1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Analysis/LoopAnalysis.h" 14 #include "mlir/Analysis/SliceAnalysis.h" 15 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 18 #include "mlir/Dialect/Linalg/Utils/Utils.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 21 #include "mlir/Dialect/Vector/VectorOps.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/Matchers.h" 24 #include "mlir/IR/PatternMatch.h" 25 #include "mlir/Pass/Pass.h" 26 #include "mlir/Support/LLVM.h" 27 #include "mlir/Transforms/RegionUtils.h" 28 #include "llvm/ADT/ScopeExit.h" 29 #include "llvm/ADT/Sequence.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/TypeSwitch.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <type_traits> 35 36 using namespace mlir; 37 using namespace mlir::linalg; 38 39 using llvm::dbgs; 40 41 #define DEBUG_TYPE "linalg-vectorization" 42 43 /// Return the unique instance of OpType in `block` if it is indeed unique. 44 /// Return null if none or more than 1 instances exist. 45 template <typename OpType> 46 static OpType getSingleOpOfType(Block &block) { 47 OpType res; 48 block.walk([&](OpType op) { 49 if (res) { 50 res = nullptr; 51 return WalkResult::interrupt(); 52 } 53 res = op; 54 return WalkResult::advance(); 55 }); 56 return res; 57 } 58 59 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a 60 /// projectedPermutation, compress the unused dimensions to serve as a 61 /// permutation_map for a vector transfer operation. 62 /// For example, given a linalg op such as: 63 /// 64 /// ``` 65 /// %0 = linalg.generic { 66 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, 67 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> 68 /// } 69 /// ins(%0 : tensor<2x3x4xf32>) 70 /// outs(%1 : tensor<5x6xf32>) 71 /// ``` 72 /// 73 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine 74 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second 75 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. 76 static AffineMap reindexIndexingMap(AffineMap map) { 77 assert(map.isProjectedPermutation() && "expected projected permutation"); 78 auto res = compressUnusedDims(map); 79 assert(res.getNumDims() == res.getNumResults() && 80 "expected reindexed map with same number of dims and results"); 81 return res; 82 } 83 84 /// Helper data structure to represent the result of vectorization. 85 /// In certain specific cases, like terminators, we do not want to propagate/ 86 enum VectorizationStatus { 87 /// Op failed to vectorize. 88 Failure = 0, 89 /// Op vectorized and custom function took care of replacement logic 90 NoReplace, 91 /// Op vectorized into a new Op whose results will replace original Op's 92 /// results. 93 NewOp 94 // TODO: support values if Op vectorized to Many-Ops whose results we need to 95 // aggregate for replacement. 96 }; 97 struct VectorizationResult { 98 /// Return status from vectorizing the current op. 99 enum VectorizationStatus status = VectorizationStatus::Failure; 100 /// New vectorized operation to replace the current op. 101 /// Replacement behavior is specified by `status`. 102 Operation *newOp; 103 }; 104 105 /// Return a vector type of the same shape and element type as the (assumed) 106 /// ShapedType of `v`. 107 static VectorType extractVectorTypeFromShapedValue(Value v) { 108 auto st = v.getType().cast<ShapedType>(); 109 if (st.isa<MemRefType>() && st.getShape().empty()) 110 return VectorType(); 111 return VectorType::get(st.getShape(), st.getElementType()); 112 } 113 114 /// Check whether `outputOperand` is a reduction with a single combiner 115 /// operation. Return the combiner operation of the reduction, which is assumed 116 /// to be a binary operation. Multiple reduction operations would impose an 117 /// ordering between reduction dimensions and is currently unsupported in 118 /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) != 119 /// max(min(X)) 120 // TODO: use in LinalgOp verification, there is a circular dependency atm. 121 static Operation *getSingleBinaryOpAssumedReduction(OpOperand *outputOperand) { 122 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 123 unsigned outputPos = 124 outputOperand->getOperandNumber() - linalgOp.getNumInputs(); 125 SmallVector<Operation *, 4> combinerOps; 126 if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) || 127 combinerOps.size() != 1) 128 return nullptr; 129 130 // TODO: also assert no other subsequent ops break the reduction. 131 return combinerOps[0]; 132 } 133 134 /// If `value` of assumed VectorType has a shape different than `shape`, try to 135 /// build and return a new vector.broadcast to `shape`. 136 /// Otherwise, just return `value`. 137 // TODO: this is best effort atm and there is currently no guarantee of 138 // correctness for the broadcast semantics. 139 static Value broadcastIfNeeded(OpBuilder &b, Value value, 140 ArrayRef<int64_t> shape) { 141 unsigned numDimsGtOne = std::count_if(shape.begin(), shape.end(), 142 [](int64_t val) { return val > 1; }); 143 auto vecType = value.getType().dyn_cast<VectorType>(); 144 if (shape.empty() || 145 (vecType != nullptr && 146 (vecType.getShape() == shape || vecType.getRank() > numDimsGtOne))) 147 return value; 148 auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType() 149 : value.getType()); 150 return b.create<vector::BroadcastOp>(b.getInsertionPoint()->getLoc(), 151 newVecType, value); 152 } 153 154 static llvm::Optional<vector::CombiningKind> 155 getKindForOp(Operation *reductionOp) { 156 if (!reductionOp) 157 return llvm::None; 158 return llvm::TypeSwitch<Operation *, llvm::Optional<vector::CombiningKind>>( 159 reductionOp) 160 .Case<AddIOp, AddFOp>([&](auto op) { 161 return llvm::Optional<vector::CombiningKind>{ 162 vector::CombiningKind::ADD}; 163 }) 164 .Default([&](auto op) { return llvm::None; }); 165 } 166 167 /// If value of assumed VectorType has a shape different than `shape`, build and 168 /// return a new vector.broadcast to `shape`. 169 /// Otherwise, just return value. 170 static Value reduceIfNeeded(OpBuilder &b, VectorType targetVectorType, 171 Value value, OpOperand *outputOperand) { 172 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 173 auto vecType = value.getType().dyn_cast<VectorType>(); 174 if (!vecType || vecType.getShape() == targetVectorType.getShape()) 175 return value; 176 // At this point, we know we need to reduce. Detect the reduction operator. 177 // TODO: Use the generic reduction detection util. 178 Operation *reductionOp = getSingleBinaryOpAssumedReduction(outputOperand); 179 unsigned pos = 0; 180 MLIRContext *ctx = b.getContext(); 181 SmallVector<AffineExpr> exprs; 182 for (auto s : linalgOp.iterator_types()) 183 if (isParallelIterator(s)) 184 exprs.push_back(getAffineDimExpr(pos++, ctx)); 185 auto loc = value.getLoc(); 186 // TODO: reuse common CombiningKing logic and support more than add. 187 auto maybeKind = getKindForOp(reductionOp); 188 assert(maybeKind && "Failed precondition: could not get reduction kind"); 189 unsigned idx = 0; 190 SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false); 191 for (auto attr : linalgOp.iterator_types()) { 192 if (isReductionIterator(attr)) 193 reductionMask[idx] = true; 194 ++idx; 195 } 196 return b.create<vector::MultiDimReductionOp>(loc, value, reductionMask, 197 *maybeKind); 198 } 199 200 /// Build a vector.transfer_read from `source` at indices set to all `0`. 201 /// If source has rank zero, build an memref.load. 202 /// Return the produced value. 203 static Value buildVectorRead(OpBuilder &b, Value source, VectorType vectorType, 204 AffineMap map) { 205 Location loc = source.getLoc(); 206 auto shapedType = source.getType().cast<ShapedType>(); 207 SmallVector<Value> indices(shapedType.getRank(), 208 b.create<ConstantIndexOp>(loc, 0)); 209 return b.create<vector::TransferReadOp>(loc, vectorType, source, indices, 210 map); 211 } 212 213 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set 214 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp 215 /// currently being vectorized. If `dest` has null rank, build an memref.store. 216 /// Return the produced value or null if no value is produced. 217 static Value buildVectorWrite(OpBuilder &b, Value value, 218 OpOperand *outputOperand) { 219 Operation *write; 220 Location loc = value.getLoc(); 221 if (VectorType vectorType = 222 extractVectorTypeFromShapedValue(outputOperand->get())) { 223 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 224 AffineMap map = 225 reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand)); 226 SmallVector<int64_t> transposeShape = 227 applyPermutationMap(inversePermutation(map), vectorType.getShape()); 228 vectorType = VectorType::get(transposeShape, vectorType.getElementType()); 229 SmallVector<Value> indices(linalgOp.getRank(outputOperand), 230 b.create<ConstantIndexOp>(loc, 0)); 231 value = broadcastIfNeeded(b, value, vectorType.getShape()); 232 value = reduceIfNeeded(b, vectorType, value, outputOperand); 233 write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(), 234 indices, map); 235 } else { 236 write = b.create<memref::StoreOp>(loc, value, outputOperand->get()); 237 } 238 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write); 239 if (!write->getResults().empty()) 240 return write->getResult(0); 241 return Value(); 242 } 243 244 // Custom vectorization function type. Produce a vector form of Operation* 245 // assuming all its vectorized operands are already in the BlockAndValueMapping. 246 // Return nullptr if the Operation cannot be vectorized. 247 using CustomVectorizationHook = std::function<VectorizationResult( 248 Operation *, const BlockAndValueMapping &)>; 249 250 /// Helper function to vectorize the terminator of a `linalgOp`. New result 251 /// vector values are appended to `newResults`. Return 252 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it 253 /// should not try to map produced operations and instead return the results 254 /// using the `newResults` vector making them available to the 255 /// vectorization algorithm for RAUW. This function is meant to be used as a 256 /// CustomVectorizationHook. 257 static VectorizationResult 258 vectorizeLinalgYield(OpBuilder &b, Operation *op, 259 const BlockAndValueMapping &bvm, LinalgOp linalgOp, 260 SmallVectorImpl<Value> &newResults) { 261 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 262 if (!yieldOp) 263 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 264 for (auto outputs : llvm::enumerate(yieldOp.values())) { 265 // TODO: Scan for an opportunity for reuse. 266 // TODO: use a map. 267 Value vectorValue = bvm.lookup(outputs.value()); 268 Value newResult = buildVectorWrite( 269 b, vectorValue, linalgOp.getOutputOperand(outputs.index())); 270 if (newResult) 271 newResults.push_back(newResult); 272 } 273 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 274 } 275 276 /// Helper function to vectorize the index operations of a `linalgOp`. Return 277 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it 278 /// should map the produced operations. This function is meant to be used as a 279 /// CustomVectorizationHook. 280 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op, 281 LinalgOp linalgOp) { 282 IndexOp indexOp = dyn_cast<linalg::IndexOp>(op); 283 if (!indexOp) 284 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 285 auto loc = indexOp.getLoc(); 286 // Compute the static loop sizes of the index op. 287 auto targetShape = linalgOp.computeStaticLoopSizes(); 288 // Compute a one-dimensional index vector for the index op dimension. 289 SmallVector<int64_t> constantSeq = 290 llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()])); 291 ConstantOp constantOp = 292 b.create<ConstantOp>(loc, b.getIndexVectorAttr(constantSeq)); 293 // Return the one-dimensional index vector if it lives in the trailing 294 // dimension of the iteration space since the vectorization algorithm in this 295 // case can handle the broadcast. 296 if (indexOp.dim() == targetShape.size() - 1) 297 return VectorizationResult{VectorizationStatus::NewOp, constantOp}; 298 // Otherwise permute the targetShape to move the index dimension last, 299 // broadcast the one-dimensional index vector to the permuted shape, and 300 // finally transpose the broadcasted index vector to undo the permutation. 301 std::swap(targetShape[indexOp.dim()], targetShape.back()); 302 auto broadCastOp = b.create<vector::BroadcastOp>( 303 loc, VectorType::get(targetShape, b.getIndexType()), constantOp); 304 SmallVector<int64_t> transposition = 305 llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops())); 306 std::swap(transposition.back(), transposition[indexOp.dim()]); 307 auto transposeOp = 308 b.create<vector::TransposeOp>(loc, broadCastOp, transposition); 309 return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; 310 } 311 312 /// Generic vectorization for a single operation `op`, given already vectorized 313 /// operands carried by `bvm`. Vectorization occurs as follows: 314 /// 1. Try to apply any of the `customVectorizationHooks` and return its 315 /// result on success. 316 /// 2. Clone any constant in the current scope without vectorization: each 317 /// consumer of the constant will later determine the shape to which the 318 /// constant needs to be broadcast to. 319 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 320 /// of the `customVectorizationHooks` to cover such cases. 321 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 322 /// operand of maximal rank. Other operands have smaller rank and are 323 /// broadcast accordingly. It is assumed this broadcast is always legal, 324 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 325 /// 326 /// This function assumes all operands of `op` have been vectorized and are in 327 /// the `bvm` mapping. As a consequence, this function is meant to be called on 328 /// a topologically-sorted list of ops. 329 /// This function does not update `bvm` but returns a VectorizationStatus that 330 /// instructs the caller what `bvm` update needs to occur. 331 static VectorizationResult 332 vectorizeOneOp(OpBuilder &b, Operation *op, const BlockAndValueMapping &bvm, 333 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 334 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op); 335 336 // 1. Try to apply any CustomVectorizationHook. 337 if (!customVectorizationHooks.empty()) { 338 for (auto &customFunc : customVectorizationHooks) { 339 VectorizationResult result = customFunc(op, bvm); 340 if (result.status == VectorizationStatus::Failure) 341 continue; 342 return result; 343 } 344 } 345 346 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 347 // Clone so that the constant is not confined to the linalgOp block . 348 if (isa<ConstantOp>(op)) 349 return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)}; 350 351 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 352 if (!OpTrait::hasElementwiseMappableTraits(op)) 353 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 354 355 // 4. Generic vectorization path for ElementwiseMappable ops. 356 // a. first get the first max ranked shape. 357 SmallVector<int64_t, 4> firstMaxRankedShape; 358 for (Value operand : op->getOperands()) { 359 auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); 360 if (vt && firstMaxRankedShape.size() < vt.getShape().size()) 361 firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); 362 } 363 // b. broadcast each op if needed. 364 auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { 365 return firstMaxRankedShape.empty() 366 ? bvm.lookup(v) 367 : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape); 368 }); 369 // c. for elementwise, the result is the vector with the firstMaxRankedShape 370 auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { 371 return firstMaxRankedShape.empty() 372 ? t 373 : VectorType::get(firstMaxRankedShape, t); 374 }); 375 376 // Build and return the new op. 377 OperationState state(op->getLoc(), op->getName()); 378 state.addAttributes(op->getAttrs()); 379 state.addOperands(llvm::to_vector<4>(vectorizedOperands)); 380 state.addTypes(llvm::to_vector<4>(returnTypes)); 381 return VectorizationResult{VectorizationStatus::NewOp, 382 b.createOperation(state)}; 383 } 384 385 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. 386 static bool hasOnlyScalarElementwiseOp(Region &r) { 387 if (!llvm::hasSingleElement(r)) 388 return false; 389 for (Operation &op : r.front()) { 390 if (!(isa<ConstantOp, linalg::YieldOp, linalg::IndexOp>(op) || 391 OpTrait::hasElementwiseMappableTraits(&op)) || 392 llvm::any_of(op.getResultTypes(), 393 [](Type type) { return !type.isIntOrIndexOrFloat(); })) 394 return false; 395 } 396 return true; 397 } 398 399 // Return true if the op is an element-wise linalg op. 400 static bool isElementwise(Operation *op) { 401 auto linalgOp = dyn_cast<linalg::LinalgOp>(op); 402 if (!linalgOp) 403 return false; 404 if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) 405 return false; 406 // TODO: relax the restrictions on indexing map. 407 for (OpOperand *opOperand : linalgOp.getOutputOperands()) { 408 if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity()) 409 return false; 410 } 411 if (linalgOp->getNumRegions() != 1) 412 return false; 413 return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0)); 414 } 415 416 /// Generic vectorization function that rewrites the body of a `linalgOp` into 417 /// vector form. Generic vectorization proceeds as follows: 418 /// 1. Verify the `linalgOp` has one non-empty region. 419 /// 2. Values defined above the region are mapped to themselves and will be 420 /// broadcasted on a per-need basis by their consumers. 421 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 422 /// load). 423 /// TODO: Reuse opportunities for RAR dependencies. 424 /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. 425 /// 4b. Register CustomVectorizationHook for IndexOp to access the iteration 426 /// indices. 427 /// 5. Iteratively call vectorizeOneOp on the region operations. 428 /// 429 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is 430 /// performed to the maximal common vector size implied by the `linalgOp` 431 /// iteration space. This eager broadcasting is introduced in the 432 /// permutation_map of the vector.transfer_read operations. The eager 433 /// broadcasting makes it trivial to detrmine where broadcast, transposes and 434 /// reductions should occur, without any bookkeeping. The tradeoff is that, in 435 /// the absence of good canonicalizations, the amount of work increases. 436 /// This is not deemed a problem as we expect canonicalizations and foldings to 437 /// aggressively clean up the useless work. 438 LogicalResult vectorizeAsLinalgGeneric( 439 OpBuilder &b, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults, 440 bool broadcastToMaximalCommonShape = false, 441 ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) { 442 // 1. Fail to vectorize if the operation does not have one non-empty region. 443 if (linalgOp->getNumRegions() != 1 || linalgOp->getRegion(0).empty()) 444 return failure(); 445 auto &block = linalgOp->getRegion(0).front(); 446 447 // 2. Values defined above the region can only be broadcast for now. Make them 448 // map to themselves. 449 BlockAndValueMapping bvm; 450 SetVector<Value> valuesSet; 451 mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); 452 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 453 454 if (linalgOp.getNumOutputs() == 0) 455 return failure(); 456 457 // TODO: the common vector shape is equal to the static loop sizes only when 458 // all indexing maps are projected permutations. For convs and stencils the 459 // logic will need to evolve. 460 SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes(); 461 462 // 3. Turn all BBArgs into vector.transfer_read / load. 463 SmallVector<AffineMap> indexings; 464 for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) { 465 BlockArgument bbarg = block.getArgument(opOperand->getOperandNumber()); 466 if (linalgOp.isScalar(opOperand)) { 467 bvm.map(bbarg, opOperand->get()); 468 continue; 469 } 470 // TODO: 0-d vectors. 471 if (linalgOp.getShape(opOperand).empty()) { 472 Value loaded = 473 b.create<memref::LoadOp>(linalgOp.getLoc(), opOperand->get()); 474 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" 475 << bbarg.getArgNumber() << "): " << loaded); 476 bvm.map(bbarg, loaded); 477 bvm.map(opOperand->get(), loaded); 478 continue; 479 } 480 AffineMap map; 481 VectorType vectorType; 482 if (broadcastToMaximalCommonShape) { 483 map = inverseAndBroadcastProjectedPermuation( 484 linalgOp.getTiedIndexingMap(opOperand)); 485 vectorType = VectorType::get(commonVectorShape, 486 getElementTypeOrSelf(opOperand->get())); 487 } else { 488 map = inversePermutation( 489 reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand))); 490 vectorType = VectorType::get(map.compose(linalgOp.getShape(opOperand)), 491 getElementTypeOrSelf(opOperand->get())); 492 } 493 Value vectorRead = buildVectorRead(b, opOperand->get(), vectorType, map); 494 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" 495 << bbarg.getArgNumber() << "): " << vectorRead); 496 bvm.map(bbarg, vectorRead); 497 bvm.map(opOperand->get(), vectorRead); 498 } 499 500 auto hooks = llvm::to_vector<4>(customVectorizationHooks); 501 // 4a. Register CustomVectorizationHook for yieldOp. 502 CustomVectorizationHook vectorizeYield = 503 [&](Operation *op, 504 const BlockAndValueMapping &bvm) -> VectorizationResult { 505 return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults); 506 }; 507 hooks.push_back(vectorizeYield); 508 509 // 4b. Register CustomVectorizationHook for indexOp. 510 CustomVectorizationHook vectorizeIndex = 511 [&](Operation *op, 512 const BlockAndValueMapping &bvm) -> VectorizationResult { 513 return vectorizeLinalgIndex(b, op, linalgOp); 514 }; 515 hooks.push_back(vectorizeIndex); 516 517 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 518 for (Operation &op : block.getOperations()) { 519 VectorizationResult result = vectorizeOneOp(b, &op, bvm, hooks); 520 if (result.status == VectorizationStatus::Failure) { 521 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op); 522 return failure(); 523 } 524 if (result.status == VectorizationStatus::NewOp) { 525 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: " 526 << *result.newOp;); 527 bvm.map(op.getResults(), result.newOp->getResults()); 528 } 529 } 530 531 return success(); 532 } 533 534 static LogicalResult vectorizeContraction(OpBuilder &b, LinalgOp linalgOp, 535 SmallVectorImpl<Value> &newResults) { 536 assert(isaContractionOpInterface(linalgOp) && 537 "expected vectorizeContraction preconditions to be met"); 538 Location loc = linalgOp.getLoc(); 539 // Vectorize other ops as vector contraction. 540 // TODO: interface. 541 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 542 << "Rewrite linalg op as vector.contract: "; 543 linalgOp.dump()); 544 // Special function that describes how to vectorize the multiplication op in a 545 // linalg contraction. 546 CustomVectorizationHook vectorizeContraction = 547 [&](Operation *op, 548 const BlockAndValueMapping &bvm) -> VectorizationResult { 549 if (!isa<MulIOp, MulFOp>(op)) 550 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 551 ArrayRef<int64_t> outShape = 552 linalgOp.getShape(linalgOp.getOutputOperand(0)); 553 Type vType; 554 if (outShape.empty()) { 555 vType = op->getResult(0).getType(); 556 } else { 557 SmallVector<int64_t> resultShape = applyPermutationMap( 558 inversePermutation(reindexIndexingMap( 559 linalgOp.getTiedIndexingMap(linalgOp.getOutputOperand(0)))), 560 outShape); 561 vType = VectorType::get(resultShape, op->getResult(0).getType()); 562 } 563 auto zero = b.create<ConstantOp>(loc, vType, b.getZeroAttr(vType)); 564 // Indexing maps at the time of vector.transfer_read are adjusted to order 565 // vector dimensions in the same order as the canonical linalg op iteration 566 // space order. 567 // The indexings for the contraction therefore need to be adjusted. 568 // TODO: consider dropping contraction special casing altogether, this will 569 // require more advanced canonicalizations involving vector.multi_reduction 570 // that are not yet available. 571 SmallVector<AffineMap> indexingMaps; 572 indexingMaps.reserve(linalgOp.getNumInputsAndOutputs()); 573 llvm::transform(linalgOp.getIndexingMaps(), 574 std::back_inserter(indexingMaps), 575 [](AffineMap indexingMap) { 576 return inversePermutation(reindexIndexingMap(indexingMap)) 577 .compose(indexingMap); 578 }); 579 Operation *contract = b.create<vector::ContractionOp>( 580 loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero, 581 b.getAffineMapArrayAttr(indexingMaps), linalgOp.iterator_types()); 582 return VectorizationResult{VectorizationStatus::NewOp, contract}; 583 }; 584 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 585 /*broadcastToMaximalCommonShape=*/false, 586 {vectorizeContraction}); 587 } 588 589 static bool allIndexingsAreProjectedPermutation(LinalgOp op) { 590 return llvm::all_of(op.getIndexingMaps(), 591 [](AffineMap m) { return m.isProjectedPermutation(); }); 592 } 593 594 // TODO: probably need some extra checks for reduction followed by consumer 595 // ops that may not commute (e.g. linear reduction + non-linear instructions). 596 static LogicalResult reductionPreconditions(LinalgOp op) { 597 if (llvm::none_of(op.iterator_types(), isReductionIterator)) 598 return failure(); 599 for (OpOperand *opOperand : op.getOutputOperands()) { 600 Operation *reductionOp = getSingleBinaryOpAssumedReduction(opOperand); 601 if (!getKindForOp(reductionOp)) 602 return failure(); 603 } 604 return success(); 605 } 606 607 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { 608 auto linalgOp = cast<linalg::LinalgOp>(op); 609 // All types must be static shape to go to vector. 610 if (linalgOp.hasDynamicShape()) 611 return failure(); 612 if (isElementwise(op)) 613 return success(); 614 if (isaContractionOpInterface(linalgOp)) 615 return success(); 616 // TODO: the common vector shape is equal to the static loop sizes only when 617 // all indexing maps are projected permutations. For convs and stencils the 618 // logic will need to evolve. 619 if (allIndexingsAreProjectedPermutation(linalgOp) && 620 succeeded(reductionPreconditions(linalgOp))) 621 return success(); 622 return failure(); 623 } 624 625 LogicalResult 626 mlir::linalg::vectorizeLinalgOp(OpBuilder &b, Operation *op, 627 SmallVectorImpl<Value> &newResults) { 628 if (failed(vectorizeLinalgOpPrecondition(op))) 629 return failure(); 630 631 auto linalgOp = cast<LinalgOp>(op); 632 if (isaContractionOpInterface(linalgOp)) 633 return vectorizeContraction(b, linalgOp, newResults); 634 635 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: " 636 << "Vectorize linalg op as a generic by broadcasting to " 637 "maximal common shape: " 638 << *op); 639 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 640 /*broadcastToMaximalCommonShape=*/true); 641 } 642 643 //----------------------------------------------------------------------------// 644 // Misc. vectorization patterns. 645 //----------------------------------------------------------------------------// 646 647 /// Helper function that retrieves the value of an IntegerAttr. 648 static int64_t getIntFromAttr(Attribute attr) { 649 return attr.cast<IntegerAttr>().getInt(); 650 } 651 652 /// Given an ArrayRef of OpFoldResults, return a vector of Values. IntegerAttrs 653 /// are converted to ConstantIndexOps. Other attribute types are not supported. 654 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc, 655 ArrayRef<OpFoldResult> ofrs) { 656 SmallVector<Value> result; 657 llvm::for_each(ofrs, [&](auto o) { 658 if (auto val = o.template dyn_cast<Value>()) { 659 result.push_back(val); 660 } else { 661 result.push_back(builder.create<ConstantIndexOp>( 662 loc, getIntFromAttr(o.template get<Attribute>()))); 663 } 664 }); 665 return result; 666 } 667 668 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and 669 /// InsertSliceOp. For now, only constant padding values are supported. 670 /// If there is enough static type information, TransferReadOps and 671 /// TransferWriteOps may be generated instead of InsertSliceOps. 672 struct GenericPadTensorOpVectorizationPattern 673 : public GeneralizePadTensorOpPattern { 674 GenericPadTensorOpVectorizationPattern(MLIRContext *context, 675 PatternBenefit benefit = 1) 676 : GeneralizePadTensorOpPattern(context, tryVectorizeCopy, benefit) {} 677 /// Vectorize the copying of a PadTensorOp's source. This is possible if each 678 /// dimension size is statically know in the source type or the result type 679 /// (or both). 680 static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter, 681 PadTensorOp padOp, Value dest) { 682 auto sourceType = padOp.getSourceType(); 683 auto resultType = padOp.getResultType(); 684 685 // Copy cannot be vectorized if pad value is non-constant and source shape 686 // is dynamic. In case of a dynamic source shape, padding must be appended 687 // by TransferReadOp, but TransferReadOp supports only constant padding. 688 auto padValue = padOp.getConstantPaddingValue(); 689 if (!padValue) { 690 if (!sourceType.hasStaticShape()) return failure(); 691 // Create dummy padding value. 692 auto elemType = sourceType.getElementType(); 693 padValue = rewriter.create<ConstantOp>(padOp.getLoc(), elemType, 694 rewriter.getZeroAttr(elemType)); 695 } 696 697 SmallVector<int64_t> vecShape; 698 SmallVector<bool> readInBounds; 699 SmallVector<bool> writeInBounds; 700 for (unsigned i = 0; i < sourceType.getRank(); ++i) { 701 if (!sourceType.isDynamicDim(i)) { 702 vecShape.push_back(sourceType.getDimSize(i)); 703 // Source shape is statically known: Neither read nor write are out-of- 704 // bounds. 705 readInBounds.push_back(true); 706 writeInBounds.push_back(true); 707 } else if (!resultType.isDynamicDim(i)) { 708 // Source shape is not statically known, but result shape is. Vectorize 709 // with size of result shape. This may be larger than the source size. 710 vecShape.push_back(resultType.getDimSize(i)); 711 // Read may be out-of-bounds because the result size could be larger 712 // than the source size. 713 readInBounds.push_back(false); 714 // Write is out-of-bounds if low padding > 0. 715 writeInBounds.push_back( 716 getConstantIntValue(padOp.getMixedLowPad()[i]) == 717 static_cast<int64_t>(0)); 718 } else { 719 // Neither source nor result dim of padOp is static. Cannot vectorize 720 // the copy. 721 return failure(); 722 } 723 } 724 auto vecType = VectorType::get(vecShape, sourceType.getElementType()); 725 726 // Generate TransferReadOp. 727 SmallVector<Value> readIndices( 728 vecType.getRank(), rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); 729 auto read = rewriter.create<vector::TransferReadOp>( 730 padOp.getLoc(), vecType, padOp.source(), readIndices, padValue, 731 readInBounds); 732 733 // If `dest` is a FillOp and the TransferWriteOp would overwrite the entire 734 // tensor, write directly to the FillOp's operand. 735 if (llvm::equal(vecShape, resultType.getShape()) 736 && llvm::all_of(writeInBounds, [](bool b) { return b; })) 737 if (auto fill = dest.getDefiningOp<FillOp>()) 738 dest = fill.output(); 739 740 // Generate TransferWriteOp. 741 auto writeIndices = ofrToIndexValues( 742 rewriter, padOp.getLoc(), padOp.getMixedLowPad()); 743 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 744 padOp, read, dest, writeIndices, writeInBounds); 745 746 return success(); 747 } 748 }; 749 750 /// Base pattern for rewriting PadTensorOps whose result is consumed by a given 751 /// operation type OpTy. 752 template <typename OpTy> 753 struct VectorizePadTensorOpUserPattern : public OpRewritePattern<PadTensorOp> { 754 using OpRewritePattern<PadTensorOp>::OpRewritePattern; 755 756 LogicalResult matchAndRewrite(PadTensorOp padOp, 757 PatternRewriter &rewriter) const final { 758 bool changed = false; 759 // Insert users in vector, because some users may be replaced/removed. 760 for (auto *user : llvm::to_vector<4>(padOp->getUsers())) 761 if (auto op = dyn_cast<OpTy>(user)) 762 changed |= rewriteUser(rewriter, padOp, op).succeeded(); 763 return success(changed); 764 } 765 766 protected: 767 virtual LogicalResult rewriteUser( 768 PatternRewriter &rewriter, PadTensorOp padOp, OpTy op) const = 0; 769 }; 770 771 /// Rewrite use of PadTensorOp result in TransferReadOp. E.g.: 772 /// ``` 773 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> 774 /// %r = vector.transfer_read %0[%c0, %c0], %cst 775 /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> 776 /// ``` 777 /// is rewritten to: 778 /// ``` 779 /// %r = vector.transfer_read %src[%c0, %c0], %padding 780 /// {in_bounds = [true, true]} 781 /// : tensor<?x?xf32>, vector<17x5xf32> 782 /// ``` 783 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be 784 /// sure that the original padding value %cst was never used. 785 /// 786 /// This rewrite is possible if: 787 /// - `xferOp` has no out-of-bounds dims or mask. 788 /// - Low padding is static 0. 789 /// - Single, scalar padding value. 790 struct PadTensorOpVectorizationWithTransferReadPattern 791 : public VectorizePadTensorOpUserPattern<vector::TransferReadOp> { 792 using VectorizePadTensorOpUserPattern<vector::TransferReadOp> 793 ::VectorizePadTensorOpUserPattern; 794 795 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 796 vector::TransferReadOp xferOp) const override { 797 // Low padding must be static 0. 798 if (!padOp.hasZeroLowPad()) return failure(); 799 // Pad value must be a constant. 800 auto padValue = padOp.getConstantPaddingValue(); 801 if (!padValue) return failure(); 802 // Padding value of existing `xferOp` is unused. 803 if (xferOp.hasOutOfBoundsDim() || xferOp.mask()) return failure(); 804 805 rewriter.updateRootInPlace(xferOp, [&]() { 806 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 807 xferOp->setAttr(xferOp.getInBoundsAttrName(), 808 rewriter.getBoolArrayAttr(inBounds)); 809 xferOp.sourceMutable().assign(padOp.source()); 810 xferOp.paddingMutable().assign(padValue); 811 }); 812 813 return success(); 814 } 815 }; 816 817 /// Rewrite use of PadTensorOp result in TransferWriteOp. 818 /// This pattern rewrites TransferWriteOps that write to a padded tensor value, 819 /// where the same amount of padding is immediately removed again after the 820 /// write. In such cases, the TransferWriteOp can write to the non-padded tensor 821 /// value and apply out-of-bounds masking. E.g.: 822 /// ``` 823 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 824 /// : tensor<...> to tensor<?x?xf32> 825 /// %1 = linalg.pad_tensor %0 ... : tensor<?x?xf32> to tensor<17x5xf32> 826 /// %2 = vector.transfer_write %vec, %1[...] 827 /// : vector<17x5xf32>, tensor<17x5xf32> 828 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] 829 /// : tensor<17x5xf32> to tensor<?x?xf32> 830 /// ``` 831 /// is rewritten to: 832 /// ``` 833 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 834 /// : tensor<...> to tensor<?x?xf32> 835 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, tensor<?x?xf32> 836 /// ``` 837 /// Note: It is important that the ExtractSliceOp %r resizes the result of the 838 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an even 839 /// smaller size). Otherwise, %r's new (dynamic) dimensions would differ from 840 /// %r's old dimensions. 841 /// 842 /// This rewrite is possible if: 843 /// - Low padding is static 0. 844 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This 845 /// ExtractSliceOp trims the same amount of padding that was added beforehand. 846 /// - Single, scalar padding value. 847 struct PadTensorOpVectorizationWithTransferWritePattern 848 : public VectorizePadTensorOpUserPattern<vector::TransferWriteOp> { 849 using VectorizePadTensorOpUserPattern<vector::TransferWriteOp> 850 ::VectorizePadTensorOpUserPattern; 851 852 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 853 vector::TransferWriteOp xferOp) const override { 854 // Low padding must be static 0. 855 if (!padOp.hasZeroLowPad()) return failure(); 856 // Pad value must be a constant. 857 auto padValue = padOp.getConstantPaddingValue(); 858 if (!padValue) return failure(); 859 // TransferWriteOp result must be directly consumed by an ExtractSliceOp. 860 if (!xferOp->hasOneUse()) return failure(); 861 auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin()); 862 if (!trimPadding) return failure(); 863 // Only static zero offsets supported when trimming padding. 864 if (!trimPadding.hasZeroOffset()) return failure(); 865 // trimPadding must remove the amount of padding that was added earlier. 866 if (!hasSameTensorSize(padOp.source(), trimPadding)) return failure(); 867 868 // Insert the new TransferWriteOp at position of the old TransferWriteOp. 869 rewriter.setInsertionPoint(xferOp); 870 871 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 872 auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 873 xferOp, padOp.source().getType(), xferOp.vector(), padOp.source(), 874 xferOp.indices(), xferOp.permutation_mapAttr(), xferOp.mask(), 875 rewriter.getBoolArrayAttr(inBounds)); 876 rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); 877 878 return success(); 879 } 880 881 /// Check if `beforePadding` and `afterTrimming` have the same tensor size, 882 /// i.e., same dimensions. 883 /// 884 /// Dimensions may be static, dynamic or mix of both. In case of dynamic 885 /// dimensions, this function tries to infer the (static) tensor size by 886 /// looking at the defining op and utilizing op-specific knowledge. 887 /// 888 /// This is a conservative analysis. In case equal tensor sizes cannot be 889 /// proven statically, this analysis returns `false` even though the tensor 890 /// sizes may turn out to be equal at runtime. 891 bool hasSameTensorSize(Value beforePadding, 892 tensor::ExtractSliceOp afterTrimming) const { 893 // If the input to PadTensorOp is a CastOp, try with with both CastOp result 894 // and CastOp operand. 895 if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>()) 896 if (hasSameTensorSize(castOp.source(), afterTrimming)) return true; 897 898 auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>(); 899 auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>(); 900 // Only RankedTensorType supported. 901 if (!t1 || !t2) return false; 902 // Rank of both values must be the same. 903 if (t1.getRank() != t2.getRank()) return false; 904 905 // All static dimensions must be the same. Mixed cases (e.g., dimension 906 // static in `t1` but dynamic in `t2`) are not supported. 907 for (unsigned i = 0; i < t1.getRank(); ++i) { 908 if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) 909 return false; 910 if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) 911 return false; 912 } 913 914 // Nothing more to check if all dimensions are static. 915 if (t1.getNumDynamicDims() == 0) return true; 916 917 // All dynamic sizes must be the same. The only supported case at the moment 918 // is when `beforePadding` is an ExtractSliceOp (or a cast thereof). 919 920 // Apart from CastOp, only ExtractSliceOp is supported. 921 auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>(); 922 if (!beforeSlice) 923 return false; 924 925 assert(static_cast<size_t>(t1.getRank()) == 926 beforeSlice.getMixedSizes().size()); 927 assert(static_cast<size_t>(t2.getRank()) 928 == afterTrimming.getMixedSizes().size()); 929 930 for (unsigned i = 0; i < t1.getRank(); ++i) { 931 // Skip static dimensions. 932 if (!t1.isDynamicDim(i)) continue; 933 auto size1 = beforeSlice.getMixedSizes()[i]; 934 auto size2 = afterTrimming.getMixedSizes()[i]; 935 936 // Case 1: Same value or same constant int. 937 if (isEqualConstantIntOrValue(size1, size2)) continue; 938 939 // Other cases: Take a deeper look at defining ops of values. 940 auto v1 = size1.dyn_cast<Value>(); 941 auto v2 = size2.dyn_cast<Value>(); 942 if (!v1 || !v2) return false; 943 944 // Case 2: Both values are identical AffineMinOps. (Should not happen if 945 // CSE is run.) 946 auto minOp1 = v1.getDefiningOp<AffineMinOp>(); 947 auto minOp2 = v2.getDefiningOp<AffineMinOp>(); 948 if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() 949 && minOp1.operands() == minOp2.operands()) continue; 950 951 // Add additional cases as needed. 952 } 953 954 // All tests passed. 955 return true; 956 } 957 }; 958 959 /// Rewrite use of PadTensorOp result in InsertSliceOp. E.g.: 960 /// ``` 961 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> 962 /// %r = tensor.insert_slice %0 963 /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] 964 /// : tensor<17x5xf32> into tensor<?x?x17x5xf32> 965 /// ``` 966 /// is rewritten to: 967 /// ``` 968 /// %0 = vector.transfer_read %src[%c0, %c0], %padding 969 /// : tensor<?x?xf32>, vector<17x5xf32> 970 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] 971 /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32> 972 /// ``` 973 /// 974 /// This rewrite is possible if: 975 /// - Low padding is static 0. 976 /// - `padOp` result shape is static. 977 /// - The entire padded tensor is inserted. 978 /// (Implies that sizes of `insertOp` are all static.) 979 /// - Only unit strides in `insertOp`. 980 /// - Single, scalar padding value. 981 struct PadTensorOpVectorizationWithInsertSlicePattern 982 : public VectorizePadTensorOpUserPattern<tensor::InsertSliceOp> { 983 using VectorizePadTensorOpUserPattern< 984 tensor::InsertSliceOp>::VectorizePadTensorOpUserPattern; 985 986 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 987 tensor::InsertSliceOp insertOp) const override { 988 // Low padding must be static 0. 989 if (!padOp.hasZeroLowPad()) return failure(); 990 // Only unit stride supported. 991 if (!insertOp.hasUnitStride()) return failure(); 992 // Pad value must be a constant. 993 auto padValue = padOp.getConstantPaddingValue(); 994 if (!padValue) 995 return failure(); 996 // Dynamic shapes not supported. 997 if (!padOp.result().getType().cast<ShapedType>().hasStaticShape()) 998 return failure(); 999 1000 auto vecType = VectorType::get(padOp.getType().getShape(), 1001 padOp.getType().getElementType()); 1002 unsigned vecRank = vecType.getRank(); 1003 unsigned tensorRank = insertOp.getType().getRank(); 1004 1005 // Check if sizes match: Insert the entire tensor into most minor dims. 1006 // (No permutations allowed.) 1007 SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1); 1008 expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); 1009 if (!llvm::all_of( 1010 llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { 1011 return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); 1012 })) 1013 return failure(); 1014 1015 // Insert the TransferReadOp and TransferWriteOp at the position of the 1016 // InsertSliceOp. 1017 rewriter.setInsertionPoint(insertOp); 1018 1019 // Generate TransferReadOp: Read entire source tensor and add high padding. 1020 SmallVector<Value> readIndices( 1021 vecRank, rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); 1022 auto read = rewriter.create<vector::TransferReadOp>( 1023 padOp.getLoc(), vecType, padOp.source(), readIndices, padValue); 1024 1025 // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at 1026 // specified offsets. Write is fully in-bounds because a InsertSliceOp's 1027 // source must fit into the destination at the specified offsets. 1028 auto writeIndices = 1029 ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); 1030 SmallVector<bool> inBounds(vecRank, true); 1031 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 1032 insertOp, read, insertOp.dest(), writeIndices, inBounds); 1033 1034 return success(); 1035 } 1036 }; 1037 1038 void mlir::linalg::populatePadTensorOpVectorizationPatterns( 1039 RewritePatternSet &patterns, PatternBenefit baseBenefit) { 1040 patterns.add<GenericPadTensorOpVectorizationPattern>( 1041 patterns.getContext(), baseBenefit); 1042 // Try these specialized patterns first before resorting to the generic one. 1043 patterns.add<PadTensorOpVectorizationWithTransferReadPattern, 1044 PadTensorOpVectorizationWithTransferWritePattern, 1045 PadTensorOpVectorizationWithInsertSlicePattern>( 1046 patterns.getContext(), baseBenefit.getBenefit() + 1); 1047 } 1048 1049 // TODO: cleanup all the convolution vectorization patterns. 1050 template <class ConvOp, int N> 1051 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite( 1052 ConvOp op, PatternRewriter &rewriter) const { 1053 Location loc = op.getLoc(); 1054 MLIRContext *context = op.getContext(); 1055 1056 OpOperand *input = op.getInputOperand(0); 1057 OpOperand *kernel = op.getInputOperand(1); 1058 OpOperand *output = op.getOutputOperand(0); 1059 ArrayRef<int64_t> inShape = op.getShape(input); 1060 ArrayRef<int64_t> kShape = op.getShape(kernel); 1061 1062 if (llvm::any_of(inShape, ShapedType::isDynamic) || 1063 llvm::any_of(kShape, ShapedType::isDynamic)) 1064 return failure(); 1065 1066 SmallVector<AffineExpr, 4> mapping; 1067 SmallVector<int64_t, 4> vectorDims; 1068 // Fail to apply when the size of not vectorized dimension is not 1. 1069 for (unsigned i = 0; i < N; i++) { 1070 if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) 1071 return failure(); 1072 1073 if (mask[i] && inShape[i] != kShape[i]) 1074 return failure(); 1075 1076 if (mask[i]) { 1077 mapping.push_back(getAffineDimExpr(i, context)); 1078 vectorDims.push_back(inShape[i]); 1079 } 1080 } 1081 1082 int64_t rank = op.getRank(input); 1083 int64_t numDims = mapping.size(); 1084 Type elemType = getElementTypeOrSelf(input->get()); 1085 1086 auto map = AffineMap::get(rank, 0, mapping, context); 1087 SmallVector<Value, 4> zeros(rank, rewriter.create<ConstantIndexOp>(loc, 0)); 1088 auto vecType = VectorType::get(vectorDims, elemType); 1089 1090 auto inputVec = rewriter.create<vector::TransferReadOp>( 1091 loc, vecType, input->get(), zeros, map); 1092 auto kernelVec = rewriter.create<vector::TransferReadOp>( 1093 loc, vecType, kernel->get(), zeros, map); 1094 1095 auto acc = rewriter.create<ConstantOp>(loc, elemType, 1096 rewriter.getZeroAttr(elemType)); 1097 1098 std::array<AffineMap, 3> indexingMaps{ 1099 AffineMap::getMultiDimIdentityMap(numDims, context), 1100 AffineMap::getMultiDimIdentityMap(numDims, context), 1101 AffineMap::get(numDims, 0, {}, context)}; 1102 1103 std::vector<StringRef> iteratorTypes(numDims, "reduction"); 1104 1105 auto result = rewriter.create<vector::ContractionOp>( 1106 loc, inputVec, kernelVec, acc, 1107 rewriter.getAffineMapArrayAttr(indexingMaps), 1108 rewriter.getStrArrayAttr(iteratorTypes)); 1109 1110 rewriter.create<memref::StoreOp>(loc, result, output->get(), 1111 ValueRange(zeros)); 1112 rewriter.eraseOp(op); 1113 return success(); 1114 } 1115 1116 using ConvOpConst = ConvOpVectorization<Conv1DOp, 1>; 1117 1118 /// Inserts tiling, promotion and vectorization pattern for ConvOp 1119 /// conversion into corresponding pattern lists. 1120 template <typename ConvOp, unsigned N> 1121 static void populateVectorizationPatterns( 1122 RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns, 1123 RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) { 1124 auto *context = tilingPatterns.getContext(); 1125 if (tileSizes.size() < N) 1126 return; 1127 1128 constexpr static StringRef kTiledMarker = "TILED"; 1129 constexpr static StringRef kPromotedMarker = "PROMOTED"; 1130 tilingPatterns.add<LinalgTilingPattern<ConvOp>>( 1131 context, LinalgTilingOptions().setTileSizes(tileSizes), 1132 LinalgTransformationFilter(ArrayRef<Identifier>{}, 1133 Identifier::get(kTiledMarker, context))); 1134 1135 promotionPatterns.add<LinalgPromotionPattern<ConvOp>>( 1136 context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), 1137 LinalgTransformationFilter(Identifier::get(kTiledMarker, context), 1138 Identifier::get(kPromotedMarker, context))); 1139 1140 SmallVector<bool, 4> mask(N); 1141 int offset = tileSizes.size() - N; 1142 std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), 1143 [](int64_t i) -> bool { return i > 1; }); 1144 1145 vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask); 1146 } 1147 1148 void mlir::linalg::populateConvVectorizationPatterns( 1149 MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns, 1150 ArrayRef<int64_t> tileSizes) { 1151 RewritePatternSet tiling(context); 1152 RewritePatternSet promotion(context); 1153 RewritePatternSet vectorization(context); 1154 populateVectorizationPatterns<Conv1DOp, 1>(tiling, promotion, vectorization, 1155 tileSizes); 1156 1157 populateVectorizationPatterns<Conv2DOp, 2>(tiling, promotion, vectorization, 1158 tileSizes); 1159 1160 populateVectorizationPatterns<Conv3DOp, 3>(tiling, promotion, vectorization, 1161 tileSizes); 1162 1163 populateVectorizationPatterns<Conv1DNwcWcfOp, 3>(tiling, promotion, 1164 vectorization, tileSizes); 1165 1166 populateVectorizationPatterns<Conv2DNhwcHwcfOp, 4>(tiling, promotion, 1167 vectorization, tileSizes); 1168 1169 populateVectorizationPatterns<Conv3DNdhwcDhwcfOp, 5>( 1170 tiling, promotion, vectorization, tileSizes); 1171 1172 patterns.push_back(std::move(tiling)); 1173 patterns.push_back(std::move(promotion)); 1174 patterns.push_back(std::move(vectorization)); 1175 } 1176 1177 //----------------------------------------------------------------------------// 1178 // Forwarding patterns 1179 //----------------------------------------------------------------------------// 1180 1181 /// Check whether there is any interleaved use of any `values` between `firstOp` 1182 /// and `secondOp`. Conservatively return `true` if any op or value is in a 1183 /// different block. 1184 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 1185 ValueRange values) { 1186 if (firstOp->getBlock() != secondOp->getBlock() || 1187 !firstOp->isBeforeInBlock(secondOp)) { 1188 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1189 << "interleavedUses precondition failed, firstOp: " 1190 << *firstOp << ", second op: " << *secondOp); 1191 return true; 1192 } 1193 for (auto v : values) { 1194 for (auto &u : v.getUses()) { 1195 Operation *owner = u.getOwner(); 1196 if (owner == firstOp || owner == secondOp) 1197 continue; 1198 // TODO: this is too conservative, use dominance info in the future. 1199 if (owner->getBlock() == firstOp->getBlock() && 1200 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 1201 continue; 1202 LLVM_DEBUG(llvm::dbgs() 1203 << "\n[" DEBUG_TYPE "]: " 1204 << " found interleaved op " << *owner 1205 << ", firstOp: " << *firstOp << ", second op: " << *secondOp); 1206 return true; 1207 } 1208 } 1209 return false; 1210 } 1211 1212 /// Return the unique subview use of `v` if it is indeed unique, null otherwise. 1213 static memref::SubViewOp getSubViewUseIfUnique(Value v) { 1214 memref::SubViewOp subViewOp; 1215 for (auto &u : v.getUses()) { 1216 if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { 1217 if (subViewOp) 1218 return memref::SubViewOp(); 1219 subViewOp = newSubViewOp; 1220 } 1221 } 1222 return subViewOp; 1223 } 1224 1225 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1226 /// when available. 1227 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 1228 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 1229 1230 // Transfer into `view`. 1231 Value viewOrAlloc = xferOp.source(); 1232 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1233 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1234 return failure(); 1235 1236 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << viewOrAlloc); 1237 1238 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1239 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1240 if (!subViewOp) 1241 return failure(); 1242 Value subView = subViewOp.getResult(); 1243 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1244 << "with subView " << subView); 1245 1246 // Find the copy into `subView` without interleaved uses. 1247 CopyOp copyOp; 1248 for (auto &u : subView.getUses()) { 1249 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 1250 assert(newCopyOp.output().getType().isa<MemRefType>()); 1251 if (newCopyOp.output() != subView) 1252 continue; 1253 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1254 << "copy candidate " << *newCopyOp); 1255 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 1256 continue; 1257 copyOp = newCopyOp; 1258 break; 1259 } 1260 } 1261 if (!copyOp) 1262 return failure(); 1263 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1264 << "with copy " << *copyOp); 1265 1266 // Find the fill into `viewOrAlloc` without interleaved uses before the copy. 1267 FillOp maybeFillOp; 1268 for (auto &u : viewOrAlloc.getUses()) { 1269 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 1270 assert(newFillOp.output().getType().isa<MemRefType>()); 1271 if (newFillOp.output() != viewOrAlloc) 1272 continue; 1273 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1274 << "fill candidate " << *newFillOp); 1275 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 1276 continue; 1277 maybeFillOp = newFillOp; 1278 break; 1279 } 1280 } 1281 // Ensure padding matches. 1282 if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) 1283 return failure(); 1284 if (maybeFillOp) 1285 LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " 1286 << "with maybeFillOp " << *maybeFillOp); 1287 1288 // `in` is the subview that linalg.copy reads. Replace it. 1289 Value in = copyOp.input(); 1290 1291 // linalg.copy + linalg.fill can be used to create a padded local buffer. 1292 // The `masked` attribute is only valid on this padded buffer. 1293 // When forwarding to vector.transfer_read, the attribute must be reset 1294 // conservatively. 1295 Value res = rewriter.create<vector::TransferReadOp>( 1296 xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), 1297 xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); 1298 1299 if (maybeFillOp) 1300 rewriter.eraseOp(maybeFillOp); 1301 rewriter.eraseOp(copyOp); 1302 rewriter.replaceOp(xferOp, res); 1303 1304 return success(); 1305 } 1306 1307 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1308 /// when available. 1309 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 1310 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 1311 // Transfer into `viewOrAlloc`. 1312 Value viewOrAlloc = xferOp.source(); 1313 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1314 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1315 return failure(); 1316 1317 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1318 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1319 if (!subViewOp) 1320 return failure(); 1321 Value subView = subViewOp.getResult(); 1322 1323 // Find the copy from `subView` without interleaved uses. 1324 CopyOp copyOp; 1325 for (auto &u : subViewOp.getResult().getUses()) { 1326 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 1327 if (newCopyOp.getInputOperand(0)->get() != subView) 1328 continue; 1329 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 1330 continue; 1331 copyOp = newCopyOp; 1332 break; 1333 } 1334 } 1335 if (!copyOp) 1336 return failure(); 1337 1338 // `out` is the subview copied into that we replace. 1339 assert(copyOp.output().getType().isa<MemRefType>()); 1340 Value out = copyOp.output(); 1341 1342 // Forward vector.transfer into copy. 1343 // linalg.copy + linalg.fill can be used to create a padded local buffer. 1344 // The `masked` attribute is only valid on this padded buffer. 1345 // When forwarding to vector.transfer_write, the attribute must be reset 1346 // conservatively. 1347 rewriter.create<vector::TransferWriteOp>( 1348 xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), 1349 xferOp.permutation_map(), ArrayAttr()); 1350 1351 rewriter.eraseOp(copyOp); 1352 rewriter.eraseOp(xferOp); 1353 1354 return success(); 1355 } 1356