::InsertSliceOp>::VectorizePadTensorOpUserPattern; 986 987 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 988 tensor::InsertSliceOp insertOp) const override { 989 // Low padding must be static 0. 990 if (!padOp.hasZeroLowPad()) return failure(); 991 // Only unit stride supported. 992 if (!insertOp.hasUnitStride()) return failure(); 993 // Pad value must be a constant. 994 auto padValue = padOp.getConstantPaddingValue(); 995 if (!padValue) 996 return failure(); 997 // Dynamic shapes not supported. 998 if (!padOp.result().getType().cast<ShapedType>().hasStaticShape()) 999 return failure(); 1000 1001 auto vecType = VectorType::get(padOp.getType().getShape(), 1002 padOp.getType().getElementType()); 1003 unsigned vecRank = vecType.getRank(); 1004 unsigned tensorRank = insertOp.getType().getRank(); 1005 1006 // Check if sizes match: Insert the entire tensor into most minor dims. 1007 // (No permutations allowed.) 1008 SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1); 1009 expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); 1010 if (!llvm::all_of( 1011 llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { 1012 return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); 1013 })) 1014 return failure(); 1015 1016 // Insert the TransferReadOp and TransferWriteOp at the position of the 1017 // InsertSliceOp. 1018 rewriter.setInsertionPoint(insertOp); 1019 1020 // Generate TransferReadOp: Read entire source tensor and add high padding. 1021 SmallVector<Value> readIndices( 1022 vecRank, rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); 1023 auto read = rewriter.create<vector::TransferReadOp>( 1024 padOp.getLoc(), vecType, padOp.source(), readIndices, padValue); 1025 1026 // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at 1027 // specified offsets. Write is fully in-bounds because a InsertSliceOp's 1028 // source must fit into the destination at the specified offsets. 1029 auto writeIndices = 1030 ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); 1031 SmallVector<bool> inBounds(vecRank, true); 1032 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 1033 insertOp, read, insertOp.dest(), writeIndices, inBounds); 1034 1035 return success(); 1036 } 1037 }; 1038 1039 void mlir::linalg::populatePadTensorOpVectorizationPatterns( 1040 RewritePatternSet &patterns, PatternBenefit baseBenefit) { 1041 patterns.add<GenericPadTensorOpVectorizationPattern>( 1042 patterns.getContext(), baseBenefit); 1043 // Try these specialized patterns first before resorting to the generic one. 1044 patterns.add<PadTensorOpVectorizationWithTransferReadPattern, 1045 PadTensorOpVectorizationWithTransferWritePattern, 1046 PadTensorOpVectorizationWithInsertSlicePattern>( 1047 patterns.getContext(), baseBenefit.getBenefit() + 1); 1048 } 1049 1050 // TODO: cleanup all the convolution vectorization patterns. 1051 template <class ConvOp, int N> 1052 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite( 1053 ConvOp op, PatternRewriter &rewriter) const { 1054 Location loc = op.getLoc(); 1055 MLIRContext *context = op.getContext(); 1056 1057 OpOperand *input = op.getInputOperand(0); 1058 OpOperand *kernel = op.getInputOperand(1); 1059 OpOperand *output = op.getOutputOperand(0); 1060 ArrayRef<int64_t> inShape = op.getShape(input); 1061 ArrayRef<int64_t> kShape = op.getShape(kernel); 1062 1063 if (llvm::any_of(inShape, ShapedType::isDynamic) || 1064 llvm::any_of(kShape, ShapedType::isDynamic)) 1065 return failure(); 1066 1067 SmallVector<AffineExpr, 4> mapping; 1068 SmallVector<int64_t, 4> vectorDims; 1069 // Fail to apply when the size of not vectorized dimension is not 1. 1070 for (unsigned i = 0; i < N; i++) { 1071 if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) 1072 return failure(); 1073 1074 if (mask[i] && inShape[i] != kShape[i]) 1075 return failure(); 1076 1077 if (mask[i]) { 1078 mapping.push_back(getAffineDimExpr(i, context)); 1079 vectorDims.push_back(inShape[i]); 1080 } 1081 } 1082 1083 int64_t rank = op.getRank(input); 1084 int64_t numDims = mapping.size(); 1085 Type elemType = getElementTypeOrSelf(input->get()); 1086 1087 auto map = AffineMap::get(rank, 0, mapping, context); 1088 SmallVector<Value, 4> zeros(rank, rewriter.create<ConstantIndexOp>(loc, 0)); 1089 auto vecType = VectorType::get(vectorDims, elemType); 1090 1091 auto inputVec = rewriter.create<vector::TransferReadOp>( 1092 loc, vecType, input->get(), zeros, map); 1093 auto kernelVec = rewriter.create<vector::TransferReadOp>( 1094 loc, vecType, kernel->get(), zeros, map); 1095 1096 auto acc = rewriter.create<ConstantOp>(loc, elemType, 1097 rewriter.getZeroAttr(elemType)); 1098 1099 std::array<AffineMap, 3> indexingMaps{ 1100 AffineMap::getMultiDimIdentityMap(numDims, context), 1101 AffineMap::getMultiDimIdentityMap(numDims, context), 1102 AffineMap::get(numDims, 0, {}, context)}; 1103 1104 std::vector<StringRef> iteratorTypes(numDims, "reduction"); 1105 1106 auto result = rewriter.create<vector::ContractionOp>( 1107 loc, inputVec, kernelVec, acc, 1108 rewriter.getAffineMapArrayAttr(indexingMaps), 1109 rewriter.getStrArrayAttr(iteratorTypes)); 1110 1111 rewriter.create<memref::StoreOp>(loc, result, output->get(), 1112 ValueRange(zeros)); 1113 rewriter.eraseOp(op); 1114 return success(); 1115 } 1116 1117 /// Inserts tiling, promotion and vectorization pattern for ConvOp 1118 /// conversion into corresponding pattern lists. 1119 template <typename ConvOp, unsigned N> 1120 static void populateVectorizationPatterns( 1121 RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns, 1122 RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) { 1123 auto *context = tilingPatterns.getContext(); 1124 if (tileSizes.size() < N) 1125 return; 1126 1127 constexpr static StringRef kTiledMarker = "TILED"; 1128 constexpr static StringRef kPromotedMarker = "PROMOTED"; 1129 tilingPatterns.add<LinalgTilingPattern<ConvOp>>( 1130 context, LinalgTilingOptions().setTileSizes(tileSizes), 1131 LinalgTransformationFilter(ArrayRef<Identifier>{}, 1132 Identifier::get(kTiledMarker, context))); 1133 1134 promotionPatterns.add<LinalgPromotionPattern<ConvOp>>( 1135 context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), 1136 LinalgTransformationFilter(Identifier::get(kTiledMarker, context), 1137 Identifier::get(kPromotedMarker, context))); 1138 1139 SmallVector<bool, 4> mask(N); 1140 int offset = tileSizes.size() - N; 1141 std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), 1142 [](int64_t i) -> bool { return i > 1; }); 1143 1144 vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask); 1145 } 1146 1147 void mlir::linalg::populateConvVectorizationPatterns( 1148 MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns, 1149 ArrayRef<int64_t> tileSizes) { 1150 RewritePatternSet tiling(context); 1151 RewritePatternSet promotion(context); 1152 RewritePatternSet vectorization(context); 1153 populateVectorizationPatterns<Conv1DOp, 1>(tiling, promotion, vectorization, 1154 tileSizes); 1155 1156 populateVectorizationPatterns<Conv2DOp, 2>(tiling, promotion, vectorization, 1157 tileSizes); 1158 1159 populateVectorizationPatterns<Conv3DOp, 3>(tiling, promotion, vectorization, 1160 tileSizes); 1161 1162 populateVectorizationPatterns<Conv1DNwcWcfOp, 3>(tiling, promotion, 1163 vectorization, tileSizes); 1164 1165 populateVectorizationPatterns<Conv2DNhwcHwcfOp, 4>(tiling, promotion, 1166 vectorization, tileSizes); 1167 1168 populateVectorizationPatterns<Conv3DNdhwcDhwcfOp, 5>( 1169 tiling, promotion, vectorization, tileSizes); 1170 1171 patterns.push_back(std::move(tiling)); 1172 patterns.push_back(std::move(promotion)); 1173 patterns.push_back(std::move(vectorization)); 1174 } 1175 1176 //----------------------------------------------------------------------------// 1177 // Forwarding patterns 1178 //----------------------------------------------------------------------------// 1179 1180 /// Check whether there is any interleaved use of any `values` between `firstOp` 1181 /// and `secondOp`. Conservatively return `true` if any op or value is in a 1182 /// different block. 1183 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 1184 ValueRange values) { 1185 if (firstOp->getBlock() != secondOp->getBlock() || 1186 !firstOp->isBeforeInBlock(secondOp)) { 1187 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1188 << "interleavedUses precondition failed, firstOp: " 1189 << *firstOp << ", second op: " << *secondOp); 1190 return true; 1191 } 1192 for (auto v : values) { 1193 for (auto &u : v.getUses()) { 1194 Operation *owner = u.getOwner(); 1195 if (owner == firstOp || owner == secondOp) 1196 continue; 1197 // TODO: this is too conservative, use dominance info in the future. 1198 if (owner->getBlock() == firstOp->getBlock() && 1199 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 1200 continue; 1201 LLVM_DEBUG(llvm::dbgs() 1202 << "\n[" DEBUG_TYPE "]: " 1203 << " found interleaved op " << *owner 1204 << ", firstOp: " << *firstOp << ", second op: " << *secondOp); 1205 return true; 1206 } 1207 } 1208 return false; 1209 } 1210 1211 /// Return the unique subview use of `v` if it is indeed unique, null otherwise. 1212 static memref::SubViewOp getSubViewUseIfUnique(Value v) { 1213 memref::SubViewOp subViewOp; 1214 for (auto &u : v.getUses()) { 1215 if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { 1216 if (subViewOp) 1217 return memref::SubViewOp(); 1218 subViewOp = newSubViewOp; 1219 } 1220 } 1221 return subViewOp; 1222 } 1223 1224 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1225 /// when available. 1226 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 1227 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 1228 1229 // Transfer into `view`. 1230 Value viewOrAlloc = xferOp.source(); 1231 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1232 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1233 return failure(); 1234 1235 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << viewOrAlloc); 1236 1237 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1238 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1239 if (!subViewOp) 1240 return failure(); 1241 Value subView = subViewOp.getResult(); 1242 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1243 << "with subView " << subView); 1244 1245 // Find the copy into `subView` without interleaved uses. 1246 CopyOp copyOp; 1247 for (auto &u : subView.getUses()) { 1248 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 1249 assert(newCopyOp.output().getType().isa<MemRefType>()); 1250 if (newCopyOp.output() != subView) 1251 continue; 1252 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1253 << "copy candidate " << *newCopyOp); 1254 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 1255 continue; 1256 copyOp = newCopyOp; 1257 break; 1258 } 1259 } 1260 if (!copyOp) 1261 return failure(); 1262 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1263 << "with copy " << *copyOp); 1264 1265 // Find the fill into `viewOrAlloc` without interleaved uses before the copy. 1266 FillOp maybeFillOp; 1267 for (auto &u : viewOrAlloc.getUses()) { 1268 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 1269 assert(newFillOp.output().getType().isa<MemRefType>()); 1270 if (newFillOp.output() != viewOrAlloc) 1271 continue; 1272 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1273 << "fill candidate " << *newFillOp); 1274 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 1275 continue; 1276 maybeFillOp = newFillOp; 1277 break; 1278 } 1279 } 1280 // Ensure padding matches. 1281 if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) 1282 return failure(); 1283 if (maybeFillOp) 1284 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1285 << "with maybeFillOp " << *maybeFillOp); 1286 1287 // `in` is the subview that linalg.copy reads. Replace it. 1288 Value in = copyOp.input(); 1289 1290 // linalg.copy + linalg.fill can be used to create a padded local buffer. 1291 // The `masked` attribute is only valid on this padded buffer. 1292 // When forwarding to vector.transfer_read, the attribute must be reset 1293 // conservatively. 1294 Value res = rewriter.create<vector::TransferReadOp>( 1295 xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), 1296 xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); 1297 1298 if (maybeFillOp) 1299 rewriter.eraseOp(maybeFillOp); 1300 rewriter.eraseOp(copyOp); 1301 rewriter.replaceOp(xferOp, res); 1302 1303 return success(); 1304 } 1305 1306 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1307 /// when available. 1308 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 1309 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 1310 // Transfer into `viewOrAlloc`. 1311 Value viewOrAlloc = xferOp.source(); 1312 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1313 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1314 return failure(); 1315 1316 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1317 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1318 if (!subViewOp) 1319 return failure(); 1320 Value subView = subViewOp.getResult(); 1321 1322 // Find the copy from `subView` without interleaved uses. 1323 CopyOp copyOp; 1324 for (auto &u : subViewOp.getResult().getUses()) { 1325 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 1326 if (newCopyOp.getInputOperand(0)->get() != subView) 1327 continue; 1328 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 1329 continue; 1330 copyOp = newCopyOp; 1331 break; 1332 } 1333 } 1334 if (!copyOp) 1335 return failure(); 1336 1337 // `out` is the subview copied into that we replace. 1338 assert(copyOp.output().getType().isa<MemRefType>()); 1339 Value out = copyOp.output(); 1340 1341 // Forward vector.transfer into copy. 1342 // linalg.copy + linalg.fill can be used to create a padded local buffer. 1343 // The `masked` attribute is only valid on this padded buffer. 1344 // When forwarding to vector.transfer_write, the attribute must be reset 1345 // conservatively. 1346 rewriter.create<vector::TransferWriteOp>( 1347 xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), 1348 xferOp.permutation_map(), ArrayAttr()); 1349 1350 rewriter.eraseOp(copyOp); 1351 rewriter.eraseOp(xferOp); 1352 1353 return success(); 1354 } 1355