1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Vectorization transformations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
14 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
15 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
16 #include "mlir/Dialect/Linalg/Utils/Utils.h"
17 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
18 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
19 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
20 #include "mlir/Dialect/Vector/VectorOps.h"
21 #include "mlir/IR/AffineExpr.h"
22 #include "mlir/IR/Matchers.h"
23 #include "mlir/IR/PatternMatch.h"
24 #include "mlir/Pass/Pass.h"
25 #include "mlir/Support/LLVM.h"
26 #include "mlir/Transforms/RegionUtils.h"
27 #include "llvm/ADT/ScopeExit.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <type_traits>
31 
32 using namespace mlir;
33 using namespace mlir::edsc;
34 using namespace mlir::edsc::intrinsics;
35 using namespace mlir::linalg;
36 
37 using llvm::dbgs;
38 
39 #define DEBUG_TYPE "linalg-vectorization"
40 
41 /// Return the unique instance of OpType in `block` if it is indeed unique.
42 /// Return null if none or more than 1 instances exist.
43 template <typename OpType>
44 static OpType getSingleOpOfType(Block &block) {
45   OpType res;
46   block.walk([&](OpType op) {
47     if (res) {
48       res = nullptr;
49       return WalkResult::interrupt();
50     }
51     res = op;
52     return WalkResult::advance();
53   });
54   return res;
55 }
56 
57 /// Helper data structure to represent the result of vectorization.
58 /// In certain specific cases, like terminators, we do not want to propagate/
59 enum VectorizationStatus {
60   /// Op failed to vectorize.
61   Failure = 0,
62   /// Op vectorized and custom function took care of replacement logic
63   NoReplace,
64   /// Op vectorized into a new Op whose results will replace original Op's
65   /// results.
66   NewOp
67   // TODO: support values if Op vectorized to Many-Ops whose results we need to
68   // aggregate for replacement.
69 };
70 struct VectorizationResult {
71   /// Return status from vectorizing the current op.
72   enum VectorizationStatus status = VectorizationStatus::Failure;
73   /// New vectorized operation to replace the current op.
74   /// Replacement behavior is specified by `status`.
75   Operation *newOp;
76 };
77 
78 /// Return a vector type of the same shape and element type as the (assumed)
79 /// ShapedType of `v`.
80 static VectorType extractVectorTypeFromShapedValue(Value v) {
81   auto st = v.getType().cast<ShapedType>();
82   if (st.isa<MemRefType>() && st.getShape().empty())
83     return VectorType();
84   return VectorType::get(st.getShape(), st.getElementType());
85 }
86 
87 /// Build a vector.transfer_read from `source` at indices set to all `0`.
88 /// If source has rank zero, build an std.load.
89 /// Return the produced value.
90 static Value buildVectorRead(OpBuilder &builder, Value source) {
91   edsc::ScopedContext scope(builder);
92   auto shapedType = source.getType().cast<ShapedType>();
93   if (VectorType vectorType = extractVectorTypeFromShapedValue(source)) {
94     SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0));
95     return vector_transfer_read(vectorType, source, indices);
96   }
97   return std_load(source);
98 }
99 
100 /// Build a vector.transfer_write of `value` into `dest` at indices set to all
101 /// `0`. If `dest` has null rank, build an std.store.
102 /// Return the produced value or null if no value is produced.
103 static Value buildVectorWrite(OpBuilder &builder, Value value, Value dest) {
104   edsc::ScopedContext scope(builder);
105   Operation *write;
106   auto shapedType = dest.getType().cast<ShapedType>();
107   if (VectorType vectorType = extractVectorTypeFromShapedValue(dest)) {
108     SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0));
109     if (vectorType != value.getType())
110       value = vector_broadcast(vectorType, value);
111     write = vector_transfer_write(value, dest, indices);
112   } else {
113     write = std_store(value, dest);
114   }
115   LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write);
116   if (!write->getResults().empty())
117     return write->getResult(0);
118   return Value();
119 }
120 
121 /// If value of assumed VectorType has a shape different than `shape`, buil and
122 /// return a new vector.broadcast to `shape`.
123 /// Otherwise, just return value.
124 static Value broadcastIfNeeded(OpBuilder &builder, Value value,
125                                ArrayRef<int64_t> shape) {
126   auto vecType = value.getType().dyn_cast<VectorType>();
127   if (shape.empty() || (vecType != nullptr && vecType.getShape() == shape))
128     return value;
129   auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType()
130                                                    : value.getType());
131   return builder.create<vector::BroadcastOp>(
132       builder.getInsertionPoint()->getLoc(), newVecType, value);
133 }
134 
135 // Custom vectorization function type. Produce a vector form of Operation*
136 // assuming all its vectorized operands are already in the BlockAndValueMapping.
137 // Return nullptr if the Operation cannot be vectorized.
138 using CustomVectorizationHook = std::function<VectorizationResult(
139     Operation *, const BlockAndValueMapping &)>;
140 
141 /// Helper function to vectorize the terminator of a `linalgOp`. New result
142 /// vector values are appended to `results`.
143 /// Return VectorizationStatus::NoReplace to signal the vectorization algorithm
144 /// that it should not try to map produced operations: this is the purpose of
145 /// the `results` argument to capture such values and make them available for
146 /// RAUW to the vectorization algorithm.
147 /// This function is meant to be used as a CustomVectorizationHook.
148 static VectorizationResult
149 vectorizeLinalgYield(OpBuilder &builder, Operation *op,
150                      const BlockAndValueMapping &bvm, LinalgOp linalgOp,
151                      SmallVectorImpl<Value> &results) {
152   auto yieldOp = dyn_cast<linalg::YieldOp>(op);
153   if (!yieldOp)
154     return VectorizationResult{VectorizationStatus::Failure, nullptr};
155   for (auto outputs : llvm::enumerate(yieldOp.values())) {
156     // TODO: Scan for an opportunity for reuse.
157     // TODO: use a map.
158     Value vectorValue = bvm.lookup(outputs.value());
159     Value result = buildVectorWrite(builder, vectorValue,
160                                     linalgOp.getOutput(outputs.index()));
161     if (result)
162       results.push_back(result);
163   }
164   return VectorizationResult{VectorizationStatus::NoReplace, nullptr};
165 }
166 
167 /// Generic vectorization for a single operation `op`, given already vectorized
168 /// operands carried by `bvm`. Vectorization occurs as follows:
169 ///   1. Try to apply any of the `customVectorizationHooks` and return its
170 ///   result on success.
171 ///   2. Clone any constant in the current scope without vectorization: each
172 ///   consumer of the constant will later determine the shape to which the
173 ///   constant needs to be broadcast to.
174 ///   3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
175 ///   of the `customVectorizationHooks` to cover such cases.
176 ///   4. Clone `op` in vector form to a vector of shape prescribed by the first
177 ///   operand of maximal rank. Other operands have smaller rank and are
178 ///   broadcast accordingly. It is assumed this broadcast is always legal,
179 ///   otherwise, it means one of the `customVectorizationHooks` is incorrect.
180 ///
181 /// This function assumes all operands of `op` have been vectorized and are in
182 /// the `bvm` mapping. As a consequence, this function is meant to be called on
183 /// a topologically-sorted list of ops.
184 /// This function does not update `bvm` but returns a VectorizationStatus that
185 /// instructs the caller what `bvm` update needs to occur.
186 static VectorizationResult
187 vectorizeOneOp(OpBuilder &builder, Operation *op,
188                const BlockAndValueMapping &bvm,
189                ArrayRef<CustomVectorizationHook> customVectorizationHooks) {
190   LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op);
191 
192   // 1. Try to apply any CustomVectorizationHook.
193   if (!customVectorizationHooks.empty()) {
194     for (auto &customFunc : customVectorizationHooks) {
195       VectorizationResult result = customFunc(op, bvm);
196       if (result.status == VectorizationStatus::Failure)
197         continue;
198       return result;
199     }
200   }
201 
202   // 2. Constant ops don't get vectorized but rather broadcasted at their users.
203   // Clone so that the constant is not confined to the linalgOp block .
204   if (isa<ConstantOp>(op))
205     return VectorizationResult{VectorizationStatus::NewOp, builder.clone(*op)};
206 
207   // 3. Only ElementwiseMappable are allowed in the generic vectorization.
208   if (!op->hasTrait<OpTrait::ElementwiseMappable>())
209     return VectorizationResult{VectorizationStatus::Failure, nullptr};
210 
211   // 4. Generic vectorization path for ElementwiseMappable ops.
212   //   a. first get the first max ranked shape.
213   SmallVector<int64_t, 4> firstMaxRankedShape;
214   for (Value operand : op->getOperands()) {
215     auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>();
216     if (vt && firstMaxRankedShape.size() < vt.getShape().size())
217       firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end());
218   }
219   //   b. broadcast each op if needed.
220   auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) {
221     return firstMaxRankedShape.empty()
222                ? bvm.lookup(v)
223                : broadcastIfNeeded(builder, bvm.lookup(v), firstMaxRankedShape);
224   });
225   //   c. for elementwise, the result is the vector with the firstMaxRankedShape
226   auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) {
227     return firstMaxRankedShape.empty()
228                ? t
229                : VectorType::get(firstMaxRankedShape, t);
230   });
231 
232   // Build and return the new op.
233   OperationState state(op->getLoc(), op->getName());
234   state.addAttributes(op->getAttrs());
235   state.addOperands(llvm::to_vector<4>(vectorizedOperands));
236   state.addTypes(llvm::to_vector<4>(returnTypes));
237   return VectorizationResult{VectorizationStatus::NewOp,
238                              builder.createOperation(state)};
239 }
240 
241 /// Generic vectorization function that rewrites the body of a `linalgOp` into
242 /// vector form. Generic vectorization proceeds as follows:
243 ///   1. The region for the linalg op is created if necessary.
244 ///   2. Values defined above the region are mapped to themselves and will be
245 ///   broadcasted on a per-need basis by their consumers.
246 ///   3. Each region argument is vectorized into a vector.transfer_read (or 0-d
247 ///   load).
248 ///   TODO: Reuse opportunities for RAR dependencies.
249 ///   4. Register CustomVectorizationHook for YieldOp to capture the results.
250 ///   5. Iteratively call vectorizeOneOp on the region operations.
251 static Optional<VectorizedLinalgOp> vectorizeAsLinalgGeneric(
252     OpBuilder &builder, LinalgOp linalgOp,
253     ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) {
254   // 1. Certain Linalg ops do not have a region but only a region builder.
255   // If so, build the region so we can vectorize.
256   std::unique_ptr<Region> owningRegion;
257   Region *region;
258   if (linalgOp->getNumRegions() > 0) {
259     region = &linalgOp->getRegion(0);
260   } else {
261     // RAII avoid remaining in block.
262     OpBuilder::InsertionGuard g(builder);
263     owningRegion = std::make_unique<Region>();
264     region = owningRegion.get();
265     Block *block = builder.createBlock(region);
266     auto elementTypes = llvm::to_vector<4>(
267         llvm::map_range(linalgOp.getShapedOperandTypes(),
268                         [](ShapedType t) { return t.getElementType(); }));
269     block->addArguments(elementTypes);
270     linalgOp.getRegionBuilder()(*block);
271   }
272   Block *block = &region->front();
273 
274   BlockAndValueMapping bvm;
275   // 2. Values defined above the region can only be broadcast for now. Make them
276   // map to themselves.
277   llvm::SetVector<Value> valuesSet;
278   mlir::getUsedValuesDefinedAbove(*region, valuesSet);
279   bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef());
280 
281   // 3. Turn all BBArgs into vector.transfer_read / load.
282   SmallVector<AffineMap> indexings;
283   for (auto bbarg : block->getArguments()) {
284     Value vectorArg = linalgOp.getShapedOperand(bbarg.getArgNumber());
285     Value vectorRead = buildVectorRead(builder, vectorArg);
286     LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg("
287                       << bbarg.getArgNumber() << "): " << vectorRead);
288     bvm.map(bbarg, vectorRead);
289     bvm.map(vectorArg, vectorRead);
290   }
291 
292   // 4. Register CustomVectorizationHook for yieldOp.
293   SmallVector<Value> results;
294   CustomVectorizationHook vectorizeYield =
295       [&](Operation *op,
296           const BlockAndValueMapping &bvm) -> VectorizationResult {
297     return vectorizeLinalgYield(builder, op, bvm, linalgOp, results);
298   };
299   // Append the vectorizeYield hook.
300   auto hooks = llvm::to_vector<4>(customVectorizationHooks);
301   hooks.push_back(vectorizeYield);
302 
303   // 5. Iteratively call `vectorizeOneOp` to each op in the slice.
304   for (Operation &op : block->getOperations()) {
305     VectorizationResult result = vectorizeOneOp(builder, &op, bvm, hooks);
306     if (result.status == VectorizationStatus::Failure) {
307       LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op);
308       return llvm::None;
309     }
310     if (result.status == VectorizationStatus::NewOp) {
311       LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: "
312                         << *result.newOp;);
313       bvm.map(op.getResults(), result.newOp->getResults());
314     }
315   }
316 
317   return VectorizedLinalgOp{{results}};
318 }
319 
320 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp.
321 static bool hasOnlyScalarElementwiseOp(Region &r) {
322   if (!llvm::hasSingleElement(r))
323     return false;
324   for (Operation &op : r.front()) {
325     if (!(isa<ConstantOp, linalg::YieldOp>(op) ||
326           op.hasTrait<OpTrait::ElementwiseMappable>()) ||
327         llvm::any_of(op.getResultTypes(),
328                      [](Type type) { return !type.isIntOrIndexOrFloat(); }))
329       return false;
330   }
331   return true;
332 }
333 
334 // Return true if the op is an element-wise linalg op.
335 static bool isElementwise(Operation *op) {
336   auto genericOp = dyn_cast<linalg::GenericOp>(op);
337   if (!genericOp)
338     return false;
339   if (genericOp.getNumLoops() != genericOp.getNumParallelLoops())
340     return false;
341   // TODO: relax the restrictions on indexing map.
342   for (unsigned i = 0, e = genericOp.getNumOutputs(); i < e; i++) {
343     if (!genericOp.getOutputIndexingMap(i).isIdentity())
344       return false;
345   }
346   // Currently bound the input indexing map to minor identity as other
347   // permutations might require adding transpose ops to convert the vector read
348   // to the right shape.
349   for (unsigned i = 0, e = genericOp.getNumInputs(); i < e; i++) {
350     if (!genericOp.getInputIndexingMap(i).isMinorIdentity())
351       return false;
352   }
353   return hasOnlyScalarElementwiseOp(genericOp.getRegion());
354 }
355 
356 static Optional<VectorizedLinalgOp> vectorizeContraction(OpBuilder &builder,
357                                                          LinalgOp linalgOp) {
358   assert(isaContractionOpInterface(linalgOp) &&
359          "expected vectorizeContraction preconditions to be met");
360   Location loc = linalgOp.getLoc();
361   // Vectorize other ops as vector contraction.
362   // TODO: interface.
363   LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: "
364                     << "Rewrite linalg op as vector.contract: ";
365              linalgOp.dump());
366   // Special function that describes how to vectorize the multiplication op in a
367   // linalg contraction.
368   CustomVectorizationHook vectorizeContraction =
369       [&](Operation *op,
370           const BlockAndValueMapping &bvm) -> VectorizationResult {
371     if (!isa<MulIOp, MulFOp>(op))
372       return VectorizationResult{VectorizationStatus::Failure, nullptr};
373     auto outShape = linalgOp.getOutputShapedType(0).getShape();
374     auto vType = outShape.empty()
375                      ? op->getResult(0).getType()
376                      : VectorType::get(outShape, op->getResult(0).getType());
377     auto zero =
378         builder.create<ConstantOp>(loc, vType, builder.getZeroAttr(vType));
379     Operation *contract = builder.create<vector::ContractionOp>(
380         loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero,
381         linalgOp.indexing_maps(), linalgOp.iterator_types());
382     return VectorizationResult{VectorizationStatus::NewOp, contract};
383   };
384   return vectorizeAsLinalgGeneric(builder, linalgOp, {vectorizeContraction});
385 }
386 
387 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) {
388   auto linalgOp = cast<linalg::LinalgOp>(op);
389   // All types must be static shape to go to vector.
390   for (Value operand : linalgOp.getShapedOperands())
391     if (!operand.getType().cast<ShapedType>().hasStaticShape())
392       return failure();
393   for (Type outputTensorType : linalgOp.getOutputTensorTypes())
394     if (!outputTensorType.cast<ShapedType>().hasStaticShape())
395       return failure();
396 
397   if (isa<linalg::FillOp, linalg::CopyOp>(op))
398     return success();
399   if (isElementwise(op))
400     return success();
401   return success(isaContractionOpInterface(linalgOp));
402 }
403 
404 Optional<VectorizedLinalgOp> mlir::linalg::vectorizeLinalgOp(OpBuilder &builder,
405                                                              Operation *op) {
406   if (failed(vectorizeLinalgOpPrecondition(op)))
407     return llvm::None;
408 
409   edsc::ScopedContext scope(builder, op->getLoc());
410   // In the case of 0-D memrefs, return null and special case to scalar load or
411   // store later.
412   if (auto fillOp = dyn_cast<linalg::FillOp>(op)) {
413     // Vectorize fill as a vector.broadcast.
414     LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: "
415                       << "Rewrite linalg.fill as vector.broadcast: " << *op);
416     VectorizedLinalgOp res;
417     if (Value v = buildVectorWrite(builder, fillOp.value(), fillOp.output()))
418       res.tensorResults.push_back(v);
419     return res;
420   }
421   if (auto copyOp = dyn_cast<linalg::CopyOp>(op)) {
422     // Vectorize copy as a vector.transfer_read+vector.transfer_write.
423     LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: "
424                       << "Rewrite linalg.copy as vector.transfer_read + "
425                          "vector.transfer_write: "
426                       << *op);
427     Value vector = buildVectorRead(builder, copyOp.input());
428     VectorizedLinalgOp res;
429     if (Value v = buildVectorWrite(builder, vector, copyOp.output()))
430       res.tensorResults.push_back(v);
431     return res;
432   }
433   if (isElementwise(op)) {
434     LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: "
435                       << "Vectorize linalg op as a generic: " << *op);
436     return vectorizeAsLinalgGeneric(builder, cast<LinalgOp>(op));
437   }
438 
439   // TODO: as soon as Copy and FillOp. get a region builder, replace all the
440   // above by:
441   // if (isa<FillOp, CopyOp>(op) || isElementwise(op)) {
442   //   LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: "
443   //                     << "Vectorize linalg op as a generic: " << *op);
444   //   return vectorizeAsLinalgGeneric(builder, cast<LinalgOp>(op));
445   // }
446 
447   return vectorizeContraction(builder, cast<LinalgOp>(op));
448 }
449 
450 //----------------------------------------------------------------------------//
451 // Misc. vectorization patterns.
452 //----------------------------------------------------------------------------//
453 
454 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, TransferReadOp and
455 /// TransferWriteOp. For now, this only applies when all low and high paddings
456 /// are determined to be zero.
457 LogicalResult PadTensorOpVectorizationPattern::matchAndRewrite(
458     linalg::PadTensorOp padOp, PatternRewriter &rewriter) const {
459   // Helper function to determine whether an OpFoldResult is not a zero Index.
460   auto isNotZeroIndex = [](OpFoldResult ofr) {
461     if (Attribute attr = ofr.dyn_cast<Attribute>())
462       return attr.cast<IntegerAttr>().getInt() != 0;
463     Value v = ofr.get<Value>();
464     if (auto constOp = v.getDefiningOp<ConstantIntOp>())
465       return constOp.getValue() != 0;
466     return true;
467   };
468 
469   auto resultShapedType = padOp.result().getType().cast<ShapedType>();
470   // Bail on non-static shapes.
471   if (!resultShapedType.hasStaticShape())
472     return failure();
473 
474   // If any pad_low is not a static 0, needs a mask. Bail for now.
475   if (llvm::any_of(padOp.getMixedLowPad(), isNotZeroIndex))
476     return failure();
477   VectorType vectorType = extractVectorTypeFromShapedValue(padOp.result());
478   if (!vectorType)
479     return failure();
480 
481   // Only support padding with a constant for now, i.e. either:
482   //   1. A BBarg from a different block.
483   //   2. A value defined outside of the current block.
484   Block &block = padOp.region().front();
485   auto yieldOp = cast<YieldOp>(block.getTerminator());
486   assert(yieldOp.getNumOperands() == 1 && "expected single operand yield");
487   Value padValue = yieldOp.values().front();
488   Operation *definingOp = padValue.getDefiningOp();
489   if (definingOp && definingOp->getBlock() == &block)
490     return failure();
491   if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block)
492     return failure();
493 
494   // TODO: if any pad_high is not a static 0, needs a mask. For now, just bail.
495   if (llvm::any_of(padOp.getMixedHighPad(),
496                    [&](OpFoldResult ofr) { return isNotZeroIndex(ofr); }))
497     return failure();
498 
499   // Now we can rewrite as InitTensorOp + TransferReadOp@[0..0] +
500   // TransferWriteOp@[0..0].
501   SmallVector<Value> indices(
502       resultShapedType.getRank(),
503       rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0));
504   Value read = rewriter.create<vector::TransferReadOp>(
505       padOp.getLoc(), vectorType, padOp.source(), indices, padValue);
506   Value init =
507       rewriter.create<InitTensorOp>(padOp.getLoc(), resultShapedType.getShape(),
508                                     resultShapedType.getElementType());
509   rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(padOp, read, init,
510                                                        indices);
511 
512   return success();
513 }
514 
515 // TODO: cleanup all the convolution vectorization patterns.
516 template <class ConvOp, int N>
517 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite(
518     ConvOp op, PatternRewriter &rewriter) const {
519   Location loc = op.getLoc();
520   MLIRContext *context = op.getContext();
521   edsc::ScopedContext scope(rewriter, loc);
522 
523   ShapedType inShapeType = op.getInputShapedType(0);
524   ShapedType kShapeType = op.getInputShapedType(1);
525 
526   ArrayRef<int64_t> inShape = inShapeType.getShape();
527   ArrayRef<int64_t> kShape = kShapeType.getShape();
528 
529   if (!inShapeType.hasStaticShape() || !kShapeType.hasStaticShape())
530     return failure();
531 
532   SmallVector<AffineExpr, 4> mapping;
533   SmallVector<int64_t, 4> vectorDims;
534   // Fail to apply when the size of not vectorized dimension is not 1.
535   for (unsigned i = 0; i < N; i++) {
536     if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1))
537       return failure();
538 
539     if (mask[i] && inShape[i] != kShape[i])
540       return failure();
541 
542     if (mask[i]) {
543       mapping.push_back(getAffineDimExpr(i, context));
544       vectorDims.push_back(inShape[i]);
545     }
546   }
547 
548   Value input = op.getInput(0);
549   Value kernel = op.getInput(1);
550   Value output = op.getOutputBuffer(0);
551 
552   unsigned rank = inShapeType.getRank();
553   unsigned numDims = mapping.size();
554   Type elemType = inShapeType.getElementType();
555 
556   auto map = AffineMap::get(rank, 0, mapping, context);
557   SmallVector<Value, 4> zeros(rank, std_constant_index(0));
558   auto vecType = VectorType::get(vectorDims, elemType);
559 
560   auto inputVec = vector_transfer_read(vecType, input, zeros, map);
561   auto kernelVec = vector_transfer_read(vecType, kernel, zeros, map);
562 
563   auto acc = std_constant(elemType, rewriter.getZeroAttr(elemType));
564 
565   std::array<AffineMap, 3> indexingMaps{
566       AffineMap::getMultiDimIdentityMap(numDims, context),
567       AffineMap::getMultiDimIdentityMap(numDims, context),
568       AffineMap::get(numDims, 0, {}, context)};
569 
570   std::vector<StringRef> iteratorTypes(numDims, "reduction");
571 
572   auto result = rewriter.create<vector::ContractionOp>(
573       loc, inputVec, kernelVec, acc,
574       rewriter.getAffineMapArrayAttr(indexingMaps),
575       rewriter.getStrArrayAttr(iteratorTypes));
576 
577   rewriter.create<StoreOp>(loc, result, output, ValueRange(zeros));
578   rewriter.eraseOp(op);
579   return success();
580 }
581 
582 using ConvOpConst = ConvOpVectorization<ConvWOp, 1>;
583 
584 /// Inserts tiling, promotion and vectorization pattern for ConvOp
585 /// conversion into corresponding pattern lists.
586 template <typename ConvOp, unsigned N>
587 static void
588 populateVectorizationPatterns(OwningRewritePatternList &tilingPatterns,
589                               OwningRewritePatternList &promotionPatterns,
590                               OwningRewritePatternList &vectorizationPatterns,
591                               ArrayRef<int64_t> tileSizes,
592                               MLIRContext *context) {
593   if (tileSizes.size() < N)
594     return;
595 
596   constexpr static StringRef kTiledMarker = "TILED";
597   constexpr static StringRef kPromotedMarker = "PROMOTED";
598   tilingPatterns.insert<LinalgTilingPattern<ConvOp>>(
599       context, LinalgTilingOptions().setTileSizes(tileSizes),
600       LinalgTransformationFilter(ArrayRef<Identifier>{},
601                                  Identifier::get(kTiledMarker, context)));
602 
603   promotionPatterns.insert<LinalgPromotionPattern<ConvOp>>(
604       context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
605       LinalgTransformationFilter(Identifier::get(kTiledMarker, context),
606                                  Identifier::get(kPromotedMarker, context)));
607 
608   SmallVector<bool, 4> mask(N);
609   int offset = tileSizes.size() - N;
610   std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(),
611                  [](int64_t i) -> bool { return i > 1; });
612 
613   vectorizationPatterns.insert<ConvOpVectorization<ConvOp, N>>(context, mask);
614 }
615 
616 void mlir::linalg::populateConvVectorizationPatterns(
617     MLIRContext *context, SmallVectorImpl<OwningRewritePatternList> &patterns,
618     ArrayRef<int64_t> tileSizes) {
619   OwningRewritePatternList tiling, promotion, vectorization;
620   populateVectorizationPatterns<ConvWOp, 1>(tiling, promotion, vectorization,
621                                             tileSizes, context);
622 
623   populateVectorizationPatterns<ConvNWCOp, 3>(tiling, promotion, vectorization,
624                                               tileSizes, context);
625   populateVectorizationPatterns<ConvInputNWCFilterWCFOp, 3>(
626       tiling, promotion, vectorization, tileSizes, context);
627 
628   populateVectorizationPatterns<ConvNCWOp, 3>(tiling, promotion, vectorization,
629                                               tileSizes, context);
630   populateVectorizationPatterns<ConvInputNCWFilterWCFOp, 3>(
631       tiling, promotion, vectorization, tileSizes, context);
632 
633   populateVectorizationPatterns<ConvHWOp, 2>(tiling, promotion, vectorization,
634                                              tileSizes, context);
635 
636   populateVectorizationPatterns<ConvNHWCOp, 4>(tiling, promotion, vectorization,
637                                                tileSizes, context);
638   populateVectorizationPatterns<ConvInputNHWCFilterHWCFOp, 4>(
639       tiling, promotion, vectorization, tileSizes, context);
640 
641   populateVectorizationPatterns<ConvNCHWOp, 4>(tiling, promotion, vectorization,
642                                                tileSizes, context);
643   populateVectorizationPatterns<ConvInputNCHWFilterHWCFOp, 4>(
644       tiling, promotion, vectorization, tileSizes, context);
645 
646   populateVectorizationPatterns<ConvDHWOp, 3>(tiling, promotion, vectorization,
647                                               tileSizes, context);
648 
649   populateVectorizationPatterns<ConvNDHWCOp, 5>(
650       tiling, promotion, vectorization, tileSizes, context);
651   populateVectorizationPatterns<ConvInputNDHWCFilterDHWCFOp, 5>(
652       tiling, promotion, vectorization, tileSizes, context);
653 
654   populateVectorizationPatterns<ConvNCDHWOp, 5>(
655       tiling, promotion, vectorization, tileSizes, context);
656   populateVectorizationPatterns<ConvInputNCDHWFilterDHWCFOp, 5>(
657       tiling, promotion, vectorization, tileSizes, context);
658 
659   patterns.push_back(std::move(tiling));
660   patterns.push_back(std::move(promotion));
661   patterns.push_back(std::move(vectorization));
662 }
663 
664 //----------------------------------------------------------------------------//
665 // Forwarding patterns
666 //----------------------------------------------------------------------------//
667 
668 /// Check whether there is any interleaved use of any `values` between `firstOp`
669 /// and `secondOp`. Conservatively return `true` if any op or value is in a
670 /// different block.
671 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
672                                     ValueRange values) {
673   if (firstOp->getBlock() != secondOp->getBlock() ||
674       !firstOp->isBeforeInBlock(secondOp)) {
675     LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
676                             << "interleavedUses precondition failed, firstOp: "
677                             << *firstOp << ", second op: " << *secondOp);
678     return true;
679   }
680   for (auto v : values) {
681     for (auto &u : v.getUses()) {
682       Operation *owner = u.getOwner();
683       if (owner == firstOp || owner == secondOp)
684         continue;
685       // TODO: this is too conservative, use dominance info in the future.
686       if (owner->getBlock() == firstOp->getBlock() &&
687           (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
688         continue;
689       LLVM_DEBUG(llvm::dbgs()
690                  << "\n[" DEBUG_TYPE "]: "
691                  << " found interleaved op " << *owner
692                  << ", firstOp: " << *firstOp << ", second op: " << *secondOp);
693       return true;
694     }
695   }
696   return false;
697 }
698 
699 /// Return the unique subview use of `v` if it is indeed unique, null otherwise.
700 static SubViewOp getSubViewUseIfUnique(Value v) {
701   SubViewOp subViewOp;
702   for (auto &u : v.getUses()) {
703     if (auto newSubViewOp = dyn_cast<SubViewOp>(u.getOwner())) {
704       if (subViewOp)
705         return SubViewOp();
706       subViewOp = newSubViewOp;
707     }
708   }
709   return subViewOp;
710 }
711 
712 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
713 /// when available.
714 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
715     vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {
716 
717   // Transfer into `view`.
718   Value viewOrAlloc = xferOp.source();
719   if (!viewOrAlloc.getDefiningOp<ViewOp>() &&
720       !viewOrAlloc.getDefiningOp<AllocOp>())
721     return failure();
722 
723   LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << viewOrAlloc);
724 
725   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
726   SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
727   if (!subViewOp)
728     return failure();
729   Value subView = subViewOp.getResult();
730   LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
731                           << "with subView " << subView);
732 
733   // Find the copy into `subView` without interleaved uses.
734   CopyOp copyOp;
735   for (auto &u : subView.getUses()) {
736     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
737       if (newCopyOp.getOutputBuffer(0) != subView)
738         continue;
739       LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
740                               << "copy candidate " << *newCopyOp);
741       if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
742         continue;
743       copyOp = newCopyOp;
744       break;
745     }
746   }
747   if (!copyOp)
748     return failure();
749   LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
750                           << "with copy " << *copyOp);
751 
752   // Find the fill into `viewOrAlloc` without interleaved uses before the copy.
753   FillOp maybeFillOp;
754   for (auto &u : viewOrAlloc.getUses()) {
755     if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
756       if (newFillOp.getOutputBuffer(0) != viewOrAlloc)
757         continue;
758       LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
759                               << "fill candidate " << *newFillOp);
760       if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
761         continue;
762       maybeFillOp = newFillOp;
763       break;
764     }
765   }
766   // Ensure padding matches.
767   if (maybeFillOp && xferOp.padding() != maybeFillOp.value())
768     return failure();
769   if (maybeFillOp)
770     LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
771                             << "with maybeFillOp " << *maybeFillOp);
772 
773   // `in` is the subview that linalg.copy reads. Replace it.
774   Value in = copyOp.getInput(0);
775 
776   // linalg.copy + linalg.fill can be used to create a padded local buffer.
777   // The `masked` attribute is only valid on this padded buffer.
778   // When forwarding to vector.transfer_read, the attribute must be reset
779   // conservatively.
780   Value res = rewriter.create<vector::TransferReadOp>(
781       xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(),
782       xferOp.permutation_map(), xferOp.padding(), ArrayAttr());
783 
784   if (maybeFillOp)
785     rewriter.eraseOp(maybeFillOp);
786   rewriter.eraseOp(copyOp);
787   rewriter.replaceOp(xferOp, res);
788 
789   return success();
790 }
791 
792 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
793 /// when available.
794 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
795     vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
796   // Transfer into `viewOrAlloc`.
797   Value viewOrAlloc = xferOp.source();
798   if (!viewOrAlloc.getDefiningOp<ViewOp>() &&
799       !viewOrAlloc.getDefiningOp<AllocOp>())
800     return failure();
801 
802   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
803   SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
804   if (!subViewOp)
805     return failure();
806   Value subView = subViewOp.getResult();
807 
808   // Find the copy from `subView` without interleaved uses.
809   CopyOp copyOp;
810   for (auto &u : subViewOp.getResult().getUses()) {
811     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
812       if (newCopyOp.getInput(0) != subView)
813         continue;
814       if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
815         continue;
816       copyOp = newCopyOp;
817       break;
818     }
819   }
820   if (!copyOp)
821     return failure();
822 
823   // `out` is the subview copied into that we replace.
824   Value out = copyOp.getOutputBuffer(0);
825 
826   // Forward vector.transfer into copy.
827   // linalg.copy + linalg.fill can be used to create a padded local buffer.
828   // The `masked` attribute is only valid on this padded buffer.
829   // When forwarding to vector.transfer_write, the attribute must be reset
830   // conservatively.
831   rewriter.create<vector::TransferWriteOp>(
832       xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(),
833       xferOp.permutation_map(), ArrayAttr());
834 
835   rewriter.eraseOp(copyOp);
836   rewriter.eraseOp(xferOp);
837 
838   return success();
839 }
840