1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Vectorization transformations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Analysis/LoopAnalysis.h"
14 #include "mlir/Analysis/SliceAnalysis.h"
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
17 #include "mlir/Dialect/Linalg/IR/Linalg.h"
18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/Tensor/IR/Tensor.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/Dialect/Vector/VectorOps.h"
23 #include "mlir/Dialect/Vector/VectorTransforms.h"
24 #include "mlir/IR/AffineExpr.h"
25 #include "mlir/IR/Matchers.h"
26 #include "mlir/IR/PatternMatch.h"
27 #include "mlir/Pass/Pass.h"
28 #include "mlir/Support/LLVM.h"
29 #include "mlir/Transforms/RegionUtils.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/ADT/Sequence.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/TypeSwitch.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <type_traits>
37 
38 using namespace mlir;
39 using namespace mlir::linalg;
40 
41 using llvm::dbgs;
42 
43 #define DEBUG_TYPE "linalg-vectorization"
44 
45 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
46 #define LDBG(X) LLVM_DEBUG(DBGS() << X)
47 
48 static FailureOr<Operation *>
49 vectorizeConvolution(OpBuilder &b, ConvolutionOpInterface convOp);
50 
51 /// Return the unique instance of OpType in `block` if it is indeed unique.
52 /// Return null if none or more than 1 instances exist.
53 template <typename OpType>
54 static OpType getSingleOpOfType(Block &block) {
55   OpType res;
56   block.walk([&](OpType op) {
57     if (res) {
58       res = nullptr;
59       return WalkResult::interrupt();
60     }
61     res = op;
62     return WalkResult::advance();
63   });
64   return res;
65 }
66 
67 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a
68 /// projectedPermutation, compress the unused dimensions to serve as a
69 /// permutation_map for a vector transfer operation.
70 /// For example, given a linalg op such as:
71 ///
72 /// ```
73 ///   %0 = linalg.generic {
74 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>,
75 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)>
76 ///      }
77 ///     ins(%0 : tensor<2x3x4xf32>)
78 ///    outs(%1 : tensor<5x6xf32>)
79 /// ```
80 ///
81 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine
82 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second
83 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`.
84 static AffineMap reindexIndexingMap(AffineMap map) {
85   assert(map.isProjectedPermutation(/*allowZerosInResults=*/true) &&
86          "expected projected permutation");
87   auto res = compressUnusedDims(map);
88   assert(res.getNumDims() == res.getNumResults() &&
89          "expected reindexed map with same number of dims and results");
90   return res;
91 }
92 
93 /// Helper data structure to represent the result of vectorization.
94 /// In certain specific cases, like terminators, we do not want to propagate/
95 enum VectorizationStatus {
96   /// Op failed to vectorize.
97   Failure = 0,
98   /// Op vectorized and custom function took care of replacement logic
99   NoReplace,
100   /// Op vectorized into a new Op whose results will replace original Op's
101   /// results.
102   NewOp
103   // TODO: support values if Op vectorized to Many-Ops whose results we need to
104   // aggregate for replacement.
105 };
106 struct VectorizationResult {
107   /// Return status from vectorizing the current op.
108   enum VectorizationStatus status = VectorizationStatus::Failure;
109   /// New vectorized operation to replace the current op.
110   /// Replacement behavior is specified by `status`.
111   Operation *newOp;
112 };
113 
114 static llvm::Optional<vector::CombiningKind>
115 getKindForOp(Operation *reductionOp) {
116   if (!reductionOp)
117     return llvm::None;
118   return llvm::TypeSwitch<Operation *, llvm::Optional<vector::CombiningKind>>(
119              reductionOp)
120       .Case<arith::AddIOp, arith::AddFOp>(
121           [&](auto op) { return vector::CombiningKind::ADD; })
122       .Case<arith::AndIOp>([&](auto op) { return vector::CombiningKind::AND; })
123       .Case<arith::MaxSIOp>(
124           [&](auto op) { return vector::CombiningKind::MAXSI; })
125       .Case<arith::MaxFOp>([&](auto op) { return vector::CombiningKind::MAXF; })
126       .Case<arith::MinSIOp>(
127           [&](auto op) { return vector::CombiningKind::MINSI; })
128       .Case<arith::MinFOp>([&](auto op) { return vector::CombiningKind::MINF; })
129       .Case<arith::MulIOp, arith::MulFOp>(
130           [&](auto op) { return vector::CombiningKind::MUL; })
131       .Case<arith::OrIOp>([&](auto op) { return vector::CombiningKind::OR; })
132       .Case<arith::XOrIOp>([&](auto op) { return vector::CombiningKind::XOR; })
133       .Default([&](auto op) { return llvm::None; });
134 }
135 
136 /// Check whether `outputOperand` is a reduction with a single combiner
137 /// operation. Return the combiner operation of the reduction. Return
138 /// nullptr otherwise. Multiple reduction operations would impose an
139 /// ordering between reduction dimensions and is currently unsupported in
140 /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) !=
141 /// max(min(X))
142 // TODO: use in LinalgOp verification, there is a circular dependency atm.
143 static Operation *matchLinalgReduction(OpOperand *outputOperand) {
144   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
145   unsigned outputPos =
146       outputOperand->getOperandNumber() - linalgOp.getNumInputs();
147   // Only single combiner operations are supported for now.
148   SmallVector<Operation *, 4> combinerOps;
149   if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) ||
150       combinerOps.size() != 1)
151     return nullptr;
152 
153   // Return the combiner operation.
154   return combinerOps[0];
155 }
156 
157 /// Broadcast `value` to a vector of `shape` if possible. Return value
158 /// otherwise.
159 static Value broadcastIfNeeded(OpBuilder &b, Value value,
160                                ArrayRef<int64_t> shape) {
161   // If no shape to broadcast to, just return `value`.
162   if (shape.empty())
163     return value;
164   VectorType targetVectorType =
165       VectorType::get(shape, getElementTypeOrSelf(value));
166   if (vector::isBroadcastableTo(value.getType(), targetVectorType) !=
167       vector::BroadcastableToResult::Success)
168     return value;
169   Location loc = b.getInsertionPoint()->getLoc();
170   return b.createOrFold<vector::BroadcastOp>(loc, targetVectorType, value);
171 }
172 
173 /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This
174 /// assumes that `reductionOp` has two operands and one of them is the reduction
175 /// initial value.
176 static Value buildMultiDimReduce(OpBuilder &b, Operation *reduceOp,
177                                  Value valueToReduce,
178                                  const SmallVector<bool> &reductionMask) {
179   auto maybeKind = getKindForOp(reduceOp);
180   assert(maybeKind && "Failed precondition: could not get reduction kind");
181   return b.create<vector::MultiDimReductionOp>(
182       reduceOp->getLoc(), valueToReduce, reductionMask, *maybeKind);
183 }
184 
185 static SmallVector<bool> getReductionMask(LinalgOp linalgOp) {
186   unsigned idx = 0;
187   SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false);
188   for (auto attr : linalgOp.iterator_types()) {
189     if (isReductionIterator(attr))
190       reductionMask[idx] = true;
191     ++idx;
192   }
193   return reductionMask;
194 }
195 
196 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set
197 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp
198 /// currently being vectorized. If `dest` has null rank, build an memref.store.
199 /// Return the produced value or null if no value is produced.
200 static Value buildVectorWrite(OpBuilder &b, Value value,
201                               OpOperand *outputOperand) {
202   Operation *write;
203   Location loc = value.getLoc();
204   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
205   ArrayRef<int64_t> shape = linalgOp.getShape(outputOperand);
206   auto vectorType = VectorType::get(
207       shape, getElementTypeOrSelf(outputOperand->get().getType()));
208   if (vectorType.getRank() > 0) {
209     // 0-d case is still special: do not invert the reindexing map.
210     AffineMap map =
211         reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand));
212     SmallVector<int64_t> transposeShape =
213         applyPermutationMap(inversePermutation(map), vectorType.getShape());
214     assert(!transposeShape.empty() && "unexpected empty transpose shape");
215     vectorType = VectorType::get(transposeShape, vectorType.getElementType());
216     SmallVector<Value> indices(linalgOp.getRank(outputOperand),
217                                b.create<arith::ConstantIndexOp>(loc, 0));
218     value = broadcastIfNeeded(b, value, vectorType.getShape());
219     write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(),
220                                               indices, map);
221   } else {
222     if (!value.getType().isa<VectorType>())
223       value = b.create<vector::BroadcastOp>(loc, vectorType, value);
224     assert(value.getType() == vectorType && "incorrect type");
225     write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(),
226                                               ValueRange{});
227   }
228   LDBG("vectorized op: " << *write);
229   if (!write->getResults().empty())
230     return write->getResult(0);
231   return Value();
232 }
233 
234 // Custom vectorization function type. Produce a vector form of Operation*
235 // assuming all its vectorized operands are already in the BlockAndValueMapping.
236 // Return nullptr if the Operation cannot be vectorized.
237 using CustomVectorizationHook = std::function<VectorizationResult(
238     Operation *, const BlockAndValueMapping &)>;
239 
240 /// Helper function to vectorize the terminator of a `linalgOp`. New result
241 /// vector values are appended to `newResults`. Return
242 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it
243 /// should not try to map produced operations and instead return the results
244 /// using the `newResults` vector making them available to the
245 /// vectorization algorithm for RAUW. This function is meant to be used as a
246 /// CustomVectorizationHook.
247 static VectorizationResult
248 vectorizeLinalgYield(OpBuilder &b, Operation *op,
249                      const BlockAndValueMapping &bvm, LinalgOp linalgOp,
250                      SmallVectorImpl<Value> &newResults) {
251   auto yieldOp = dyn_cast<linalg::YieldOp>(op);
252   if (!yieldOp)
253     return VectorizationResult{VectorizationStatus::Failure, nullptr};
254   for (auto outputs : llvm::enumerate(yieldOp.values())) {
255     // TODO: Scan for an opportunity for reuse.
256     // TODO: use a map.
257     Value vectorValue = bvm.lookup(outputs.value());
258     Value newResult = buildVectorWrite(
259         b, vectorValue, linalgOp.getOutputOperand(outputs.index()));
260     if (newResult)
261       newResults.push_back(newResult);
262   }
263   return VectorizationResult{VectorizationStatus::NoReplace, nullptr};
264 }
265 
266 /// Helper function to vectorize the index operations of a `linalgOp`. Return
267 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it
268 /// should map the produced operations. This function is meant to be used as a
269 /// CustomVectorizationHook.
270 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op,
271                                                 LinalgOp linalgOp) {
272   IndexOp indexOp = dyn_cast<linalg::IndexOp>(op);
273   if (!indexOp)
274     return VectorizationResult{VectorizationStatus::Failure, nullptr};
275   auto loc = indexOp.getLoc();
276   // Compute the static loop sizes of the index op.
277   auto targetShape = linalgOp.computeStaticLoopSizes();
278   // Compute a one-dimensional index vector for the index op dimension.
279   SmallVector<int64_t> constantSeq =
280       llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()]));
281   auto constantOp =
282       b.create<arith::ConstantOp>(loc, b.getIndexVectorAttr(constantSeq));
283   // Return the one-dimensional index vector if it lives in the trailing
284   // dimension of the iteration space since the vectorization algorithm in this
285   // case can handle the broadcast.
286   if (indexOp.dim() == targetShape.size() - 1)
287     return VectorizationResult{VectorizationStatus::NewOp, constantOp};
288   // Otherwise permute the targetShape to move the index dimension last,
289   // broadcast the one-dimensional index vector to the permuted shape, and
290   // finally transpose the broadcasted index vector to undo the permutation.
291   std::swap(targetShape[indexOp.dim()], targetShape.back());
292   auto broadCastOp = b.create<vector::BroadcastOp>(
293       loc, VectorType::get(targetShape, b.getIndexType()), constantOp);
294   SmallVector<int64_t> transposition =
295       llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops()));
296   std::swap(transposition.back(), transposition[indexOp.dim()]);
297   auto transposeOp =
298       b.create<vector::TransposeOp>(loc, broadCastOp, transposition);
299   return VectorizationResult{VectorizationStatus::NewOp, transposeOp};
300 }
301 
302 /// Create a new vectorized verstion of `op` with the given operands and types.
303 static Operation *createVectorizedOp(OpBuilder &b, Operation *op,
304                                      ValueRange newOperands,
305                                      ArrayRef<Type> types) {
306   OperationState state(op->getLoc(), op->getName());
307   state.addAttributes(op->getAttrs());
308   state.addOperands(newOperands);
309   state.addTypes(types);
310   return b.createOperation(state);
311 }
312 
313 /// Emit reduction operations if the shapes of the value to reduce is different
314 /// that the result shape.
315 static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op,
316                                  Value reduceValue, Value initialValue,
317                                  const BlockAndValueMapping &bvm) {
318   Value reduceVec = bvm.lookup(reduceValue);
319   Value outputVec = bvm.lookup(initialValue);
320   auto reduceType = reduceVec.getType().dyn_cast<VectorType>();
321   auto outputType = outputVec.getType().dyn_cast<VectorType>();
322   // Reduce only if needed as the value may already have been reduce for
323   // contraction vectorization.
324   if (!reduceType ||
325       (outputType && reduceType.getShape() == outputType.getShape()))
326     return nullptr;
327   SmallVector<bool> reductionMask = getReductionMask(linalgOp);
328   Value reduce = buildMultiDimReduce(b, op, reduceVec, reductionMask);
329   return createVectorizedOp(b, op, {reduce, outputVec}, reduce.getType());
330 }
331 
332 /// Generic vectorization for a single operation `op`, given already vectorized
333 /// operands carried by `bvm`. Vectorization occurs as follows:
334 ///   1. Try to apply any of the `customVectorizationHooks` and return its
335 ///   result on success.
336 ///   2. Clone any constant in the current scope without vectorization: each
337 ///   consumer of the constant will later determine the shape to which the
338 ///   constant needs to be broadcast to.
339 ///   3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
340 ///   of the `customVectorizationHooks` to cover such cases.
341 ///   4. Clone `op` in vector form to a vector of shape prescribed by the first
342 ///   operand of maximal rank. Other operands have smaller rank and are
343 ///   broadcast accordingly. It is assumed this broadcast is always legal,
344 ///   otherwise, it means one of the `customVectorizationHooks` is incorrect.
345 ///
346 /// This function assumes all operands of `op` have been vectorized and are in
347 /// the `bvm` mapping. As a consequence, this function is meant to be called on
348 /// a topologically-sorted list of ops.
349 /// This function does not update `bvm` but returns a VectorizationStatus that
350 /// instructs the caller what `bvm` update needs to occur.
351 static VectorizationResult
352 vectorizeOneOp(OpBuilder &b, LinalgOp linalgOp, Operation *op,
353                const BlockAndValueMapping &bvm,
354                ArrayRef<CustomVectorizationHook> customVectorizationHooks) {
355   LDBG("vectorize op " << *op);
356 
357   // 1. Try to apply any CustomVectorizationHook.
358   if (!customVectorizationHooks.empty()) {
359     for (auto &customFunc : customVectorizationHooks) {
360       VectorizationResult result = customFunc(op, bvm);
361       if (result.status == VectorizationStatus::Failure)
362         continue;
363       return result;
364     }
365   }
366 
367   // 2. Constant ops don't get vectorized but rather broadcasted at their users.
368   // Clone so that the constant is not confined to the linalgOp block .
369   if (isa<arith::ConstantOp, ConstantOp>(op))
370     return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)};
371 
372   // 3. Only ElementwiseMappable are allowed in the generic vectorization.
373   if (!OpTrait::hasElementwiseMappableTraits(op))
374     return VectorizationResult{VectorizationStatus::Failure, nullptr};
375 
376   // 4 . Check if the operation is a reduction.
377   SmallVector<std::pair<Value, Value>> reductionOperands;
378   for (Value operand : op->getOperands()) {
379     auto arg = operand.dyn_cast<BlockArgument>();
380     if (!arg || arg.getArgNumber() < linalgOp.getNumInputs())
381       continue;
382     SmallVector<Operation *> reductionOps;
383     Value reduceValue = matchReduction(
384         linalgOp.getRegionOutputArgs(),
385         arg.getArgNumber() - linalgOp.getNumInputs(), reductionOps);
386     if (!reduceValue)
387       continue;
388     reductionOperands.push_back(std::make_pair(reduceValue, operand));
389   }
390   if (!reductionOperands.empty()) {
391     assert(reductionOperands.size() == 1);
392     Operation *reduceOp =
393         reduceIfNeeded(b, linalgOp, op, reductionOperands[0].first,
394                        reductionOperands[0].second, bvm);
395     if (reduceOp)
396       return VectorizationResult{VectorizationStatus::NewOp, reduceOp};
397   }
398 
399   // 5. Generic vectorization path for ElementwiseMappable ops.
400   //   a. first get the first max ranked shape.
401   SmallVector<int64_t, 4> firstMaxRankedShape;
402   for (Value operand : op->getOperands()) {
403     auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>();
404     if (vt && firstMaxRankedShape.size() < vt.getShape().size())
405       firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end());
406   }
407   //   b. broadcast each op if needed.
408   auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) {
409     return firstMaxRankedShape.empty()
410                ? bvm.lookup(v)
411                : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape);
412   });
413   //   c. for elementwise, the result is the vector with the firstMaxRankedShape
414   auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) {
415     return firstMaxRankedShape.empty()
416                ? t
417                : VectorType::get(firstMaxRankedShape, t);
418   });
419 
420   // Build and return the new op.
421   return VectorizationResult{
422       VectorizationStatus::NewOp,
423       createVectorizedOp(b, op, llvm::to_vector<4>(vectorizedOperands),
424                          llvm::to_vector<4>(returnTypes))};
425 }
426 
427 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp.
428 static bool hasOnlyScalarElementwiseOp(Region &r) {
429   if (!llvm::hasSingleElement(r))
430     return false;
431   for (Operation &op : r.front()) {
432     if (!(isa<arith::ConstantOp, ConstantOp, linalg::YieldOp, linalg::IndexOp>(
433               op) ||
434           OpTrait::hasElementwiseMappableTraits(&op)) ||
435         llvm::any_of(op.getResultTypes(),
436                      [](Type type) { return !type.isIntOrIndexOrFloat(); }))
437       return false;
438   }
439   return true;
440 }
441 
442 // Return true if the op is an element-wise linalg op.
443 static bool isElementwise(Operation *op) {
444   auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
445   if (!linalgOp)
446     return false;
447   if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops())
448     return false;
449   // TODO: relax the restrictions on indexing map.
450   for (OpOperand *opOperand : linalgOp.getOutputOperands()) {
451     if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity())
452       return false;
453   }
454   return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0));
455 }
456 
457 /// Generic vectorization function that rewrites the body of a `linalgOp` into
458 /// vector form. Generic vectorization proceeds as follows:
459 ///   1. Verify the `linalgOp` has one non-empty region.
460 ///   2. Values defined above the region are mapped to themselves and will be
461 ///   broadcasted on a per-need basis by their consumers.
462 ///   3. Each region argument is vectorized into a vector.transfer_read (or 0-d
463 ///   load).
464 ///   TODO: Reuse opportunities for RAR dependencies.
465 ///   4a. Register CustomVectorizationHook for YieldOp to capture the results.
466 ///   4b. Register CustomVectorizationHook for IndexOp to access the iteration
467 ///   indices.
468 ///   5. Iteratively call vectorizeOneOp on the region operations.
469 ///
470 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is
471 /// performed to the maximal common vector size implied by the `linalgOp`
472 /// iteration space. This eager broadcasting is introduced in the
473 /// permutation_map of the vector.transfer_read operations. The eager
474 /// broadcasting makes it trivial to detrmine where broadcast, transposes and
475 /// reductions should occur, without any bookkeeping. The tradeoff is that, in
476 /// the absence of good canonicalizations, the amount of work increases.
477 /// This is not deemed a problem as we expect canonicalizations and foldings to
478 /// aggressively clean up the useless work.
479 static LogicalResult
480 vectorizeAsLinalgGeneric(OpBuilder &b, LinalgOp linalgOp,
481                          SmallVectorImpl<Value> &newResults) {
482   Block *block = linalgOp.getBlock();
483 
484   // 2. Values defined above the region can only be broadcast for now. Make them
485   // map to themselves.
486   BlockAndValueMapping bvm;
487   SetVector<Value> valuesSet;
488   mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet);
489   bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef());
490 
491   if (linalgOp.getNumOutputs() == 0)
492     return failure();
493 
494   // TODO: the common vector shape is equal to the static loop sizes only when
495   // all indexing maps are projected permutations. For convs and stencils the
496   // logic will need to evolve.
497   SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes();
498 
499   // 3. Turn all BBArgs into vector.transfer_read / load.
500   Location loc = linalgOp.getLoc();
501   Value zero = b.create<arith::ConstantIndexOp>(loc, 0);
502   for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) {
503     BlockArgument bbarg = block->getArgument(opOperand->getOperandNumber());
504     if (linalgOp.isScalar(opOperand)) {
505       bvm.map(bbarg, opOperand->get());
506       continue;
507     }
508     VectorType readType;
509     AffineMap map;
510     // TODO: can we keep this simplification?
511     // if (linalgOp.getShape(opOperand).empty()) {
512     //   readType = VectorType::get({}, bbarg.getType());
513     // } else {
514     if (opOperand->getOperandNumber() < linalgOp.getNumInputs()) {
515       map = inverseAndBroadcastProjectedPermuation(
516           linalgOp.getTiedIndexingMap(opOperand));
517       readType = VectorType::get(commonVectorShape,
518                                  getElementTypeOrSelf(opOperand->get()));
519     } else {
520       map = inversePermutation(
521           reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand)));
522       readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)),
523                                  getElementTypeOrSelf(opOperand->get()));
524     }
525     // }
526 
527     auto shape = linalgOp.getShape(opOperand);
528     SmallVector<Value> indices(shape.size(), zero);
529     Value readValue = b.create<vector::TransferReadOp>(
530         loc, readType, opOperand->get(), indices, map);
531     // Not all ops support 0-d vectors, extract the scalar for now.
532     // TODO: remove this.
533     if (readValue.getType().cast<VectorType>().getRank() == 0)
534       readValue = b.create<vector::ExtractElementOp>(loc, readValue);
535 
536     LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue);
537     bvm.map(bbarg, readValue);
538     bvm.map(opOperand->get(), readValue);
539   }
540 
541   SmallVector<CustomVectorizationHook> hooks;
542   // 4a. Register CustomVectorizationHook for yieldOp.
543   CustomVectorizationHook vectorizeYield =
544       [&](Operation *op,
545           const BlockAndValueMapping &bvm) -> VectorizationResult {
546     return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults);
547   };
548   hooks.push_back(vectorizeYield);
549 
550   // 4b. Register CustomVectorizationHook for indexOp.
551   CustomVectorizationHook vectorizeIndex =
552       [&](Operation *op,
553           const BlockAndValueMapping &bvm) -> VectorizationResult {
554     return vectorizeLinalgIndex(b, op, linalgOp);
555   };
556   hooks.push_back(vectorizeIndex);
557 
558   // 5. Iteratively call `vectorizeOneOp` to each op in the slice.
559   for (Operation &op : block->getOperations()) {
560     VectorizationResult result = vectorizeOneOp(b, linalgOp, &op, bvm, hooks);
561     if (result.status == VectorizationStatus::Failure) {
562       LDBG("failed to vectorize: " << op);
563       return failure();
564     }
565     if (result.status == VectorizationStatus::NewOp) {
566       LDBG("new vector op: " << *result.newOp;);
567       bvm.map(op.getResults(), result.newOp->getResults());
568     }
569   }
570 
571   return success();
572 }
573 
574 /// Helper function to vectorize a `linalgOp` with contraction semantics in a
575 /// generic fashion.
576 /// This helper is needed atm because the truly generic implementation requires
577 /// good vector.multi_reduce folding patterns that are currently NYI.
578 // TODO: drop reliance on a specific pattern.
579 static bool allIndexingsAreProjectedPermutation(LinalgOp op) {
580   return llvm::all_of(op.getIndexingMaps(), [](AffineMap m) {
581     return m.isProjectedPermutation(/*allowZerosInResults=*/true);
582   });
583 }
584 
585 // TODO: probably need some extra checks for reduction followed by consumer
586 // ops that may not commute (e.g. linear reduction + non-linear instructions).
587 static LogicalResult reductionPreconditions(LinalgOp op) {
588   if (llvm::none_of(op.iterator_types(), isReductionIterator)) {
589     LDBG("reduction precondition failed: no reduction iterator");
590     return failure();
591   }
592   for (OpOperand *opOperand : op.getOutputOperands()) {
593     Operation *reduceOp = matchLinalgReduction(opOperand);
594     if (!reduceOp || !getKindForOp(reduceOp)) {
595       LDBG("reduction precondition failed: reduction detection failed");
596       return failure();
597     }
598   }
599   return success();
600 }
601 
602 LogicalResult
603 mlir::linalg::vectorizeStaticLinalgOpPrecondition(linalg::LinalgOp op) {
604   if (isElementwise(op))
605     return success();
606   // TODO: isaConvolutionOpInterface that can also infer from generic features.
607   // But we will still need stride/dilation attributes that will be annoying to
608   // reverse-engineer...
609   if (isa<ConvolutionOpInterface>(op.getOperation()))
610     return success();
611   // TODO: the common vector shape is equal to the static loop sizes only when
612   // all indexing maps are projected permutations. For convs and stencils the
613   // logic will need to evolve.
614   if (!allIndexingsAreProjectedPermutation(op)) {
615     LDBG("precondition failed: not projected permutations");
616     return failure();
617   }
618   if (failed(reductionPreconditions(op))) {
619     LDBG("precondition failed: reduction preconditions");
620     return failure();
621   }
622   return success();
623 }
624 
625 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) {
626   auto linalgOp = cast<linalg::LinalgOp>(op);
627   // All types must be static shape to go to vector.
628   if (linalgOp.hasDynamicShape()) {
629     LDBG("precondition failed: dynamic shape");
630     return failure();
631   }
632   return vectorizeStaticLinalgOpPrecondition(linalgOp);
633 }
634 
635 LogicalResult
636 mlir::linalg::vectorizeLinalgOp(OpBuilder &b, Operation *op,
637                                 SmallVectorImpl<Value> &newResults) {
638   if (failed(vectorizeLinalgOpPrecondition(op)))
639     return failure();
640 
641   auto linalgOp = cast<LinalgOp>(op);
642 
643   // TODO: isaConvolutionOpInterface that can also infer from generic features.
644   // But we will still need stride/dilation attributes that will be annoying to
645   // reverse-engineer...
646   if (auto convOp = dyn_cast<ConvolutionOpInterface>(op)) {
647     FailureOr<Operation *> resultOrFail = vectorizeConvolution(b, convOp);
648     if (failed(resultOrFail))
649       return failure();
650     Operation *newOp = *resultOrFail;
651     llvm::append_range(newResults, newOp->getResults());
652     return success();
653   }
654 
655   LDBG(""
656        << "Vectorize linalg op as a generic by broadcasting to "
657           "maximal common shape: "
658        << *op);
659   return vectorizeAsLinalgGeneric(b, linalgOp, newResults);
660 }
661 
662 //----------------------------------------------------------------------------//
663 // Misc. vectorization patterns.
664 //----------------------------------------------------------------------------//
665 
666 /// Helper function that retrieves the value of an IntegerAttr.
667 static int64_t getIntFromAttr(Attribute attr) {
668   return attr.cast<IntegerAttr>().getInt();
669 }
670 
671 /// Given an ArrayRef of OpFoldResults, return a vector of Values. IntegerAttrs
672 /// are converted to ConstantIndexOps. Other attribute types are not supported.
673 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc,
674                                            ArrayRef<OpFoldResult> ofrs) {
675   SmallVector<Value> result;
676   llvm::for_each(ofrs, [&](auto o) {
677     if (auto val = o.template dyn_cast<Value>()) {
678       result.push_back(val);
679     } else {
680       result.push_back(builder.create<arith::ConstantIndexOp>(
681           loc, getIntFromAttr(o.template get<Attribute>())));
682     }
683   });
684   return result;
685 }
686 
687 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and
688 /// InsertSliceOp. For now, only constant padding values are supported.
689 /// If there is enough static type information, TransferReadOps and
690 /// TransferWriteOps may be generated instead of InsertSliceOps.
691 struct GenericPadTensorOpVectorizationPattern
692     : public GeneralizePadTensorOpPattern {
693   GenericPadTensorOpVectorizationPattern(MLIRContext *context,
694                                          PatternBenefit benefit = 1)
695       : GeneralizePadTensorOpPattern(context, tryVectorizeCopy, benefit) {}
696   /// Vectorize the copying of a PadTensorOp's source. This is possible if each
697   /// dimension size is statically know in the source type or the result type
698   /// (or both).
699   static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter,
700                                         PadTensorOp padOp, Value dest) {
701     auto sourceType = padOp.getSourceType();
702     auto resultType = padOp.getResultType();
703 
704     // Copy cannot be vectorized if pad value is non-constant and source shape
705     // is dynamic. In case of a dynamic source shape, padding must be appended
706     // by TransferReadOp, but TransferReadOp supports only constant padding.
707     auto padValue = padOp.getConstantPaddingValue();
708     if (!padValue) {
709       if (!sourceType.hasStaticShape())
710         return failure();
711       // Create dummy padding value.
712       auto elemType = sourceType.getElementType();
713       padValue = rewriter.create<arith::ConstantOp>(
714           padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType));
715     }
716 
717     SmallVector<int64_t> vecShape;
718     SmallVector<bool> readInBounds;
719     SmallVector<bool> writeInBounds;
720     for (unsigned i = 0; i < sourceType.getRank(); ++i) {
721       if (!sourceType.isDynamicDim(i)) {
722         vecShape.push_back(sourceType.getDimSize(i));
723         // Source shape is statically known: Neither read nor write are out-of-
724         // bounds.
725         readInBounds.push_back(true);
726         writeInBounds.push_back(true);
727       } else if (!resultType.isDynamicDim(i)) {
728         // Source shape is not statically known, but result shape is. Vectorize
729         // with size of result shape. This may be larger than the source size.
730         vecShape.push_back(resultType.getDimSize(i));
731         // Read may be out-of-bounds because the result size could be larger
732         // than the source size.
733         readInBounds.push_back(false);
734         // Write is out-of-bounds if low padding > 0.
735         writeInBounds.push_back(
736             getConstantIntValue(padOp.getMixedLowPad()[i]) ==
737             static_cast<int64_t>(0));
738       } else {
739         // Neither source nor result dim of padOp is static. Cannot vectorize
740         // the copy.
741         return failure();
742       }
743     }
744     auto vecType = VectorType::get(vecShape, sourceType.getElementType());
745 
746     // Generate TransferReadOp.
747     SmallVector<Value> readIndices(
748         vecType.getRank(),
749         rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
750     auto read = rewriter.create<vector::TransferReadOp>(
751         padOp.getLoc(), vecType, padOp.source(), readIndices, padValue,
752         ArrayRef<bool>{readInBounds});
753 
754     // If `dest` is a FillOp and the TransferWriteOp would overwrite the entire
755     // tensor, write directly to the FillOp's operand.
756     if (llvm::equal(vecShape, resultType.getShape()) &&
757         llvm::all_of(writeInBounds, [](bool b) { return b; }))
758       if (auto fill = dest.getDefiningOp<FillOp>())
759         dest = fill.output();
760 
761     // Generate TransferWriteOp.
762     auto writeIndices =
763         ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad());
764     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
765         padOp, read, dest, writeIndices, ArrayRef<bool>{writeInBounds});
766 
767     return success();
768   }
769 };
770 
771 /// Base pattern for rewriting PadTensorOps whose result is consumed by a given
772 /// operation type OpTy.
773 template <typename OpTy>
774 struct VectorizePadTensorOpUserPattern : public OpRewritePattern<PadTensorOp> {
775   using OpRewritePattern<PadTensorOp>::OpRewritePattern;
776 
777   LogicalResult matchAndRewrite(PadTensorOp padOp,
778                                 PatternRewriter &rewriter) const final {
779     bool changed = false;
780     // Insert users in vector, because some users may be replaced/removed.
781     for (auto *user : llvm::to_vector<4>(padOp->getUsers()))
782       if (auto op = dyn_cast<OpTy>(user))
783         changed |= rewriteUser(rewriter, padOp, op).succeeded();
784     return success(changed);
785   }
786 
787 protected:
788   virtual LogicalResult rewriteUser(PatternRewriter &rewriter,
789                                     PadTensorOp padOp, OpTy op) const = 0;
790 };
791 
792 /// Rewrite use of PadTensorOp result in TransferReadOp. E.g.:
793 /// ```
794 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32>
795 /// %r = vector.transfer_read %0[%c0, %c0], %cst
796 ///     {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32>
797 /// ```
798 /// is rewritten to:
799 /// ```
800 /// %r = vector.transfer_read %src[%c0, %c0], %padding
801 ///     {in_bounds = [true, true]}
802 ///     : tensor<?x?xf32>, vector<17x5xf32>
803 /// ```
804 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be
805 /// sure that the original padding value %cst was never used.
806 ///
807 /// This rewrite is possible if:
808 /// - `xferOp` has no out-of-bounds dims or mask.
809 /// - Low padding is static 0.
810 /// - Single, scalar padding value.
811 struct PadTensorOpVectorizationWithTransferReadPattern
812     : public VectorizePadTensorOpUserPattern<vector::TransferReadOp> {
813   using VectorizePadTensorOpUserPattern<
814       vector::TransferReadOp>::VectorizePadTensorOpUserPattern;
815 
816   LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
817                             vector::TransferReadOp xferOp) const override {
818     // Low padding must be static 0.
819     if (!padOp.hasZeroLowPad())
820       return failure();
821     // Pad value must be a constant.
822     auto padValue = padOp.getConstantPaddingValue();
823     if (!padValue)
824       return failure();
825     // Padding value of existing `xferOp` is unused.
826     if (xferOp.hasOutOfBoundsDim() || xferOp.mask())
827       return failure();
828 
829     rewriter.updateRootInPlace(xferOp, [&]() {
830       SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
831       xferOp->setAttr(xferOp.getInBoundsAttrName(),
832                       rewriter.getBoolArrayAttr(inBounds));
833       xferOp.sourceMutable().assign(padOp.source());
834       xferOp.paddingMutable().assign(padValue);
835     });
836 
837     return success();
838   }
839 };
840 
841 /// Rewrite use of PadTensorOp result in TransferWriteOp.
842 /// This pattern rewrites TransferWriteOps that write to a padded tensor value,
843 /// where the same amount of padding is immediately removed again after the
844 /// write. In such cases, the TransferWriteOp can write to the non-padded tensor
845 /// value and apply out-of-bounds masking. E.g.:
846 /// ```
847 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
848 ///     : tensor<...> to tensor<?x?xf32>
849 /// %1 = linalg.pad_tensor %0 ... : tensor<?x?xf32> to tensor<17x5xf32>
850 /// %2 = vector.transfer_write %vec, %1[...]
851 ///     : vector<17x5xf32>, tensor<17x5xf32>
852 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1]
853 ///     : tensor<17x5xf32> to tensor<?x?xf32>
854 /// ```
855 /// is rewritten to:
856 /// ```
857 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
858 ///     : tensor<...> to tensor<?x?xf32>
859 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, tensor<?x?xf32>
860 /// ```
861 /// Note: It is important that the ExtractSliceOp %r resizes the result of the
862 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an even
863 /// smaller size). Otherwise, %r's new (dynamic) dimensions would differ from
864 /// %r's old dimensions.
865 ///
866 /// This rewrite is possible if:
867 /// - Low padding is static 0.
868 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This
869 ///   ExtractSliceOp trims the same amount of padding that was added beforehand.
870 /// - Single, scalar padding value.
871 struct PadTensorOpVectorizationWithTransferWritePattern
872     : public VectorizePadTensorOpUserPattern<vector::TransferWriteOp> {
873   using VectorizePadTensorOpUserPattern<
874       vector::TransferWriteOp>::VectorizePadTensorOpUserPattern;
875 
876   LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
877                             vector::TransferWriteOp xferOp) const override {
878     // TODO: support 0-d corner case.
879     if (xferOp.getTransferRank() == 0)
880       return failure();
881 
882     // Low padding must be static 0.
883     if (!padOp.hasZeroLowPad())
884       return failure();
885     // Pad value must be a constant.
886     auto padValue = padOp.getConstantPaddingValue();
887     if (!padValue)
888       return failure();
889     // TransferWriteOp result must be directly consumed by an ExtractSliceOp.
890     if (!xferOp->hasOneUse())
891       return failure();
892     auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin());
893     if (!trimPadding)
894       return failure();
895     // Only static zero offsets supported when trimming padding.
896     if (!trimPadding.hasZeroOffset())
897       return failure();
898     // trimPadding must remove the amount of padding that was added earlier.
899     if (!hasSameTensorSize(padOp.source(), trimPadding))
900       return failure();
901 
902     // Insert the new TransferWriteOp at position of the old TransferWriteOp.
903     rewriter.setInsertionPoint(xferOp);
904 
905     SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
906     auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
907         xferOp, padOp.source().getType(), xferOp.vector(), padOp.source(),
908         xferOp.indices(), xferOp.permutation_mapAttr(), xferOp.mask(),
909         rewriter.getBoolArrayAttr(inBounds));
910     rewriter.replaceOp(trimPadding, newXferOp->getResult(0));
911 
912     return success();
913   }
914 
915   /// Check if `beforePadding` and `afterTrimming` have the same tensor size,
916   /// i.e., same dimensions.
917   ///
918   /// Dimensions may be static, dynamic or mix of both. In case of dynamic
919   /// dimensions, this function tries to infer the (static) tensor size by
920   /// looking at the defining op and utilizing op-specific knowledge.
921   ///
922   /// This is a conservative analysis. In case equal tensor sizes cannot be
923   /// proven statically, this analysis returns `false` even though the tensor
924   /// sizes may turn out to be equal at runtime.
925   bool hasSameTensorSize(Value beforePadding,
926                          tensor::ExtractSliceOp afterTrimming) const {
927     // If the input to PadTensorOp is a CastOp, try with with both CastOp result
928     // and CastOp operand.
929     if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>())
930       if (hasSameTensorSize(castOp.source(), afterTrimming))
931         return true;
932 
933     auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>();
934     auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>();
935     // Only RankedTensorType supported.
936     if (!t1 || !t2)
937       return false;
938     // Rank of both values must be the same.
939     if (t1.getRank() != t2.getRank())
940       return false;
941 
942     // All static dimensions must be the same. Mixed cases (e.g., dimension
943     // static in `t1` but dynamic in `t2`) are not supported.
944     for (unsigned i = 0; i < t1.getRank(); ++i) {
945       if (t1.isDynamicDim(i) != t2.isDynamicDim(i))
946         return false;
947       if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i))
948         return false;
949     }
950 
951     // Nothing more to check if all dimensions are static.
952     if (t1.getNumDynamicDims() == 0)
953       return true;
954 
955     // All dynamic sizes must be the same. The only supported case at the moment
956     // is when `beforePadding` is an ExtractSliceOp (or a cast thereof).
957 
958     // Apart from CastOp, only ExtractSliceOp is supported.
959     auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>();
960     if (!beforeSlice)
961       return false;
962 
963     assert(static_cast<size_t>(t1.getRank()) ==
964            beforeSlice.getMixedSizes().size());
965     assert(static_cast<size_t>(t2.getRank()) ==
966            afterTrimming.getMixedSizes().size());
967 
968     for (unsigned i = 0; i < t1.getRank(); ++i) {
969       // Skip static dimensions.
970       if (!t1.isDynamicDim(i))
971         continue;
972       auto size1 = beforeSlice.getMixedSizes()[i];
973       auto size2 = afterTrimming.getMixedSizes()[i];
974 
975       // Case 1: Same value or same constant int.
976       if (isEqualConstantIntOrValue(size1, size2))
977         continue;
978 
979       // Other cases: Take a deeper look at defining ops of values.
980       auto v1 = size1.dyn_cast<Value>();
981       auto v2 = size2.dyn_cast<Value>();
982       if (!v1 || !v2)
983         return false;
984 
985       // Case 2: Both values are identical AffineMinOps. (Should not happen if
986       // CSE is run.)
987       auto minOp1 = v1.getDefiningOp<AffineMinOp>();
988       auto minOp2 = v2.getDefiningOp<AffineMinOp>();
989       if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() &&
990           minOp1.operands() == minOp2.operands())
991         continue;
992 
993       // Add additional cases as needed.
994     }
995 
996     // All tests passed.
997     return true;
998   }
999 };
1000 
1001 /// Rewrite use of PadTensorOp result in InsertSliceOp. E.g.:
1002 /// ```
1003 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32>
1004 /// %r = tensor.insert_slice %0
1005 ///     into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1]
1006 ///     : tensor<17x5xf32> into tensor<?x?x17x5xf32>
1007 /// ```
1008 /// is rewritten to:
1009 /// ```
1010 /// %0 = vector.transfer_read %src[%c0, %c0], %padding
1011 ///     : tensor<?x?xf32>, vector<17x5xf32>
1012 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0]
1013 ///     {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32>
1014 /// ```
1015 ///
1016 /// This rewrite is possible if:
1017 /// - Low padding is static 0.
1018 /// - `padOp` result shape is static.
1019 /// - The entire padded tensor is inserted.
1020 ///   (Implies that sizes of `insertOp` are all static.)
1021 /// - Only unit strides in `insertOp`.
1022 /// - Single, scalar padding value.
1023 /// - `padOp` result not used as destination.
1024 struct PadTensorOpVectorizationWithInsertSlicePattern
1025     : public VectorizePadTensorOpUserPattern<tensor::InsertSliceOp> {
1026   using VectorizePadTensorOpUserPattern<
1027       tensor::InsertSliceOp>::VectorizePadTensorOpUserPattern;
1028 
1029   LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
1030                             tensor::InsertSliceOp insertOp) const override {
1031     // Low padding must be static 0.
1032     if (!padOp.hasZeroLowPad())
1033       return failure();
1034     // Only unit stride supported.
1035     if (!insertOp.hasUnitStride())
1036       return failure();
1037     // Pad value must be a constant.
1038     auto padValue = padOp.getConstantPaddingValue();
1039     if (!padValue)
1040       return failure();
1041     // Dynamic shapes not supported.
1042     if (!padOp.result().getType().cast<ShapedType>().hasStaticShape())
1043       return failure();
1044     // Pad result not used as destination.
1045     if (insertOp.dest() == padOp.result())
1046       return failure();
1047 
1048     auto vecType = VectorType::get(padOp.getType().getShape(),
1049                                    padOp.getType().getElementType());
1050     unsigned vecRank = vecType.getRank();
1051     unsigned tensorRank = insertOp.getType().getRank();
1052 
1053     // Check if sizes match: Insert the entire tensor into most minor dims.
1054     // (No permutations allowed.)
1055     SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1);
1056     expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end());
1057     if (!llvm::all_of(
1058             llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) {
1059               return getConstantIntValue(std::get<0>(it)) == std::get<1>(it);
1060             }))
1061       return failure();
1062 
1063     // Insert the TransferReadOp and TransferWriteOp at the position of the
1064     // InsertSliceOp.
1065     rewriter.setInsertionPoint(insertOp);
1066 
1067     // Generate TransferReadOp: Read entire source tensor and add high padding.
1068     SmallVector<Value> readIndices(
1069         vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
1070     auto read = rewriter.create<vector::TransferReadOp>(
1071         padOp.getLoc(), vecType, padOp.source(), readIndices, padValue);
1072 
1073     // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at
1074     // specified offsets. Write is fully in-bounds because a InsertSliceOp's
1075     // source must fit into the destination at the specified offsets.
1076     auto writeIndices =
1077         ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets());
1078     SmallVector<bool> inBounds(vecRank, true);
1079     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
1080         insertOp, read, insertOp.dest(), writeIndices,
1081         ArrayRef<bool>{inBounds});
1082 
1083     return success();
1084   }
1085 };
1086 
1087 void mlir::linalg::populatePadTensorOpVectorizationPatterns(
1088     RewritePatternSet &patterns, PatternBenefit baseBenefit) {
1089   patterns.add<GenericPadTensorOpVectorizationPattern>(patterns.getContext(),
1090                                                        baseBenefit);
1091   // Try these specialized patterns first before resorting to the generic one.
1092   patterns.add<PadTensorOpVectorizationWithTransferReadPattern,
1093                PadTensorOpVectorizationWithTransferWritePattern,
1094                PadTensorOpVectorizationWithInsertSlicePattern>(
1095       patterns.getContext(), baseBenefit.getBenefit() + 1);
1096 }
1097 
1098 // TODO: cleanup all the convolution vectorization patterns.
1099 template <class ConvOp, int N>
1100 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite(
1101     ConvOp op, PatternRewriter &rewriter) const {
1102   Location loc = op.getLoc();
1103   MLIRContext *context = op.getContext();
1104 
1105   OpOperand *input = op.getInputOperand(0);
1106   OpOperand *kernel = op.getInputOperand(1);
1107   OpOperand *output = op.getOutputOperand(0);
1108   ArrayRef<int64_t> inShape = op.getShape(input);
1109   ArrayRef<int64_t> kShape = op.getShape(kernel);
1110 
1111   if (llvm::any_of(inShape, ShapedType::isDynamic) ||
1112       llvm::any_of(kShape, ShapedType::isDynamic))
1113     return failure();
1114 
1115   SmallVector<AffineExpr, 4> mapping;
1116   SmallVector<int64_t, 4> vectorDims;
1117   // Fail to apply when the size of not vectorized dimension is not 1.
1118   for (unsigned i = 0; i < N; i++) {
1119     if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1))
1120       return failure();
1121 
1122     if (mask[i] && inShape[i] != kShape[i])
1123       return failure();
1124 
1125     if (mask[i]) {
1126       mapping.push_back(getAffineDimExpr(i, context));
1127       vectorDims.push_back(inShape[i]);
1128     }
1129   }
1130 
1131   int64_t rank = op.getRank(input);
1132   int64_t numDims = mapping.size();
1133   Type elemType = getElementTypeOrSelf(input->get());
1134 
1135   auto map = AffineMap::get(rank, 0, mapping, context);
1136   SmallVector<Value, 4> zeros(rank,
1137                               rewriter.create<arith::ConstantIndexOp>(loc, 0));
1138   auto vecType = VectorType::get(vectorDims, elemType);
1139 
1140   auto inputVec = rewriter.create<vector::TransferReadOp>(
1141       loc, vecType, input->get(), zeros, map);
1142   auto kernelVec = rewriter.create<vector::TransferReadOp>(
1143       loc, vecType, kernel->get(), zeros, map);
1144 
1145   auto acc = rewriter.create<arith::ConstantOp>(loc, elemType,
1146                                                 rewriter.getZeroAttr(elemType));
1147 
1148   std::array<AffineMap, 3> indexingMaps{
1149       AffineMap::getMultiDimIdentityMap(numDims, context),
1150       AffineMap::getMultiDimIdentityMap(numDims, context),
1151       AffineMap::get(numDims, 0, {}, context)};
1152 
1153   std::vector<StringRef> iteratorTypes(numDims, "reduction");
1154 
1155   auto result = rewriter.create<vector::ContractionOp>(
1156       loc, inputVec, kernelVec, acc,
1157       rewriter.getAffineMapArrayAttr(indexingMaps),
1158       rewriter.getStrArrayAttr(iteratorTypes));
1159 
1160   rewriter.create<memref::StoreOp>(loc, result, output->get(),
1161                                    ValueRange(zeros));
1162   rewriter.eraseOp(op);
1163   return success();
1164 }
1165 
1166 /// Inserts tiling, promotion and vectorization pattern for ConvOp
1167 /// conversion into corresponding pattern lists.
1168 template <typename ConvOp, unsigned N>
1169 static void populateVectorizationPatterns(
1170     RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns,
1171     RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) {
1172   auto *context = tilingPatterns.getContext();
1173   if (tileSizes.size() < N)
1174     return;
1175 
1176   constexpr static StringRef kTiledMarker = "TILED";
1177   constexpr static StringRef kPromotedMarker = "PROMOTED";
1178   tilingPatterns.add<LinalgTilingPattern<ConvOp>>(
1179       context, LinalgTilingOptions().setTileSizes(tileSizes),
1180       LinalgTransformationFilter(ArrayRef<StringAttr>{},
1181                                  StringAttr::get(kTiledMarker, context)));
1182 
1183   promotionPatterns.add<LinalgPromotionPattern<ConvOp>>(
1184       context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
1185       LinalgTransformationFilter(StringAttr::get(kTiledMarker, context),
1186                                  StringAttr::get(kPromotedMarker, context)));
1187 
1188   SmallVector<bool, 4> mask(N);
1189   int offset = tileSizes.size() - N;
1190   std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(),
1191                  [](int64_t i) -> bool { return i > 1; });
1192 
1193   vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask);
1194 }
1195 
1196 void mlir::linalg::populateConvVectorizationPatterns(
1197     MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns,
1198     ArrayRef<int64_t> tileSizes) {
1199   RewritePatternSet tiling(context);
1200   RewritePatternSet promotion(context);
1201   RewritePatternSet vectorization(context);
1202   populateVectorizationPatterns<Conv1DOp, 1>(tiling, promotion, vectorization,
1203                                              tileSizes);
1204 
1205   populateVectorizationPatterns<Conv2DOp, 2>(tiling, promotion, vectorization,
1206                                              tileSizes);
1207 
1208   populateVectorizationPatterns<Conv3DOp, 3>(tiling, promotion, vectorization,
1209                                              tileSizes);
1210 
1211   populateVectorizationPatterns<Conv1DNwcWcfOp, 3>(tiling, promotion,
1212                                                    vectorization, tileSizes);
1213 
1214   populateVectorizationPatterns<Conv2DNhwcHwcfOp, 4>(tiling, promotion,
1215                                                      vectorization, tileSizes);
1216 
1217   populateVectorizationPatterns<Conv3DNdhwcDhwcfOp, 5>(
1218       tiling, promotion, vectorization, tileSizes);
1219 
1220   patterns.push_back(std::move(tiling));
1221   patterns.push_back(std::move(promotion));
1222   patterns.push_back(std::move(vectorization));
1223 }
1224 
1225 //----------------------------------------------------------------------------//
1226 // Forwarding patterns
1227 //----------------------------------------------------------------------------//
1228 
1229 /// Check whether there is any interleaved use of any `values` between `firstOp`
1230 /// and `secondOp`. Conservatively return `true` if any op or value is in a
1231 /// different block.
1232 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
1233                                     ValueRange values) {
1234   if (firstOp->getBlock() != secondOp->getBlock() ||
1235       !firstOp->isBeforeInBlock(secondOp)) {
1236     LDBG("interleavedUses precondition failed, firstOp: "
1237          << *firstOp << ", second op: " << *secondOp);
1238     return true;
1239   }
1240   for (auto v : values) {
1241     for (auto &u : v.getUses()) {
1242       Operation *owner = u.getOwner();
1243       if (owner == firstOp || owner == secondOp)
1244         continue;
1245       // TODO: this is too conservative, use dominance info in the future.
1246       if (owner->getBlock() == firstOp->getBlock() &&
1247           (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
1248         continue;
1249       LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp
1250                                     << ", second op: " << *secondOp);
1251       return true;
1252     }
1253   }
1254   return false;
1255 }
1256 
1257 /// Return the unique subview use of `v` if it is indeed unique, null otherwise.
1258 static memref::SubViewOp getSubViewUseIfUnique(Value v) {
1259   memref::SubViewOp subViewOp;
1260   for (auto &u : v.getUses()) {
1261     if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) {
1262       if (subViewOp)
1263         return memref::SubViewOp();
1264       subViewOp = newSubViewOp;
1265     }
1266   }
1267   return subViewOp;
1268 }
1269 
1270 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1271 /// when available.
1272 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
1273     vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {
1274 
1275   // TODO: support mask.
1276   if (xferOp.mask())
1277     return failure();
1278 
1279   // Transfer into `view`.
1280   Value viewOrAlloc = xferOp.source();
1281   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1282       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1283     return failure();
1284 
1285   LDBG(viewOrAlloc);
1286 
1287   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1288   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1289   if (!subViewOp)
1290     return failure();
1291   Value subView = subViewOp.getResult();
1292   LDBG("with subView " << subView);
1293 
1294   // Find the copy into `subView` without interleaved uses.
1295   CopyOp copyOp;
1296   for (auto &u : subView.getUses()) {
1297     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
1298       assert(newCopyOp.output().getType().isa<MemRefType>());
1299       if (newCopyOp.output() != subView)
1300         continue;
1301       LDBG("copy candidate " << *newCopyOp);
1302       if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
1303         continue;
1304       copyOp = newCopyOp;
1305       break;
1306     }
1307   }
1308   if (!copyOp)
1309     return failure();
1310   LDBG("with copy " << *copyOp);
1311 
1312   // Find the fill into `viewOrAlloc` without interleaved uses before the copy.
1313   FillOp maybeFillOp;
1314   for (auto &u : viewOrAlloc.getUses()) {
1315     if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
1316       assert(newFillOp.output().getType().isa<MemRefType>());
1317       if (newFillOp.output() != viewOrAlloc)
1318         continue;
1319       LDBG("fill candidate " << *newFillOp);
1320       if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
1321         continue;
1322       maybeFillOp = newFillOp;
1323       break;
1324     }
1325   }
1326   // Ensure padding matches.
1327   if (maybeFillOp && xferOp.padding() != maybeFillOp.value())
1328     return failure();
1329   if (maybeFillOp)
1330     LDBG("with maybeFillOp " << *maybeFillOp);
1331 
1332   // `in` is the subview that linalg.copy reads. Replace it.
1333   Value in = copyOp.input();
1334 
1335   // linalg.copy + linalg.fill can be used to create a padded local buffer.
1336   // The `masked` attribute is only valid on this padded buffer.
1337   // When forwarding to vector.transfer_read, the attribute must be reset
1338   // conservatively.
1339   Value res = rewriter.create<vector::TransferReadOp>(
1340       xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(),
1341       xferOp.permutation_mapAttr(), xferOp.padding(), xferOp.mask(),
1342       // in_bounds is explicitly reset
1343       /*inBoundsAttr=*/ArrayAttr());
1344 
1345   if (maybeFillOp)
1346     rewriter.eraseOp(maybeFillOp);
1347   rewriter.eraseOp(copyOp);
1348   rewriter.replaceOp(xferOp, res);
1349 
1350   return success();
1351 }
1352 
1353 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1354 /// when available.
1355 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
1356     vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
1357   // TODO: support mask.
1358   if (xferOp.mask())
1359     return failure();
1360 
1361   // Transfer into `viewOrAlloc`.
1362   Value viewOrAlloc = xferOp.source();
1363   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1364       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1365     return failure();
1366 
1367   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1368   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1369   if (!subViewOp)
1370     return failure();
1371   Value subView = subViewOp.getResult();
1372 
1373   // Find the copy from `subView` without interleaved uses.
1374   CopyOp copyOp;
1375   for (auto &u : subViewOp.getResult().getUses()) {
1376     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
1377       if (newCopyOp.getInputOperand(0)->get() != subView)
1378         continue;
1379       if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
1380         continue;
1381       copyOp = newCopyOp;
1382       break;
1383     }
1384   }
1385   if (!copyOp)
1386     return failure();
1387 
1388   // `out` is the subview copied into that we replace.
1389   assert(copyOp.output().getType().isa<MemRefType>());
1390   Value out = copyOp.output();
1391 
1392   // Forward vector.transfer into copy.
1393   // linalg.copy + linalg.fill can be used to create a padded local buffer.
1394   // The `masked` attribute is only valid on this padded buffer.
1395   // When forwarding to vector.transfer_write, the attribute must be reset
1396   // conservatively.
1397   rewriter.create<vector::TransferWriteOp>(
1398       xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(),
1399       xferOp.permutation_mapAttr(), xferOp.mask(),
1400       // in_bounds is explicitly reset
1401       /*inBoundsAttr=*/ArrayAttr());
1402 
1403   rewriter.eraseOp(copyOp);
1404   rewriter.eraseOp(xferOp);
1405 
1406   return success();
1407 }
1408 
1409 //===----------------------------------------------------------------------===//
1410 // Convolution vectorization patterns
1411 //===----------------------------------------------------------------------===//
1412 namespace {
1413 /// Generate a vector implementation for either:
1414 /// ```
1415 ///   Op def: (     n,     w,     c,    kw,    f  )
1416 ///    Iters: ({Par(), Par(), Par(), Red(), Red()})
1417 ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1418 /// ```
1419 /// kw is unrolled, w is unrolled iff dilationW > 1.
1420 ///
1421 /// or
1422 ///
1423 /// ```
1424 ///   Op def: (     n,     w,     c,    kw )
1425 ///    Iters: ({Par(), Par(), Par(), Red()})
1426 ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
1427 /// ```
1428 /// kw is unrolled, w is unrolled iff dilationW > 1.
1429 struct Conv1DNwcGenerator : public StructuredGenerator<LinalgOp> {
1430   Conv1DNwcGenerator(OpBuilder &builder, LinalgOp linalgOp, int strideW,
1431                      int dilationW)
1432       : StructuredGenerator<LinalgOp>(builder, linalgOp), valid(false),
1433         strideW(strideW), dilationW(dilationW) {
1434     // Determine whether `linalgOp` can be generated with this generator
1435     if (linalgOp.getNumInputs() != 2 || linalgOp.getNumOutputs() != 1)
1436       return;
1437     lhsShaped = linalgOp.inputs()[0];
1438     rhsShaped = linalgOp.inputs()[1];
1439     resShaped = linalgOp.outputs()[0];
1440     lhsShapedType = lhsShaped.getType().dyn_cast<ShapedType>();
1441     rhsShapedType = rhsShaped.getType().dyn_cast<ShapedType>();
1442     resShapedType = resShaped.getType().dyn_cast<ShapedType>();
1443     if (!lhsShapedType || !rhsShapedType || !resShapedType)
1444       return;
1445     if (lhsShapedType.getRank() != 3 ||
1446         (rhsShapedType.getRank() != 2 && rhsShapedType.getRank() != 3) ||
1447         resShapedType.getRank() != 3)
1448       return;
1449 
1450     // Check for reduction `add` preceded by `mul`.
1451     Operation *reduceOp = matchLinalgReduction(linalgOp.getOutputOperand(0));
1452     if (!reduceOp)
1453       return;
1454     llvm::Optional<vector::CombiningKind> maybeKind;
1455     maybeKind = getKindForOp(reduceOp);
1456     if (!maybeKind || *maybeKind != vector::CombiningKind::ADD)
1457       return;
1458     maybeKind = getKindForOp(&(linalgOp->getRegion(0).front().front()));
1459     if (!maybeKind || *maybeKind != vector::CombiningKind::MUL)
1460       return;
1461 
1462     // The op is now known to be valid.
1463     valid = true;
1464   }
1465 
1466   /// Generate a vector implementation for:
1467   /// ```
1468   ///   Op def: (     n,     w,     c,    kw,    f  )
1469   ///    Iters: ({Par(), Par(), Par(), Red(), Red()})
1470   ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1471   /// ```
1472   /// kw is always unrolled.
1473   /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is > 1.
1474   FailureOr<Operation *> conv() {
1475     if (!valid)
1476       return failure();
1477 
1478     int nSize = lhsShapedType.getShape()[0];
1479     int wSize = resShapedType.getShape()[1];
1480     int cSize = lhsShapedType.getShape()[2];
1481     int kwSize = rhsShapedType.getShape()[0];
1482     int fSize = rhsShapedType.getShape()[2];
1483 
1484     vector::TransferWriteOp write;
1485     Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
1486 
1487     // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1.
1488     // When strideW == 1, we can batch the contiguous loads and avoid unrolling
1489     int64_t wSizeStep = strideW == 1 ? wSize : 1;
1490 
1491     Type lhsEltType = lhsShapedType.getElementType();
1492     Type rhsEltType = rhsShapedType.getElementType();
1493     Type resEltType = resShapedType.getElementType();
1494     VectorType lhsType = VectorType::get(
1495         {nSize,
1496          // iw = ow * sw + kw *  dw - 1
1497          //   (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
1498          // Perform the proper inclusive -> exclusive -> inclusive.
1499          ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1,
1500          cSize},
1501         lhsEltType);
1502     VectorType rhsType = VectorType::get({kwSize, cSize, fSize}, rhsEltType);
1503     VectorType resType = VectorType::get({nSize, wSize, fSize}, resEltType);
1504 
1505     // Read lhs slice of size {w * strideW + kw * dilationW, c, f} @ [0, 0, 0].
1506     Value lhs = builder.create<vector::TransferReadOp>(
1507         loc, lhsType, lhsShaped, ValueRange{zero, zero, zero});
1508     // Read rhs slice of size {kw, c, f} @ [0, 0, 0].
1509     Value rhs = builder.create<vector::TransferReadOp>(
1510         loc, rhsType, rhsShaped, ValueRange{zero, zero, zero});
1511     // Read res slice of size {n, w, f} @ [0, 0, 0].
1512     Value res = builder.create<vector::TransferReadOp>(
1513         loc, resType, resShaped, ValueRange{zero, zero, zero});
1514 
1515     //===------------------------------------------------------------------===//
1516     // Begin vector-only rewrite part
1517     //===------------------------------------------------------------------===//
1518     // Unroll along kw and read slices of lhs and rhs.
1519     SmallVector<Value> lhsVals, rhsVals, resVals;
1520     for (int64_t kw = 0; kw < kwSize; ++kw) {
1521       // Extract rhs slice of size {c, f} @ [kw].
1522       rhsVals.push_back(builder.create<vector::ExtractOp>(
1523           loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw}));
1524 
1525       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1526         // Extract lhs slice of size {n, wSizeStep, c}
1527         //   @ [0, sw * w + dw * kw, 0].
1528         lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1529             loc, lhs,
1530             /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
1531             /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1532             /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1533 
1534         // This does not depend on kw.
1535         if (kw == 0) {
1536           // Extract res slice: {n, wSizeStep, f} @ [0, w, 0].
1537           resVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1538               loc, res,
1539               /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1540               /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, fSize},
1541               /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1542         }
1543       }
1544     }
1545 
1546     auto linearIndex = [&](int64_t kw, int64_t w) {
1547       return kw * (wSize / wSizeStep) + w;
1548     };
1549 
1550     // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f}
1551     for (int64_t kw = 0; kw < kwSize; ++kw) {
1552       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1553         resVals[w] = conv1dSliceAsContraction(
1554             builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]);
1555       }
1556     }
1557 
1558     // Write back res slice: {n, wSizeStep, f} @ [0, w, 0].
1559     // This does not depend on kw.
1560     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1561       res = builder.create<vector::InsertStridedSliceOp>(
1562           loc, resVals[w], res,
1563           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1564           /*strides=*/ArrayRef<int64_t>{1, 1, 1});
1565     }
1566     //===------------------------------------------------------------------===//
1567     // End vector-only rewrite part
1568     //===------------------------------------------------------------------===//
1569 
1570     // Write back res slice of size {n, w, f} @ [0, 0, 0].
1571     return builder
1572         .create<vector::TransferWriteOp>(loc, res, resShaped,
1573                                          ValueRange{zero, zero, zero})
1574         .getOperation();
1575   }
1576 
1577   // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f}
1578   Value conv1dSliceAsContraction(OpBuilder &b, Location loc, Value lhs,
1579                                  Value rhs, Value res) {
1580     StringRef par = Par().strRef, red = Red().strRef;
1581     AffineExpr n, w, f, c;
1582     bindDims(ctx, n, w, f, c);
1583     return builder.create<vector::ContractionOp>(
1584         loc, lhs, rhs, res,
1585         /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}},
1586         /*iteratorTypes=*/ArrayRef<StringRef>{par, par, par, red});
1587   }
1588 
1589   /// Generate a vector implementation for:
1590   /// ```
1591   ///   Op def: (     n,     w,     c,    kw)
1592   ///    Iters: ({Par(), Par(), Par(), Red()})
1593   ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
1594   /// ```
1595   /// kw is always unrolled.
1596   /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is > 1.
1597   FailureOr<Operation *> dilatedConv() {
1598     if (!valid)
1599       return failure();
1600 
1601     int nSize = lhsShapedType.getShape()[0];
1602     int wSize = resShapedType.getShape()[1];
1603     int cSize = lhsShapedType.getShape()[2];
1604     int kwSize = rhsShapedType.getShape()[0];
1605 
1606     vector::TransferWriteOp write;
1607     Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
1608 
1609     // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1.
1610     // When strideW == 1, we can batch the contiguous loads and avoid unrolling
1611     int64_t wSizeStep = strideW == 1 ? wSize : 1;
1612 
1613     Type lhsEltType = lhsShapedType.getElementType();
1614     Type rhsEltType = rhsShapedType.getElementType();
1615     Type resEltType = resShapedType.getElementType();
1616     VectorType lhsType = VectorType::get(
1617         {nSize,
1618          // iw = ow * sw + kw *  dw - 1
1619          //   (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
1620          ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1,
1621          cSize},
1622         lhsEltType);
1623     VectorType rhsType = VectorType::get({kwSize, cSize}, rhsEltType);
1624     VectorType resType = VectorType::get({nSize, wSize, cSize}, resEltType);
1625 
1626     // Read lhs slice of size {n, w * strideW + kw * dilationW, c} @ [0, 0, 0].
1627     Value lhs = builder.create<vector::TransferReadOp>(
1628         loc, lhsType, lhsShaped, ValueRange{zero, zero, zero});
1629     // Read rhs slice of size {kw, c} @ [0, 0].
1630     Value rhs = builder.create<vector::TransferReadOp>(loc, rhsType, rhsShaped,
1631                                                        ValueRange{zero, zero});
1632     // Read res slice of size {n, w, c} @ [0, 0, 0].
1633     Value res = builder.create<vector::TransferReadOp>(
1634         loc, resType, resShaped, ValueRange{zero, zero, zero});
1635 
1636     //===------------------------------------------------------------------===//
1637     // Begin vector-only rewrite part
1638     //===------------------------------------------------------------------===//
1639     // Unroll along kw and read slices of lhs and rhs.
1640     SmallVector<Value> lhsVals, rhsVals, resVals;
1641     for (int64_t kw = 0; kw < kwSize; ++kw) {
1642       // Extract rhs slice of size {c} @ [kw].
1643       rhsVals.push_back(builder.create<vector::ExtractOp>(
1644           loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw}));
1645 
1646       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1647         // Extract lhs slice of size {n, wSizeStep, c}
1648         //   @ [0, sw * w + dw * kw, 0].
1649         lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1650             loc, lhs,
1651             /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
1652             /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1653             /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1654 
1655         // This does not depend on kw.
1656         if (kw == 0) {
1657           // Extract res slice: {n, wSizeStep, c} @ [0, w, 0].
1658           resVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1659               loc, res,
1660               /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1661               /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1662               /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1663         }
1664       }
1665     }
1666 
1667     auto linearIndex = [&](int64_t kw, int64_t w) {
1668       return kw * (wSize / wSizeStep) + w;
1669     };
1670 
1671     // Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c}
1672     for (int64_t kw = 0; kw < kwSize; ++kw) {
1673       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1674         resVals[w] = dilatedConv1dSliceAsFma(
1675             builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]);
1676       }
1677     }
1678 
1679     // Write back res slice: {n, wSizeStep, c} @ [0, w, 0].
1680     // This does not depend on kw.
1681     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1682       res = builder.create<vector::InsertStridedSliceOp>(
1683           loc, resVals[w], res,
1684           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1685           /*strides=*/ArrayRef<int64_t>{1, 1, 1});
1686     }
1687     //===------------------------------------------------------------------===//
1688     // End vector-only rewrite part
1689     //===------------------------------------------------------------------===//
1690 
1691     // Write back res slice of size {n, w, c} @ [0, 0, 0].
1692     return builder
1693         .create<vector::TransferWriteOp>(loc, res, resShaped,
1694                                          ValueRange{zero, zero, zero})
1695         .getOperation();
1696   }
1697 
1698   /// Lower lhs{n, w, c} * rhs{c} -> res{n, w, c} to fma.
1699   Value dilatedConv1dSliceAsFma(OpBuilder &b, Location loc, Value lhs,
1700                                 Value rhs, Value res) {
1701     Value bcast = builder.create<vector::BroadcastOp>(loc, res.getType(), rhs);
1702     return b.create<vector::FMAOp>(loc, lhs, bcast, res);
1703   }
1704 
1705   /// Entry point that transposes into the common form:
1706   ///   {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1707   FailureOr<Operation *> generateConv() {
1708     AffineExpr n, w, f, kw, c;
1709     bindDims(ctx, n, w, f, kw, c);
1710     if (!iters({Par(), Par(), Par(), Red(), Red()}))
1711       return failure();
1712 
1713     // No transposition needed.
1714     if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
1715                 /*rhsIndex*/ {kw, c, f},
1716                 /*resIndex*/ {n, w, f}}))
1717       return conv();
1718     return failure();
1719   }
1720 
1721   /// Entry point that transposes into the common form:
1722   ///   {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
1723   FailureOr<Operation *> generateDilatedConv() {
1724     AffineExpr n, w, c, kw;
1725     bindDims(ctx, n, w, c, kw);
1726     if (!iters({Par(), Par(), Par(), Red()}))
1727       return failure();
1728 
1729     // No transposition needed.
1730     if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
1731                 /*rhsIndex*/ {kw, c},
1732                 /*resIndex*/ {n, w, c}}))
1733       return dilatedConv();
1734     return failure();
1735   }
1736 
1737 private:
1738   bool valid;
1739   int strideW, dilationW;
1740   Value lhsShaped, rhsShaped, resShaped;
1741   ShapedType lhsShapedType, rhsShapedType, resShapedType;
1742 };
1743 } // namespace
1744 
1745 /// Helper function to vectorize a `linalgOp` with convolution semantics.
1746 // TODO: extend the generic vectorization to support windows and drop this.
1747 static FailureOr<Operation *>
1748 vectorizeConvolution(OpBuilder &b, ConvolutionOpInterface convOp) {
1749   // TODO: these are legitimately part of ConvolutionOpInterface.
1750   auto strides = convOp->getAttrOfType<DenseIntElementsAttr>("strides");
1751   auto dilations = convOp->getAttrOfType<DenseIntElementsAttr>("dilations");
1752   auto stride = strides ? *strides.getValues<uint64_t>().begin() : 1;
1753   auto dilation = dilations ? *dilations.getValues<uint64_t>().begin() : 1;
1754   LinalgOp linalgOp = cast<LinalgOp>(convOp.getOperation());
1755   Conv1DNwcGenerator e(b, linalgOp, stride, dilation);
1756   auto res = e.generateConv();
1757   if (succeeded(res))
1758     return res;
1759   return e.generateDilatedConv();
1760 }
1761 
1762 struct VectorizeConvolution
1763     : public OpInterfaceRewritePattern<ConvolutionOpInterface> {
1764   using OpInterfaceRewritePattern::OpInterfaceRewritePattern;
1765 
1766   LogicalResult matchAndRewrite(ConvolutionOpInterface convOp,
1767                                 PatternRewriter &rewriter) const override {
1768     FailureOr<Operation *> resultOrFail =
1769         vectorizeConvolution(rewriter, convOp);
1770     if (failed(resultOrFail))
1771       return failure();
1772     Operation *newOp = *resultOrFail;
1773     if (newOp->getNumResults() == 0) {
1774       rewriter.eraseOp(convOp.getOperation());
1775       return success();
1776     }
1777     assert(newOp->getNumResults() == 1 && "expected single result");
1778     rewriter.replaceOp(convOp.getOperation(), newOp->getResult(0));
1779     return success();
1780   }
1781 };
1782 
1783 void mlir::linalg::populateConvolutionVectorizationPatterns(
1784     RewritePatternSet &patterns, PatternBenefit benefit) {
1785   patterns.add<VectorizeConvolution>(patterns.getContext(), benefit);
1786 }
1787