1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Analysis/LoopAnalysis.h" 14 #include "mlir/Analysis/SliceAnalysis.h" 15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 19 #include "mlir/Dialect/Linalg/Utils/Utils.h" 20 #include "mlir/Dialect/Tensor/IR/Tensor.h" 21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22 #include "mlir/Dialect/Vector/VectorOps.h" 23 #include "mlir/IR/AffineExpr.h" 24 #include "mlir/IR/Matchers.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "mlir/Pass/Pass.h" 27 #include "mlir/Support/LLVM.h" 28 #include "mlir/Transforms/RegionUtils.h" 29 #include "llvm/ADT/ScopeExit.h" 30 #include "llvm/ADT/Sequence.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/TypeSwitch.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <type_traits> 36 37 using namespace mlir; 38 using namespace mlir::linalg; 39 40 using llvm::dbgs; 41 42 #define DEBUG_TYPE "linalg-vectorization" 43 44 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") 45 #define LDBG(X) LLVM_DEBUG(DBGS() << X) 46 47 /// Return the unique instance of OpType in `block` if it is indeed unique. 48 /// Return null if none or more than 1 instances exist. 49 template <typename OpType> 50 static OpType getSingleOpOfType(Block &block) { 51 OpType res; 52 block.walk([&](OpType op) { 53 if (res) { 54 res = nullptr; 55 return WalkResult::interrupt(); 56 } 57 res = op; 58 return WalkResult::advance(); 59 }); 60 return res; 61 } 62 63 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a 64 /// projectedPermutation, compress the unused dimensions to serve as a 65 /// permutation_map for a vector transfer operation. 66 /// For example, given a linalg op such as: 67 /// 68 /// ``` 69 /// %0 = linalg.generic { 70 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, 71 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> 72 /// } 73 /// ins(%0 : tensor<2x3x4xf32>) 74 /// outs(%1 : tensor<5x6xf32>) 75 /// ``` 76 /// 77 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine 78 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second 79 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. 80 static AffineMap reindexIndexingMap(AffineMap map) { 81 assert(map.isProjectedPermutation(/*allowZerosInResults=*/true) && 82 "expected projected permutation"); 83 auto res = compressUnusedDims(map); 84 assert(res.getNumDims() == res.getNumResults() && 85 "expected reindexed map with same number of dims and results"); 86 return res; 87 } 88 89 /// Helper data structure to represent the result of vectorization. 90 /// In certain specific cases, like terminators, we do not want to propagate/ 91 enum VectorizationStatus { 92 /// Op failed to vectorize. 93 Failure = 0, 94 /// Op vectorized and custom function took care of replacement logic 95 NoReplace, 96 /// Op vectorized into a new Op whose results will replace original Op's 97 /// results. 98 NewOp 99 // TODO: support values if Op vectorized to Many-Ops whose results we need to 100 // aggregate for replacement. 101 }; 102 struct VectorizationResult { 103 /// Return status from vectorizing the current op. 104 enum VectorizationStatus status = VectorizationStatus::Failure; 105 /// New vectorized operation to replace the current op. 106 /// Replacement behavior is specified by `status`. 107 Operation *newOp; 108 }; 109 110 /// Return a vector type of the same shape and element type as the (assumed) 111 /// ShapedType of `v`. 112 static VectorType extractVectorTypeFromShapedValue(Value v) { 113 auto st = v.getType().cast<ShapedType>(); 114 if (st.getShape().empty()) 115 return VectorType(); 116 return VectorType::get(st.getShape(), st.getElementType()); 117 } 118 119 static llvm::Optional<vector::CombiningKind> 120 getKindForOp(Operation *reductionOp) { 121 if (!reductionOp) 122 return llvm::None; 123 return llvm::TypeSwitch<Operation *, llvm::Optional<vector::CombiningKind>>( 124 reductionOp) 125 .Case<arith::AddIOp, arith::AddFOp>( 126 [&](auto op) { return vector::CombiningKind::ADD; }) 127 .Case<arith::AndIOp>([&](auto op) { return vector::CombiningKind::AND; }) 128 .Case<MaxSIOp>([&](auto op) { return vector::CombiningKind::MAXSI; }) 129 .Case<MaxFOp>([&](auto op) { return vector::CombiningKind::MAXF; }) 130 .Case<MinSIOp>([&](auto op) { return vector::CombiningKind::MINSI; }) 131 .Case<MinFOp>([&](auto op) { return vector::CombiningKind::MINF; }) 132 .Case<arith::MulIOp, arith::MulFOp>( 133 [&](auto op) { return vector::CombiningKind::MUL; }) 134 .Case<arith::OrIOp>([&](auto op) { return vector::CombiningKind::OR; }) 135 .Case<arith::XOrIOp>([&](auto op) { return vector::CombiningKind::XOR; }) 136 .Default([&](auto op) { return llvm::None; }); 137 } 138 139 /// Check whether `outputOperand` is a reduction with a single combiner 140 /// operation. Return the combiner operation of the reduction. Return 141 /// nullptr otherwise. Multiple reduction operations would impose an 142 /// ordering between reduction dimensions and is currently unsupported in 143 /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) != 144 /// max(min(X)) 145 // TODO: use in LinalgOp verification, there is a circular dependency atm. 146 static Operation *matchLinalgReduction(OpOperand *outputOperand) { 147 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 148 unsigned outputPos = 149 outputOperand->getOperandNumber() - linalgOp.getNumInputs(); 150 // Only single combiner operatios are supported for now. 151 SmallVector<Operation *, 4> combinerOps; 152 if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) || 153 combinerOps.size() != 1) 154 return nullptr; 155 156 // Return the combiner operation. 157 return combinerOps[0]; 158 } 159 160 /// Broadcast `value` to a vector of `shape` if possible. Return value 161 /// otherwise. 162 static Value broadcastIfNeeded(OpBuilder &b, Value value, 163 ArrayRef<int64_t> shape) { 164 // If no shape to broadcast to, just return `value`. 165 if (shape.empty()) 166 return value; 167 VectorType targetVectorType = 168 VectorType::get(shape, getElementTypeOrSelf(value)); 169 if (vector::isBroadcastableTo(value.getType(), targetVectorType) != 170 vector::BroadcastableToResult::Success) 171 return value; 172 Location loc = b.getInsertionPoint()->getLoc(); 173 return b.createOrFold<vector::BroadcastOp>(loc, targetVectorType, value); 174 } 175 176 /// Build a vector.transfer_read from `source` at indices set to all `0`. 177 /// If source has rank zero, build a `vector<1xt> transfer_read + extract`. 178 /// Return the produced value. 179 static Value buildVectorRead(OpBuilder &b, Value source, Type readType, 180 AffineMap map) { 181 Location loc = source.getLoc(); 182 auto shapedType = source.getType().cast<ShapedType>(); 183 SmallVector<Value> indices(shapedType.getRank(), 184 b.create<arith::ConstantIndexOp>(loc, 0)); 185 if (auto vectorType = readType.dyn_cast<VectorType>()) 186 return b.create<vector::TransferReadOp>(loc, vectorType, source, indices, 187 map); 188 return vector::TransferReadOp::createScalarOp(b, loc, source, indices); 189 } 190 191 /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This 192 /// assumes that `reductionOp` has tow operands and one of them is the reduction 193 /// initial value. 194 static Value buildMultiDimReduce(OpBuilder &b, Operation *reduceOp, 195 Value outputArg, 196 const SmallVector<bool> &reductionMask, 197 const BlockAndValueMapping &bvm) { 198 auto maybeKind = getKindForOp(reduceOp); 199 assert(maybeKind && "Failed precondition: could not get reduction kind"); 200 Value operandToReduce = reduceOp->getOperand(0) == outputArg 201 ? reduceOp->getOperand(1) 202 : reduceOp->getOperand(0); 203 Value vec = bvm.lookup(operandToReduce); 204 return b.create<vector::MultiDimReductionOp>(reduceOp->getLoc(), vec, 205 reductionMask, *maybeKind); 206 } 207 208 /// Read the initial value associated to the given `outputOperand`. 209 static Value readInitialValue(OpBuilder &b, LinalgOp linalgOp, 210 OpOperand *outputOperand) { 211 AffineMap map = inversePermutation( 212 reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand))); 213 Type readType; 214 if (linalgOp.getShape(outputOperand).empty()) { 215 readType = getElementTypeOrSelf(outputOperand->get()); 216 } else { 217 readType = VectorType::get(map.compose(linalgOp.getShape(outputOperand)), 218 getElementTypeOrSelf(outputOperand->get())); 219 } 220 Value vectorRead = buildVectorRead(b, outputOperand->get(), readType, map); 221 return vectorRead; 222 } 223 224 /// Assuming `outputOperand` is an output operand of a LinalgOp, determine 225 /// whether a reduction is needed to produce a `targetType` and create that 226 /// reduction if it is the case. 227 static Value reduceIfNeeded(OpBuilder &b, Type targetType, Value value, 228 OpOperand *outputOperand, 229 const BlockAndValueMapping &bvm) { 230 LDBG("Reduce " << value << " to type " << targetType); 231 LDBG("In LinalgOp operand #" << outputOperand->getOperandNumber() << "\n" 232 << *(outputOperand->getOwner())); 233 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 234 auto vecType = value.getType().dyn_cast<VectorType>(); 235 VectorType targetVectorType = targetType.dyn_cast<VectorType>(); 236 if (!vecType) 237 return value; 238 if (targetVectorType && vecType.getShape() == targetVectorType.getShape()) 239 return value; 240 241 // At this point, we know we need to reduce. Detect the reduction operator. 242 unsigned pos = 0; 243 MLIRContext *ctx = b.getContext(); 244 SmallVector<AffineExpr> exprs; 245 for (auto s : linalgOp.iterator_types()) 246 if (isParallelIterator(s)) 247 exprs.push_back(getAffineDimExpr(pos++, ctx)); 248 249 Operation *reduceOp = matchLinalgReduction(outputOperand); 250 assert(reduceOp && "Failed precondition: could not math a reduction"); 251 unsigned idx = 0; 252 SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false); 253 for (auto attr : linalgOp.iterator_types()) { 254 if (isReductionIterator(attr)) 255 reductionMask[idx] = true; 256 ++idx; 257 } 258 assert(reduceOp->getNumOperands() == 2 && 259 "Only support binary reduce op right now"); 260 unsigned outputPos = 261 outputOperand->getOperandNumber() - linalgOp.getNumInputs(); 262 Value outputArg = linalgOp.getRegionOutputArgs()[outputPos]; 263 // Reduce across the iteration space. 264 Value reduce = 265 buildMultiDimReduce(b, reduceOp, outputArg, reductionMask, bvm); 266 267 // Read the original output value. 268 Value initialValue = readInitialValue(b, linalgOp, outputOperand); 269 270 // Combine the output argument with the reduced value. 271 OperationState state(reduceOp->getLoc(), reduceOp->getName()); 272 state.addAttributes(reduceOp->getAttrs()); 273 state.addOperands({reduce, initialValue}); 274 state.addTypes(initialValue.getType()); 275 return b.createOperation(state)->getResult(0); 276 } 277 278 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set 279 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp 280 /// currently being vectorized. If `dest` has null rank, build an memref.store. 281 /// Return the produced value or null if no value is produced. 282 static Value buildVectorWrite(OpBuilder &b, Value value, 283 OpOperand *outputOperand, 284 const BlockAndValueMapping &bvm) { 285 Operation *write; 286 Location loc = value.getLoc(); 287 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 288 if (VectorType vectorType = 289 extractVectorTypeFromShapedValue(outputOperand->get())) { 290 AffineMap map = 291 reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand)); 292 SmallVector<int64_t> transposeShape = 293 applyPermutationMap(inversePermutation(map), vectorType.getShape()); 294 assert(!transposeShape.empty() && "unexpected empty transpose shape"); 295 vectorType = VectorType::get(transposeShape, vectorType.getElementType()); 296 SmallVector<Value> indices(linalgOp.getRank(outputOperand), 297 b.create<arith::ConstantIndexOp>(loc, 0)); 298 value = broadcastIfNeeded(b, value, vectorType.getShape()); 299 value = reduceIfNeeded(b, vectorType, value, outputOperand, bvm); 300 write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(), 301 indices, map); 302 } else { 303 value = reduceIfNeeded(b, getElementTypeOrSelf(value), value, outputOperand, 304 bvm); 305 write = vector::TransferWriteOp::createScalarOp( 306 b, loc, value, outputOperand->get(), ValueRange{}); 307 } 308 LDBG("vectorized op: " << *write); 309 if (!write->getResults().empty()) 310 return write->getResult(0); 311 return Value(); 312 } 313 314 // Custom vectorization function type. Produce a vector form of Operation* 315 // assuming all its vectorized operands are already in the BlockAndValueMapping. 316 // Return nullptr if the Operation cannot be vectorized. 317 using CustomVectorizationHook = std::function<VectorizationResult( 318 Operation *, const BlockAndValueMapping &)>; 319 320 /// Helper function to vectorize the terminator of a `linalgOp`. New result 321 /// vector values are appended to `newResults`. Return 322 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it 323 /// should not try to map produced operations and instead return the results 324 /// using the `newResults` vector making them available to the 325 /// vectorization algorithm for RAUW. This function is meant to be used as a 326 /// CustomVectorizationHook. 327 static VectorizationResult 328 vectorizeLinalgYield(OpBuilder &b, Operation *op, 329 const BlockAndValueMapping &bvm, LinalgOp linalgOp, 330 SmallVectorImpl<Value> &newResults) { 331 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 332 if (!yieldOp) 333 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 334 for (auto outputs : llvm::enumerate(yieldOp.values())) { 335 // TODO: Scan for an opportunity for reuse. 336 // TODO: use a map. 337 Value vectorValue = bvm.lookup(outputs.value()); 338 Value newResult = buildVectorWrite( 339 b, vectorValue, linalgOp.getOutputOperand(outputs.index()), bvm); 340 if (newResult) 341 newResults.push_back(newResult); 342 } 343 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 344 } 345 346 /// Helper function to vectorize the index operations of a `linalgOp`. Return 347 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it 348 /// should map the produced operations. This function is meant to be used as a 349 /// CustomVectorizationHook. 350 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op, 351 LinalgOp linalgOp) { 352 IndexOp indexOp = dyn_cast<linalg::IndexOp>(op); 353 if (!indexOp) 354 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 355 auto loc = indexOp.getLoc(); 356 // Compute the static loop sizes of the index op. 357 auto targetShape = linalgOp.computeStaticLoopSizes(); 358 // Compute a one-dimensional index vector for the index op dimension. 359 SmallVector<int64_t> constantSeq = 360 llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()])); 361 auto constantOp = 362 b.create<arith::ConstantOp>(loc, b.getIndexVectorAttr(constantSeq)); 363 // Return the one-dimensional index vector if it lives in the trailing 364 // dimension of the iteration space since the vectorization algorithm in this 365 // case can handle the broadcast. 366 if (indexOp.dim() == targetShape.size() - 1) 367 return VectorizationResult{VectorizationStatus::NewOp, constantOp}; 368 // Otherwise permute the targetShape to move the index dimension last, 369 // broadcast the one-dimensional index vector to the permuted shape, and 370 // finally transpose the broadcasted index vector to undo the permutation. 371 std::swap(targetShape[indexOp.dim()], targetShape.back()); 372 auto broadCastOp = b.create<vector::BroadcastOp>( 373 loc, VectorType::get(targetShape, b.getIndexType()), constantOp); 374 SmallVector<int64_t> transposition = 375 llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops())); 376 std::swap(transposition.back(), transposition[indexOp.dim()]); 377 auto transposeOp = 378 b.create<vector::TransposeOp>(loc, broadCastOp, transposition); 379 return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; 380 } 381 382 /// Generic vectorization for a single operation `op`, given already vectorized 383 /// operands carried by `bvm`. Vectorization occurs as follows: 384 /// 1. Try to apply any of the `customVectorizationHooks` and return its 385 /// result on success. 386 /// 2. Clone any constant in the current scope without vectorization: each 387 /// consumer of the constant will later determine the shape to which the 388 /// constant needs to be broadcast to. 389 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 390 /// of the `customVectorizationHooks` to cover such cases. 391 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 392 /// operand of maximal rank. Other operands have smaller rank and are 393 /// broadcast accordingly. It is assumed this broadcast is always legal, 394 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 395 /// 396 /// This function assumes all operands of `op` have been vectorized and are in 397 /// the `bvm` mapping. As a consequence, this function is meant to be called on 398 /// a topologically-sorted list of ops. 399 /// This function does not update `bvm` but returns a VectorizationStatus that 400 /// instructs the caller what `bvm` update needs to occur. 401 static VectorizationResult 402 vectorizeOneOp(OpBuilder &b, Operation *op, const BlockAndValueMapping &bvm, 403 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 404 LDBG("vectorize op " << *op); 405 406 // 1. Try to apply any CustomVectorizationHook. 407 if (!customVectorizationHooks.empty()) { 408 for (auto &customFunc : customVectorizationHooks) { 409 VectorizationResult result = customFunc(op, bvm); 410 if (result.status == VectorizationStatus::Failure) 411 continue; 412 return result; 413 } 414 } 415 416 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 417 // Clone so that the constant is not confined to the linalgOp block . 418 if (isa<arith::ConstantOp, ConstantOp>(op)) 419 return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)}; 420 421 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 422 if (!OpTrait::hasElementwiseMappableTraits(op)) 423 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 424 425 // 4. Generic vectorization path for ElementwiseMappable ops. 426 // a. first get the first max ranked shape. 427 SmallVector<int64_t, 4> firstMaxRankedShape; 428 for (Value operand : op->getOperands()) { 429 auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); 430 if (vt && firstMaxRankedShape.size() < vt.getShape().size()) 431 firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); 432 } 433 // b. broadcast each op if needed. 434 auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { 435 return firstMaxRankedShape.empty() 436 ? bvm.lookup(v) 437 : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape); 438 }); 439 // c. for elementwise, the result is the vector with the firstMaxRankedShape 440 auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { 441 return firstMaxRankedShape.empty() 442 ? t 443 : VectorType::get(firstMaxRankedShape, t); 444 }); 445 446 // Build and return the new op. 447 OperationState state(op->getLoc(), op->getName()); 448 state.addAttributes(op->getAttrs()); 449 state.addOperands(llvm::to_vector<4>(vectorizedOperands)); 450 state.addTypes(llvm::to_vector<4>(returnTypes)); 451 return VectorizationResult{VectorizationStatus::NewOp, 452 b.createOperation(state)}; 453 } 454 455 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. 456 static bool hasOnlyScalarElementwiseOp(Region &r) { 457 if (!llvm::hasSingleElement(r)) 458 return false; 459 for (Operation &op : r.front()) { 460 if (!(isa<arith::ConstantOp, ConstantOp, linalg::YieldOp, linalg::IndexOp>( 461 op) || 462 OpTrait::hasElementwiseMappableTraits(&op)) || 463 llvm::any_of(op.getResultTypes(), 464 [](Type type) { return !type.isIntOrIndexOrFloat(); })) 465 return false; 466 } 467 return true; 468 } 469 470 // Return true if the op is an element-wise linalg op. 471 static bool isElementwise(Operation *op) { 472 auto linalgOp = dyn_cast<linalg::LinalgOp>(op); 473 if (!linalgOp) 474 return false; 475 if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) 476 return false; 477 // TODO: relax the restrictions on indexing map. 478 for (OpOperand *opOperand : linalgOp.getOutputOperands()) { 479 if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity()) 480 return false; 481 } 482 return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0)); 483 } 484 485 /// Generic vectorization function that rewrites the body of a `linalgOp` into 486 /// vector form. Generic vectorization proceeds as follows: 487 /// 1. Verify the `linalgOp` has one non-empty region. 488 /// 2. Values defined above the region are mapped to themselves and will be 489 /// broadcasted on a per-need basis by their consumers. 490 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 491 /// load). 492 /// TODO: Reuse opportunities for RAR dependencies. 493 /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. 494 /// 4b. Register CustomVectorizationHook for IndexOp to access the iteration 495 /// indices. 496 /// 5. Iteratively call vectorizeOneOp on the region operations. 497 /// 498 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is 499 /// performed to the maximal common vector size implied by the `linalgOp` 500 /// iteration space. This eager broadcasting is introduced in the 501 /// permutation_map of the vector.transfer_read operations. The eager 502 /// broadcasting makes it trivial to detrmine where broadcast, transposes and 503 /// reductions should occur, without any bookkeeping. The tradeoff is that, in 504 /// the absence of good canonicalizations, the amount of work increases. 505 /// This is not deemed a problem as we expect canonicalizations and foldings to 506 /// aggressively clean up the useless work. 507 LogicalResult vectorizeAsLinalgGeneric( 508 OpBuilder &b, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults, 509 bool broadcastToMaximalCommonShape = false, 510 ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) { 511 Block *block = linalgOp.getBlock(); 512 513 // 2. Values defined above the region can only be broadcast for now. Make them 514 // map to themselves. 515 BlockAndValueMapping bvm; 516 SetVector<Value> valuesSet; 517 mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); 518 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 519 520 if (linalgOp.getNumOutputs() == 0) 521 return failure(); 522 523 // TODO: the common vector shape is equal to the static loop sizes only when 524 // all indexing maps are projected permutations. For convs and stencils the 525 // logic will need to evolve. 526 SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes(); 527 528 // 3. Turn all BBArgs into vector.transfer_read / load. 529 SmallVector<AffineMap> indexings; 530 for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) { 531 BlockArgument bbarg = block->getArgument(opOperand->getOperandNumber()); 532 if (linalgOp.isScalar(opOperand)) { 533 bvm.map(bbarg, opOperand->get()); 534 continue; 535 } 536 // TODO: 0-d vectors. 537 Type readType; 538 AffineMap map; 539 if (linalgOp.getShape(opOperand).empty()) { 540 readType = bbarg.getType(); 541 } else { 542 if (broadcastToMaximalCommonShape) { 543 map = inverseAndBroadcastProjectedPermuation( 544 linalgOp.getTiedIndexingMap(opOperand)); 545 readType = VectorType::get(commonVectorShape, 546 getElementTypeOrSelf(opOperand->get())); 547 } else { 548 map = inversePermutation( 549 reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand))); 550 readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)), 551 getElementTypeOrSelf(opOperand->get())); 552 } 553 } 554 Value readValue = buildVectorRead(b, opOperand->get(), readType, map); 555 LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue); 556 bvm.map(bbarg, readValue); 557 bvm.map(opOperand->get(), readValue); 558 } 559 560 auto hooks = llvm::to_vector<4>(customVectorizationHooks); 561 // 4a. Register CustomVectorizationHook for yieldOp. 562 CustomVectorizationHook vectorizeYield = 563 [&](Operation *op, 564 const BlockAndValueMapping &bvm) -> VectorizationResult { 565 return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults); 566 }; 567 hooks.push_back(vectorizeYield); 568 569 // 4b. Register CustomVectorizationHook for indexOp. 570 CustomVectorizationHook vectorizeIndex = 571 [&](Operation *op, 572 const BlockAndValueMapping &bvm) -> VectorizationResult { 573 return vectorizeLinalgIndex(b, op, linalgOp); 574 }; 575 hooks.push_back(vectorizeIndex); 576 577 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 578 for (Operation &op : block->getOperations()) { 579 VectorizationResult result = vectorizeOneOp(b, &op, bvm, hooks); 580 if (result.status == VectorizationStatus::Failure) { 581 LDBG("failed to vectorize: " << op); 582 return failure(); 583 } 584 if (result.status == VectorizationStatus::NewOp) { 585 LDBG("new vector op: " << *result.newOp;); 586 bvm.map(op.getResults(), result.newOp->getResults()); 587 } 588 } 589 590 return success(); 591 } 592 593 static LogicalResult vectorizeContraction(OpBuilder &b, LinalgOp linalgOp, 594 SmallVectorImpl<Value> &newResults) { 595 assert(isaContractionOpInterface(linalgOp) && 596 "expected vectorizeContraction preconditions to be met"); 597 Location loc = linalgOp.getLoc(); 598 // Vectorize other ops as vector contraction. 599 // TODO: interface. 600 LDBG("" 601 << "Rewrite linalg op as vector.contract: "; 602 linalgOp.dump()); 603 // Special function that describes how to vectorize the multiplication op in a 604 // linalg contraction. 605 CustomVectorizationHook vectorizeContraction = 606 [&](Operation *op, 607 const BlockAndValueMapping &bvm) -> VectorizationResult { 608 if (!isa<arith::MulIOp, arith::MulFOp>(op)) 609 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 610 ArrayRef<int64_t> outShape = 611 linalgOp.getShape(linalgOp.getOutputOperand(0)); 612 Type vType; 613 if (outShape.empty()) { 614 vType = op->getResult(0).getType(); 615 } else { 616 SmallVector<int64_t> resultShape = applyPermutationMap( 617 inversePermutation(reindexIndexingMap( 618 linalgOp.getTiedIndexingMap(linalgOp.getOutputOperand(0)))), 619 outShape); 620 vType = VectorType::get(resultShape, op->getResult(0).getType()); 621 } 622 auto zero = b.create<arith::ConstantOp>(loc, vType, b.getZeroAttr(vType)); 623 // Indexing maps at the time of vector.transfer_read are adjusted to order 624 // vector dimensions in the same order as the canonical linalg op iteration 625 // space order. 626 // The indexings for the contraction therefore need to be adjusted. 627 // TODO: consider dropping contraction special casing altogether, this will 628 // require more advanced canonicalizations involving vector.multi_reduction 629 // that are not yet available. 630 SmallVector<AffineMap> indexingMaps; 631 indexingMaps.reserve(linalgOp.getNumInputsAndOutputs()); 632 llvm::transform(linalgOp.getIndexingMaps(), 633 std::back_inserter(indexingMaps), 634 [](AffineMap indexingMap) { 635 return inversePermutation(reindexIndexingMap(indexingMap)) 636 .compose(indexingMap); 637 }); 638 Operation *contract = b.create<vector::ContractionOp>( 639 loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero, 640 b.getAffineMapArrayAttr(indexingMaps), linalgOp.iterator_types()); 641 return VectorizationResult{VectorizationStatus::NewOp, contract}; 642 }; 643 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 644 /*broadcastToMaximalCommonShape=*/false, 645 {vectorizeContraction}); 646 } 647 648 static bool allIndexingsAreProjectedPermutation(LinalgOp op) { 649 return llvm::all_of(op.getIndexingMaps(), [](AffineMap m) { 650 return m.isProjectedPermutation(/*allowZerosInResults=*/true); 651 }); 652 } 653 654 // TODO: probably need some extra checks for reduction followed by consumer 655 // ops that may not commute (e.g. linear reduction + non-linear instructions). 656 static LogicalResult reductionPreconditions(LinalgOp op) { 657 if (llvm::none_of(op.iterator_types(), isReductionIterator)) { 658 LDBG("reduction precondition failed: no reduction iterator"); 659 return failure(); 660 } 661 for (OpOperand *opOperand : op.getOutputOperands()) { 662 Operation *reduceOp = matchLinalgReduction(opOperand); 663 if (!reduceOp || !getKindForOp(reduceOp)) { 664 LDBG("reduction precondition failed: reduction detection failed"); 665 return failure(); 666 } 667 } 668 return success(); 669 } 670 671 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { 672 auto linalgOp = cast<linalg::LinalgOp>(op); 673 // All types must be static shape to go to vector. 674 if (linalgOp.hasDynamicShape()) { 675 LDBG("precondition failed: dynamic shape"); 676 return failure(); 677 } 678 if (isElementwise(op)) 679 return success(); 680 if (isaContractionOpInterface(linalgOp)) 681 return success(); 682 // TODO: the common vector shape is equal to the static loop sizes only when 683 // all indexing maps are projected permutations. For convs and stencils the 684 // logic will need to evolve. 685 if (!allIndexingsAreProjectedPermutation(linalgOp)) { 686 LDBG("precondition failed: not projected permutations"); 687 return failure(); 688 } 689 if (failed(reductionPreconditions(linalgOp))) { 690 LDBG("precondition failed: reduction preconditions"); 691 return failure(); 692 } 693 return success(); 694 } 695 696 LogicalResult 697 mlir::linalg::vectorizeLinalgOp(OpBuilder &b, Operation *op, 698 SmallVectorImpl<Value> &newResults) { 699 if (failed(vectorizeLinalgOpPrecondition(op))) 700 return failure(); 701 702 auto linalgOp = cast<LinalgOp>(op); 703 if (isaContractionOpInterface(linalgOp)) 704 return vectorizeContraction(b, linalgOp, newResults); 705 706 LDBG("" 707 << "Vectorize linalg op as a generic by broadcasting to " 708 "maximal common shape: " 709 << *op); 710 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 711 /*broadcastToMaximalCommonShape=*/true); 712 } 713 714 //----------------------------------------------------------------------------// 715 // Misc. vectorization patterns. 716 //----------------------------------------------------------------------------// 717 718 /// Helper function that retrieves the value of an IntegerAttr. 719 static int64_t getIntFromAttr(Attribute attr) { 720 return attr.cast<IntegerAttr>().getInt(); 721 } 722 723 /// Given an ArrayRef of OpFoldResults, return a vector of Values. IntegerAttrs 724 /// are converted to ConstantIndexOps. Other attribute types are not supported. 725 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc, 726 ArrayRef<OpFoldResult> ofrs) { 727 SmallVector<Value> result; 728 llvm::for_each(ofrs, [&](auto o) { 729 if (auto val = o.template dyn_cast<Value>()) { 730 result.push_back(val); 731 } else { 732 result.push_back(builder.create<arith::ConstantIndexOp>( 733 loc, getIntFromAttr(o.template get<Attribute>()))); 734 } 735 }); 736 return result; 737 } 738 739 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and 740 /// InsertSliceOp. For now, only constant padding values are supported. 741 /// If there is enough static type information, TransferReadOps and 742 /// TransferWriteOps may be generated instead of InsertSliceOps. 743 struct GenericPadTensorOpVectorizationPattern 744 : public GeneralizePadTensorOpPattern { 745 GenericPadTensorOpVectorizationPattern(MLIRContext *context, 746 PatternBenefit benefit = 1) 747 : GeneralizePadTensorOpPattern(context, tryVectorizeCopy, benefit) {} 748 /// Vectorize the copying of a PadTensorOp's source. This is possible if each 749 /// dimension size is statically know in the source type or the result type 750 /// (or both). 751 static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter, 752 PadTensorOp padOp, Value dest) { 753 auto sourceType = padOp.getSourceType(); 754 auto resultType = padOp.getResultType(); 755 756 // Copy cannot be vectorized if pad value is non-constant and source shape 757 // is dynamic. In case of a dynamic source shape, padding must be appended 758 // by TransferReadOp, but TransferReadOp supports only constant padding. 759 auto padValue = padOp.getConstantPaddingValue(); 760 if (!padValue) { 761 if (!sourceType.hasStaticShape()) 762 return failure(); 763 // Create dummy padding value. 764 auto elemType = sourceType.getElementType(); 765 padValue = rewriter.create<arith::ConstantOp>( 766 padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType)); 767 } 768 769 SmallVector<int64_t> vecShape; 770 SmallVector<bool> readInBounds; 771 SmallVector<bool> writeInBounds; 772 for (unsigned i = 0; i < sourceType.getRank(); ++i) { 773 if (!sourceType.isDynamicDim(i)) { 774 vecShape.push_back(sourceType.getDimSize(i)); 775 // Source shape is statically known: Neither read nor write are out-of- 776 // bounds. 777 readInBounds.push_back(true); 778 writeInBounds.push_back(true); 779 } else if (!resultType.isDynamicDim(i)) { 780 // Source shape is not statically known, but result shape is. Vectorize 781 // with size of result shape. This may be larger than the source size. 782 vecShape.push_back(resultType.getDimSize(i)); 783 // Read may be out-of-bounds because the result size could be larger 784 // than the source size. 785 readInBounds.push_back(false); 786 // Write is out-of-bounds if low padding > 0. 787 writeInBounds.push_back( 788 getConstantIntValue(padOp.getMixedLowPad()[i]) == 789 static_cast<int64_t>(0)); 790 } else { 791 // Neither source nor result dim of padOp is static. Cannot vectorize 792 // the copy. 793 return failure(); 794 } 795 } 796 auto vecType = VectorType::get(vecShape, sourceType.getElementType()); 797 798 // Generate TransferReadOp. 799 SmallVector<Value> readIndices( 800 vecType.getRank(), 801 rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0)); 802 auto read = rewriter.create<vector::TransferReadOp>( 803 padOp.getLoc(), vecType, padOp.source(), readIndices, padValue, 804 readInBounds); 805 806 // If `dest` is a FillOp and the TransferWriteOp would overwrite the entire 807 // tensor, write directly to the FillOp's operand. 808 if (llvm::equal(vecShape, resultType.getShape()) && 809 llvm::all_of(writeInBounds, [](bool b) { return b; })) 810 if (auto fill = dest.getDefiningOp<FillOp>()) 811 dest = fill.output(); 812 813 // Generate TransferWriteOp. 814 auto writeIndices = 815 ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad()); 816 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 817 padOp, read, dest, writeIndices, writeInBounds); 818 819 return success(); 820 } 821 }; 822 823 /// Base pattern for rewriting PadTensorOps whose result is consumed by a given 824 /// operation type OpTy. 825 template <typename OpTy> 826 struct VectorizePadTensorOpUserPattern : public OpRewritePattern<PadTensorOp> { 827 using OpRewritePattern<PadTensorOp>::OpRewritePattern; 828 829 LogicalResult matchAndRewrite(PadTensorOp padOp, 830 PatternRewriter &rewriter) const final { 831 bool changed = false; 832 // Insert users in vector, because some users may be replaced/removed. 833 for (auto *user : llvm::to_vector<4>(padOp->getUsers())) 834 if (auto op = dyn_cast<OpTy>(user)) 835 changed |= rewriteUser(rewriter, padOp, op).succeeded(); 836 return success(changed); 837 } 838 839 protected: 840 virtual LogicalResult rewriteUser(PatternRewriter &rewriter, 841 PadTensorOp padOp, OpTy op) const = 0; 842 }; 843 844 /// Rewrite use of PadTensorOp result in TransferReadOp. E.g.: 845 /// ``` 846 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> 847 /// %r = vector.transfer_read %0[%c0, %c0], %cst 848 /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> 849 /// ``` 850 /// is rewritten to: 851 /// ``` 852 /// %r = vector.transfer_read %src[%c0, %c0], %padding 853 /// {in_bounds = [true, true]} 854 /// : tensor<?x?xf32>, vector<17x5xf32> 855 /// ``` 856 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be 857 /// sure that the original padding value %cst was never used. 858 /// 859 /// This rewrite is possible if: 860 /// - `xferOp` has no out-of-bounds dims or mask. 861 /// - Low padding is static 0. 862 /// - Single, scalar padding value. 863 struct PadTensorOpVectorizationWithTransferReadPattern 864 : public VectorizePadTensorOpUserPattern<vector::TransferReadOp> { 865 using VectorizePadTensorOpUserPattern< 866 vector::TransferReadOp>::VectorizePadTensorOpUserPattern; 867 868 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 869 vector::TransferReadOp xferOp) const override { 870 // Low padding must be static 0. 871 if (!padOp.hasZeroLowPad()) 872 return failure(); 873 // Pad value must be a constant. 874 auto padValue = padOp.getConstantPaddingValue(); 875 if (!padValue) 876 return failure(); 877 // Padding value of existing `xferOp` is unused. 878 if (xferOp.hasOutOfBoundsDim() || xferOp.mask()) 879 return failure(); 880 881 rewriter.updateRootInPlace(xferOp, [&]() { 882 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 883 xferOp->setAttr(xferOp.getInBoundsAttrName(), 884 rewriter.getBoolArrayAttr(inBounds)); 885 xferOp.sourceMutable().assign(padOp.source()); 886 xferOp.paddingMutable().assign(padValue); 887 }); 888 889 return success(); 890 } 891 }; 892 893 /// Rewrite use of PadTensorOp result in TransferWriteOp. 894 /// This pattern rewrites TransferWriteOps that write to a padded tensor value, 895 /// where the same amount of padding is immediately removed again after the 896 /// write. In such cases, the TransferWriteOp can write to the non-padded tensor 897 /// value and apply out-of-bounds masking. E.g.: 898 /// ``` 899 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 900 /// : tensor<...> to tensor<?x?xf32> 901 /// %1 = linalg.pad_tensor %0 ... : tensor<?x?xf32> to tensor<17x5xf32> 902 /// %2 = vector.transfer_write %vec, %1[...] 903 /// : vector<17x5xf32>, tensor<17x5xf32> 904 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] 905 /// : tensor<17x5xf32> to tensor<?x?xf32> 906 /// ``` 907 /// is rewritten to: 908 /// ``` 909 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 910 /// : tensor<...> to tensor<?x?xf32> 911 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, tensor<?x?xf32> 912 /// ``` 913 /// Note: It is important that the ExtractSliceOp %r resizes the result of the 914 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an even 915 /// smaller size). Otherwise, %r's new (dynamic) dimensions would differ from 916 /// %r's old dimensions. 917 /// 918 /// This rewrite is possible if: 919 /// - Low padding is static 0. 920 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This 921 /// ExtractSliceOp trims the same amount of padding that was added beforehand. 922 /// - Single, scalar padding value. 923 struct PadTensorOpVectorizationWithTransferWritePattern 924 : public VectorizePadTensorOpUserPattern<vector::TransferWriteOp> { 925 using VectorizePadTensorOpUserPattern< 926 vector::TransferWriteOp>::VectorizePadTensorOpUserPattern; 927 928 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 929 vector::TransferWriteOp xferOp) const override { 930 // Low padding must be static 0. 931 if (!padOp.hasZeroLowPad()) 932 return failure(); 933 // Pad value must be a constant. 934 auto padValue = padOp.getConstantPaddingValue(); 935 if (!padValue) 936 return failure(); 937 // TransferWriteOp result must be directly consumed by an ExtractSliceOp. 938 if (!xferOp->hasOneUse()) 939 return failure(); 940 auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin()); 941 if (!trimPadding) 942 return failure(); 943 // Only static zero offsets supported when trimming padding. 944 if (!trimPadding.hasZeroOffset()) 945 return failure(); 946 // trimPadding must remove the amount of padding that was added earlier. 947 if (!hasSameTensorSize(padOp.source(), trimPadding)) 948 return failure(); 949 950 // Insert the new TransferWriteOp at position of the old TransferWriteOp. 951 rewriter.setInsertionPoint(xferOp); 952 953 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 954 auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 955 xferOp, padOp.source().getType(), xferOp.vector(), padOp.source(), 956 xferOp.indices(), xferOp.permutation_mapAttr(), xferOp.mask(), 957 rewriter.getBoolArrayAttr(inBounds)); 958 rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); 959 960 return success(); 961 } 962 963 /// Check if `beforePadding` and `afterTrimming` have the same tensor size, 964 /// i.e., same dimensions. 965 /// 966 /// Dimensions may be static, dynamic or mix of both. In case of dynamic 967 /// dimensions, this function tries to infer the (static) tensor size by 968 /// looking at the defining op and utilizing op-specific knowledge. 969 /// 970 /// This is a conservative analysis. In case equal tensor sizes cannot be 971 /// proven statically, this analysis returns `false` even though the tensor 972 /// sizes may turn out to be equal at runtime. 973 bool hasSameTensorSize(Value beforePadding, 974 tensor::ExtractSliceOp afterTrimming) const { 975 // If the input to PadTensorOp is a CastOp, try with with both CastOp result 976 // and CastOp operand. 977 if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>()) 978 if (hasSameTensorSize(castOp.source(), afterTrimming)) 979 return true; 980 981 auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>(); 982 auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>(); 983 // Only RankedTensorType supported. 984 if (!t1 || !t2) 985 return false; 986 // Rank of both values must be the same. 987 if (t1.getRank() != t2.getRank()) 988 return false; 989 990 // All static dimensions must be the same. Mixed cases (e.g., dimension 991 // static in `t1` but dynamic in `t2`) are not supported. 992 for (unsigned i = 0; i < t1.getRank(); ++i) { 993 if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) 994 return false; 995 if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) 996 return false; 997 } 998 999 // Nothing more to check if all dimensions are static. 1000 if (t1.getNumDynamicDims() == 0) 1001 return true; 1002 1003 // All dynamic sizes must be the same. The only supported case at the moment 1004 // is when `beforePadding` is an ExtractSliceOp (or a cast thereof). 1005 1006 // Apart from CastOp, only ExtractSliceOp is supported. 1007 auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>(); 1008 if (!beforeSlice) 1009 return false; 1010 1011 assert(static_cast<size_t>(t1.getRank()) == 1012 beforeSlice.getMixedSizes().size()); 1013 assert(static_cast<size_t>(t2.getRank()) == 1014 afterTrimming.getMixedSizes().size()); 1015 1016 for (unsigned i = 0; i < t1.getRank(); ++i) { 1017 // Skip static dimensions. 1018 if (!t1.isDynamicDim(i)) 1019 continue; 1020 auto size1 = beforeSlice.getMixedSizes()[i]; 1021 auto size2 = afterTrimming.getMixedSizes()[i]; 1022 1023 // Case 1: Same value or same constant int. 1024 if (isEqualConstantIntOrValue(size1, size2)) 1025 continue; 1026 1027 // Other cases: Take a deeper look at defining ops of values. 1028 auto v1 = size1.dyn_cast<Value>(); 1029 auto v2 = size2.dyn_cast<Value>(); 1030 if (!v1 || !v2) 1031 return false; 1032 1033 // Case 2: Both values are identical AffineMinOps. (Should not happen if 1034 // CSE is run.) 1035 auto minOp1 = v1.getDefiningOp<AffineMinOp>(); 1036 auto minOp2 = v2.getDefiningOp<AffineMinOp>(); 1037 if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() && 1038 minOp1.operands() == minOp2.operands()) 1039 continue; 1040 1041 // Add additional cases as needed. 1042 } 1043 1044 // All tests passed. 1045 return true; 1046 } 1047 }; 1048 1049 /// Rewrite use of PadTensorOp result in InsertSliceOp. E.g.: 1050 /// ``` 1051 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> 1052 /// %r = tensor.insert_slice %0 1053 /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] 1054 /// : tensor<17x5xf32> into tensor<?x?x17x5xf32> 1055 /// ``` 1056 /// is rewritten to: 1057 /// ``` 1058 /// %0 = vector.transfer_read %src[%c0, %c0], %padding 1059 /// : tensor<?x?xf32>, vector<17x5xf32> 1060 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] 1061 /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32> 1062 /// ``` 1063 /// 1064 /// This rewrite is possible if: 1065 /// - Low padding is static 0. 1066 /// - `padOp` result shape is static. 1067 /// - The entire padded tensor is inserted. 1068 /// (Implies that sizes of `insertOp` are all static.) 1069 /// - Only unit strides in `insertOp`. 1070 /// - Single, scalar padding value. 1071 struct PadTensorOpVectorizationWithInsertSlicePattern 1072 : public VectorizePadTensorOpUserPattern<tensor::InsertSliceOp> { 1073 using VectorizePadTensorOpUserPattern< 1074 tensor::InsertSliceOp>::VectorizePadTensorOpUserPattern; 1075 1076 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 1077 tensor::InsertSliceOp insertOp) const override { 1078 // Low padding must be static 0. 1079 if (!padOp.hasZeroLowPad()) 1080 return failure(); 1081 // Only unit stride supported. 1082 if (!insertOp.hasUnitStride()) 1083 return failure(); 1084 // Pad value must be a constant. 1085 auto padValue = padOp.getConstantPaddingValue(); 1086 if (!padValue) 1087 return failure(); 1088 // Dynamic shapes not supported. 1089 if (!padOp.result().getType().cast<ShapedType>().hasStaticShape()) 1090 return failure(); 1091 1092 auto vecType = VectorType::get(padOp.getType().getShape(), 1093 padOp.getType().getElementType()); 1094 unsigned vecRank = vecType.getRank(); 1095 unsigned tensorRank = insertOp.getType().getRank(); 1096 1097 // Check if sizes match: Insert the entire tensor into most minor dims. 1098 // (No permutations allowed.) 1099 SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1); 1100 expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); 1101 if (!llvm::all_of( 1102 llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { 1103 return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); 1104 })) 1105 return failure(); 1106 1107 // Insert the TransferReadOp and TransferWriteOp at the position of the 1108 // InsertSliceOp. 1109 rewriter.setInsertionPoint(insertOp); 1110 1111 // Generate TransferReadOp: Read entire source tensor and add high padding. 1112 SmallVector<Value> readIndices( 1113 vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0)); 1114 auto read = rewriter.create<vector::TransferReadOp>( 1115 padOp.getLoc(), vecType, padOp.source(), readIndices, padValue); 1116 1117 // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at 1118 // specified offsets. Write is fully in-bounds because a InsertSliceOp's 1119 // source must fit into the destination at the specified offsets. 1120 auto writeIndices = 1121 ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); 1122 SmallVector<bool> inBounds(vecRank, true); 1123 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 1124 insertOp, read, insertOp.dest(), writeIndices, inBounds); 1125 1126 return success(); 1127 } 1128 }; 1129 1130 void mlir::linalg::populatePadTensorOpVectorizationPatterns( 1131 RewritePatternSet &patterns, PatternBenefit baseBenefit) { 1132 patterns.add<GenericPadTensorOpVectorizationPattern>(patterns.getContext(), 1133 baseBenefit); 1134 // Try these specialized patterns first before resorting to the generic one. 1135 patterns.add<PadTensorOpVectorizationWithTransferReadPattern, 1136 PadTensorOpVectorizationWithTransferWritePattern, 1137 PadTensorOpVectorizationWithInsertSlicePattern>( 1138 patterns.getContext(), baseBenefit.getBenefit() + 1); 1139 } 1140 1141 // TODO: cleanup all the convolution vectorization patterns. 1142 template <class ConvOp, int N> 1143 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite( 1144 ConvOp op, PatternRewriter &rewriter) const { 1145 Location loc = op.getLoc(); 1146 MLIRContext *context = op.getContext(); 1147 1148 OpOperand *input = op.getInputOperand(0); 1149 OpOperand *kernel = op.getInputOperand(1); 1150 OpOperand *output = op.getOutputOperand(0); 1151 ArrayRef<int64_t> inShape = op.getShape(input); 1152 ArrayRef<int64_t> kShape = op.getShape(kernel); 1153 1154 if (llvm::any_of(inShape, ShapedType::isDynamic) || 1155 llvm::any_of(kShape, ShapedType::isDynamic)) 1156 return failure(); 1157 1158 SmallVector<AffineExpr, 4> mapping; 1159 SmallVector<int64_t, 4> vectorDims; 1160 // Fail to apply when the size of not vectorized dimension is not 1. 1161 for (unsigned i = 0; i < N; i++) { 1162 if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) 1163 return failure(); 1164 1165 if (mask[i] && inShape[i] != kShape[i]) 1166 return failure(); 1167 1168 if (mask[i]) { 1169 mapping.push_back(getAffineDimExpr(i, context)); 1170 vectorDims.push_back(inShape[i]); 1171 } 1172 } 1173 1174 int64_t rank = op.getRank(input); 1175 int64_t numDims = mapping.size(); 1176 Type elemType = getElementTypeOrSelf(input->get()); 1177 1178 auto map = AffineMap::get(rank, 0, mapping, context); 1179 SmallVector<Value, 4> zeros(rank, 1180 rewriter.create<arith::ConstantIndexOp>(loc, 0)); 1181 auto vecType = VectorType::get(vectorDims, elemType); 1182 1183 auto inputVec = rewriter.create<vector::TransferReadOp>( 1184 loc, vecType, input->get(), zeros, map); 1185 auto kernelVec = rewriter.create<vector::TransferReadOp>( 1186 loc, vecType, kernel->get(), zeros, map); 1187 1188 auto acc = rewriter.create<arith::ConstantOp>(loc, elemType, 1189 rewriter.getZeroAttr(elemType)); 1190 1191 std::array<AffineMap, 3> indexingMaps{ 1192 AffineMap::getMultiDimIdentityMap(numDims, context), 1193 AffineMap::getMultiDimIdentityMap(numDims, context), 1194 AffineMap::get(numDims, 0, {}, context)}; 1195 1196 std::vector<StringRef> iteratorTypes(numDims, "reduction"); 1197 1198 auto result = rewriter.create<vector::ContractionOp>( 1199 loc, inputVec, kernelVec, acc, 1200 rewriter.getAffineMapArrayAttr(indexingMaps), 1201 rewriter.getStrArrayAttr(iteratorTypes)); 1202 1203 rewriter.create<memref::StoreOp>(loc, result, output->get(), 1204 ValueRange(zeros)); 1205 rewriter.eraseOp(op); 1206 return success(); 1207 } 1208 1209 /// Inserts tiling, promotion and vectorization pattern for ConvOp 1210 /// conversion into corresponding pattern lists. 1211 template <typename ConvOp, unsigned N> 1212 static void populateVectorizationPatterns( 1213 RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns, 1214 RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) { 1215 auto *context = tilingPatterns.getContext(); 1216 if (tileSizes.size() < N) 1217 return; 1218 1219 constexpr static StringRef kTiledMarker = "TILED"; 1220 constexpr static StringRef kPromotedMarker = "PROMOTED"; 1221 tilingPatterns.add<LinalgTilingPattern<ConvOp>>( 1222 context, LinalgTilingOptions().setTileSizes(tileSizes), 1223 LinalgTransformationFilter(ArrayRef<Identifier>{}, 1224 Identifier::get(kTiledMarker, context))); 1225 1226 promotionPatterns.add<LinalgPromotionPattern<ConvOp>>( 1227 context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), 1228 LinalgTransformationFilter(Identifier::get(kTiledMarker, context), 1229 Identifier::get(kPromotedMarker, context))); 1230 1231 SmallVector<bool, 4> mask(N); 1232 int offset = tileSizes.size() - N; 1233 std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), 1234 [](int64_t i) -> bool { return i > 1; }); 1235 1236 vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask); 1237 } 1238 1239 void mlir::linalg::populateConvVectorizationPatterns( 1240 MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns, 1241 ArrayRef<int64_t> tileSizes) { 1242 RewritePatternSet tiling(context); 1243 RewritePatternSet promotion(context); 1244 RewritePatternSet vectorization(context); 1245 populateVectorizationPatterns<Conv1DOp, 1>(tiling, promotion, vectorization, 1246 tileSizes); 1247 1248 populateVectorizationPatterns<Conv2DOp, 2>(tiling, promotion, vectorization, 1249 tileSizes); 1250 1251 populateVectorizationPatterns<Conv3DOp, 3>(tiling, promotion, vectorization, 1252 tileSizes); 1253 1254 populateVectorizationPatterns<Conv1DNwcWcfOp, 3>(tiling, promotion, 1255 vectorization, tileSizes); 1256 1257 populateVectorizationPatterns<Conv2DNhwcHwcfOp, 4>(tiling, promotion, 1258 vectorization, tileSizes); 1259 1260 populateVectorizationPatterns<Conv3DNdhwcDhwcfOp, 5>( 1261 tiling, promotion, vectorization, tileSizes); 1262 1263 patterns.push_back(std::move(tiling)); 1264 patterns.push_back(std::move(promotion)); 1265 patterns.push_back(std::move(vectorization)); 1266 } 1267 1268 //----------------------------------------------------------------------------// 1269 // Forwarding patterns 1270 //----------------------------------------------------------------------------// 1271 1272 /// Check whether there is any interleaved use of any `values` between `firstOp` 1273 /// and `secondOp`. Conservatively return `true` if any op or value is in a 1274 /// different block. 1275 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 1276 ValueRange values) { 1277 if (firstOp->getBlock() != secondOp->getBlock() || 1278 !firstOp->isBeforeInBlock(secondOp)) { 1279 LDBG("interleavedUses precondition failed, firstOp: " 1280 << *firstOp << ", second op: " << *secondOp); 1281 return true; 1282 } 1283 for (auto v : values) { 1284 for (auto &u : v.getUses()) { 1285 Operation *owner = u.getOwner(); 1286 if (owner == firstOp || owner == secondOp) 1287 continue; 1288 // TODO: this is too conservative, use dominance info in the future. 1289 if (owner->getBlock() == firstOp->getBlock() && 1290 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 1291 continue; 1292 LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp 1293 << ", second op: " << *secondOp); 1294 return true; 1295 } 1296 } 1297 return false; 1298 } 1299 1300 /// Return the unique subview use of `v` if it is indeed unique, null otherwise. 1301 static memref::SubViewOp getSubViewUseIfUnique(Value v) { 1302 memref::SubViewOp subViewOp; 1303 for (auto &u : v.getUses()) { 1304 if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { 1305 if (subViewOp) 1306 return memref::SubViewOp(); 1307 subViewOp = newSubViewOp; 1308 } 1309 } 1310 return subViewOp; 1311 } 1312 1313 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1314 /// when available. 1315 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 1316 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 1317 1318 // Transfer into `view`. 1319 Value viewOrAlloc = xferOp.source(); 1320 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1321 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1322 return failure(); 1323 1324 LDBG(viewOrAlloc); 1325 1326 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1327 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1328 if (!subViewOp) 1329 return failure(); 1330 Value subView = subViewOp.getResult(); 1331 LDBG("with subView " << subView); 1332 1333 // Find the copy into `subView` without interleaved uses. 1334 CopyOp copyOp; 1335 for (auto &u : subView.getUses()) { 1336 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 1337 assert(newCopyOp.output().getType().isa<MemRefType>()); 1338 if (newCopyOp.output() != subView) 1339 continue; 1340 LDBG("copy candidate " << *newCopyOp); 1341 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 1342 continue; 1343 copyOp = newCopyOp; 1344 break; 1345 } 1346 } 1347 if (!copyOp) 1348 return failure(); 1349 LDBG("with copy " << *copyOp); 1350 1351 // Find the fill into `viewOrAlloc` without interleaved uses before the copy. 1352 FillOp maybeFillOp; 1353 for (auto &u : viewOrAlloc.getUses()) { 1354 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 1355 assert(newFillOp.output().getType().isa<MemRefType>()); 1356 if (newFillOp.output() != viewOrAlloc) 1357 continue; 1358 LDBG("fill candidate " << *newFillOp); 1359 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 1360 continue; 1361 maybeFillOp = newFillOp; 1362 break; 1363 } 1364 } 1365 // Ensure padding matches. 1366 if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) 1367 return failure(); 1368 if (maybeFillOp) 1369 LDBG("with maybeFillOp " << *maybeFillOp); 1370 1371 // `in` is the subview that linalg.copy reads. Replace it. 1372 Value in = copyOp.input(); 1373 1374 // linalg.copy + linalg.fill can be used to create a padded local buffer. 1375 // The `masked` attribute is only valid on this padded buffer. 1376 // When forwarding to vector.transfer_read, the attribute must be reset 1377 // conservatively. 1378 Value res = rewriter.create<vector::TransferReadOp>( 1379 xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), 1380 xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); 1381 1382 if (maybeFillOp) 1383 rewriter.eraseOp(maybeFillOp); 1384 rewriter.eraseOp(copyOp); 1385 rewriter.replaceOp(xferOp, res); 1386 1387 return success(); 1388 } 1389 1390 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1391 /// when available. 1392 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 1393 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 1394 // Transfer into `viewOrAlloc`. 1395 Value viewOrAlloc = xferOp.source(); 1396 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1397 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1398 return failure(); 1399 1400 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1401 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1402 if (!subViewOp) 1403 return failure(); 1404 Value subView = subViewOp.getResult(); 1405 1406 // Find the copy from `subView` without interleaved uses. 1407 CopyOp copyOp; 1408 for (auto &u : subViewOp.getResult().getUses()) { 1409 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 1410 if (newCopyOp.getInputOperand(0)->get() != subView) 1411 continue; 1412 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 1413 continue; 1414 copyOp = newCopyOp; 1415 break; 1416 } 1417 } 1418 if (!copyOp) 1419 return failure(); 1420 1421 // `out` is the subview copied into that we replace. 1422 assert(copyOp.output().getType().isa<MemRefType>()); 1423 Value out = copyOp.output(); 1424 1425 // Forward vector.transfer into copy. 1426 // linalg.copy + linalg.fill can be used to create a padded local buffer. 1427 // The `masked` attribute is only valid on this padded buffer. 1428 // When forwarding to vector.transfer_write, the attribute must be reset 1429 // conservatively. 1430 rewriter.create<vector::TransferWriteOp>( 1431 xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), 1432 xferOp.permutation_map(), ArrayAttr()); 1433 1434 rewriter.eraseOp(copyOp); 1435 rewriter.eraseOp(xferOp); 1436 1437 return success(); 1438 } 1439