1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Analysis/LoopAnalysis.h" 14 #include "mlir/Analysis/SliceAnalysis.h" 15 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 18 #include "mlir/Dialect/Linalg/Utils/Utils.h" 19 #include "mlir/Dialect/Tensor/IR/Tensor.h" 20 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 21 #include "mlir/Dialect/Vector/VectorOps.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/Matchers.h" 24 #include "mlir/IR/PatternMatch.h" 25 #include "mlir/Pass/Pass.h" 26 #include "mlir/Support/LLVM.h" 27 #include "mlir/Transforms/RegionUtils.h" 28 #include "llvm/ADT/ScopeExit.h" 29 #include "llvm/ADT/Sequence.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/TypeSwitch.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <type_traits> 35 36 using namespace mlir; 37 using namespace mlir::linalg; 38 39 using llvm::dbgs; 40 41 #define DEBUG_TYPE "linalg-vectorization" 42 43 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") 44 #define LDBG(X) LLVM_DEBUG(DBGS() << X) 45 46 /// Return the unique instance of OpType in `block` if it is indeed unique. 47 /// Return null if none or more than 1 instances exist. 48 template <typename OpType> 49 static OpType getSingleOpOfType(Block &block) { 50 OpType res; 51 block.walk([&](OpType op) { 52 if (res) { 53 res = nullptr; 54 return WalkResult::interrupt(); 55 } 56 res = op; 57 return WalkResult::advance(); 58 }); 59 return res; 60 } 61 62 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a 63 /// projectedPermutation, compress the unused dimensions to serve as a 64 /// permutation_map for a vector transfer operation. 65 /// For example, given a linalg op such as: 66 /// 67 /// ``` 68 /// %0 = linalg.generic { 69 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, 70 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> 71 /// } 72 /// ins(%0 : tensor<2x3x4xf32>) 73 /// outs(%1 : tensor<5x6xf32>) 74 /// ``` 75 /// 76 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine 77 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second 78 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. 79 static AffineMap reindexIndexingMap(AffineMap map) { 80 assert(map.isProjectedPermutation() && "expected projected permutation"); 81 auto res = compressUnusedDims(map); 82 assert(res.getNumDims() == res.getNumResults() && 83 "expected reindexed map with same number of dims and results"); 84 return res; 85 } 86 87 /// Helper data structure to represent the result of vectorization. 88 /// In certain specific cases, like terminators, we do not want to propagate/ 89 enum VectorizationStatus { 90 /// Op failed to vectorize. 91 Failure = 0, 92 /// Op vectorized and custom function took care of replacement logic 93 NoReplace, 94 /// Op vectorized into a new Op whose results will replace original Op's 95 /// results. 96 NewOp 97 // TODO: support values if Op vectorized to Many-Ops whose results we need to 98 // aggregate for replacement. 99 }; 100 struct VectorizationResult { 101 /// Return status from vectorizing the current op. 102 enum VectorizationStatus status = VectorizationStatus::Failure; 103 /// New vectorized operation to replace the current op. 104 /// Replacement behavior is specified by `status`. 105 Operation *newOp; 106 }; 107 108 /// Return a vector type of the same shape and element type as the (assumed) 109 /// ShapedType of `v`. 110 static VectorType extractVectorTypeFromShapedValue(Value v) { 111 auto st = v.getType().cast<ShapedType>(); 112 if (st.getShape().empty()) 113 return VectorType(); 114 return VectorType::get(st.getShape(), st.getElementType()); 115 } 116 117 static llvm::Optional<vector::CombiningKind> 118 getKindForOp(Operation *reductionOp) { 119 if (!reductionOp) 120 return llvm::None; 121 return llvm::TypeSwitch<Operation *, llvm::Optional<vector::CombiningKind>>( 122 reductionOp) 123 .Case<AddIOp, AddFOp>([&](auto op) { return vector::CombiningKind::ADD; }) 124 .Case<MaxSIOp>([&](auto op) { return vector::CombiningKind::MAXSI; }) 125 .Case<MaxFOp>([&](auto op) { return vector::CombiningKind::MAXF; }) 126 .Case<MinSIOp>([&](auto op) { return vector::CombiningKind::MINSI; }) 127 .Case<MinFOp>([&](auto op) { return vector::CombiningKind::MINF; }) 128 .Default([&](auto op) { return llvm::None; }); 129 } 130 131 /// Check whether `outputOperand` is a reduction with a single combiner 132 /// operation. Return the combiner operation kind of the reduction, if 133 /// supported. Return llvm::None, otherwise. Multiple reduction operations would 134 /// impose an ordering between reduction dimensions and is currently unsupported 135 /// in Linalg. This limitation is motivated by the fact that e.g. min(max(X)) != 136 /// max(min(X)) 137 // TODO: use in LinalgOp verification, there is a circular dependency atm. 138 static llvm::Optional<vector::CombiningKind> 139 matchLinalgReduction(OpOperand *outputOperand) { 140 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 141 unsigned outputPos = 142 outputOperand->getOperandNumber() - linalgOp.getNumInputs(); 143 // Only single combiner operatios are supported for now. 144 SmallVector<Operation *, 4> combinerOps; 145 if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) || 146 combinerOps.size() != 1) 147 return llvm::None; 148 149 // Return the combiner operation kind, if supported. 150 return getKindForOp(combinerOps[0]); 151 } 152 153 /// Broadcast `value` to a vector of `shape` if possible. Return value 154 /// otherwise. 155 static Value broadcastIfNeeded(OpBuilder &b, Value value, 156 ArrayRef<int64_t> shape) { 157 // If no shape to broadcast to, just return `value`. 158 if (shape.empty()) 159 return value; 160 VectorType targetVectorType = 161 VectorType::get(shape, getElementTypeOrSelf(value)); 162 if (vector::isBroadcastableTo(value.getType(), targetVectorType) != 163 vector::BroadcastableToResult::Success) 164 return value; 165 Location loc = b.getInsertionPoint()->getLoc(); 166 return b.createOrFold<vector::BroadcastOp>(loc, targetVectorType, value); 167 } 168 169 /// Assuming `outputOperand` is an output operand of a LinalgOp, determine 170 /// whether a reduction is needed to produce a `targetType` and create that 171 /// reduction if it is the case. 172 static Value reduceIfNeeded(OpBuilder &b, Type targetType, Value value, 173 OpOperand *outputOperand) { 174 LDBG("Reduce " << value << " to type " << targetType); 175 LDBG("In LinalgOp operand #" << outputOperand->getOperandNumber() << "\n" 176 << *(outputOperand->getOwner())); 177 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 178 auto vecType = value.getType().dyn_cast<VectorType>(); 179 VectorType targetVectorType = targetType.dyn_cast<VectorType>(); 180 if (!vecType) 181 return value; 182 if (targetVectorType && vecType.getShape() == targetVectorType.getShape()) 183 return value; 184 185 // At this point, we know we need to reduce. Detect the reduction operator. 186 unsigned pos = 0; 187 MLIRContext *ctx = b.getContext(); 188 SmallVector<AffineExpr> exprs; 189 for (auto s : linalgOp.iterator_types()) 190 if (isParallelIterator(s)) 191 exprs.push_back(getAffineDimExpr(pos++, ctx)); 192 auto loc = value.getLoc(); 193 194 auto maybeKind = matchLinalgReduction(outputOperand); 195 assert(maybeKind && "Failed precondition: could not get reduction kind"); 196 unsigned idx = 0; 197 SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false); 198 for (auto attr : linalgOp.iterator_types()) { 199 if (isReductionIterator(attr)) 200 reductionMask[idx] = true; 201 ++idx; 202 } 203 return b.create<vector::MultiDimReductionOp>(loc, value, reductionMask, 204 *maybeKind); 205 } 206 207 /// Build a vector.transfer_read from `source` at indices set to all `0`. 208 /// If source has rank zero, build a `vector<1xt> transfer_read + extract`. 209 /// Return the produced value. 210 static Value buildVectorRead(OpBuilder &b, Value source, Type readType, 211 AffineMap map) { 212 Location loc = source.getLoc(); 213 auto shapedType = source.getType().cast<ShapedType>(); 214 SmallVector<Value> indices(shapedType.getRank(), 215 b.create<ConstantIndexOp>(loc, 0)); 216 if (auto vectorType = readType.dyn_cast<VectorType>()) 217 return b.create<vector::TransferReadOp>(loc, vectorType, source, indices, 218 map); 219 return vector::TransferReadOp::createScalarOp(b, loc, source, indices); 220 } 221 222 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set 223 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp 224 /// currently being vectorized. If `dest` has null rank, build an memref.store. 225 /// Return the produced value or null if no value is produced. 226 static Value buildVectorWrite(OpBuilder &b, Value value, 227 OpOperand *outputOperand) { 228 Operation *write; 229 Location loc = value.getLoc(); 230 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 231 if (VectorType vectorType = 232 extractVectorTypeFromShapedValue(outputOperand->get())) { 233 AffineMap map = 234 reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand)); 235 SmallVector<int64_t> transposeShape = 236 applyPermutationMap(inversePermutation(map), vectorType.getShape()); 237 assert(!transposeShape.empty() && "unexpected empty transpose shape"); 238 vectorType = VectorType::get(transposeShape, vectorType.getElementType()); 239 SmallVector<Value> indices(linalgOp.getRank(outputOperand), 240 b.create<ConstantIndexOp>(loc, 0)); 241 value = broadcastIfNeeded(b, value, vectorType.getShape()); 242 value = reduceIfNeeded(b, vectorType, value, outputOperand); 243 write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(), 244 indices, map); 245 } else { 246 value = 247 reduceIfNeeded(b, getElementTypeOrSelf(value), value, outputOperand); 248 write = vector::TransferWriteOp::createScalarOp( 249 b, loc, value, outputOperand->get(), ValueRange{}); 250 } 251 LDBG("vectorized op: " << *write); 252 if (!write->getResults().empty()) 253 return write->getResult(0); 254 return Value(); 255 } 256 257 // Custom vectorization function type. Produce a vector form of Operation* 258 // assuming all its vectorized operands are already in the BlockAndValueMapping. 259 // Return nullptr if the Operation cannot be vectorized. 260 using CustomVectorizationHook = std::function<VectorizationResult( 261 Operation *, const BlockAndValueMapping &)>; 262 263 /// Helper function to vectorize the terminator of a `linalgOp`. New result 264 /// vector values are appended to `newResults`. Return 265 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it 266 /// should not try to map produced operations and instead return the results 267 /// using the `newResults` vector making them available to the 268 /// vectorization algorithm for RAUW. This function is meant to be used as a 269 /// CustomVectorizationHook. 270 static VectorizationResult 271 vectorizeLinalgYield(OpBuilder &b, Operation *op, 272 const BlockAndValueMapping &bvm, LinalgOp linalgOp, 273 SmallVectorImpl<Value> &newResults) { 274 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 275 if (!yieldOp) 276 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 277 for (auto outputs : llvm::enumerate(yieldOp.values())) { 278 // TODO: Scan for an opportunity for reuse. 279 // TODO: use a map. 280 Value vectorValue = bvm.lookup(outputs.value()); 281 Value newResult = buildVectorWrite( 282 b, vectorValue, linalgOp.getOutputOperand(outputs.index())); 283 if (newResult) 284 newResults.push_back(newResult); 285 } 286 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 287 } 288 289 /// Helper function to vectorize the index operations of a `linalgOp`. Return 290 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it 291 /// should map the produced operations. This function is meant to be used as a 292 /// CustomVectorizationHook. 293 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op, 294 LinalgOp linalgOp) { 295 IndexOp indexOp = dyn_cast<linalg::IndexOp>(op); 296 if (!indexOp) 297 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 298 auto loc = indexOp.getLoc(); 299 // Compute the static loop sizes of the index op. 300 auto targetShape = linalgOp.computeStaticLoopSizes(); 301 // Compute a one-dimensional index vector for the index op dimension. 302 SmallVector<int64_t> constantSeq = 303 llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()])); 304 ConstantOp constantOp = 305 b.create<ConstantOp>(loc, b.getIndexVectorAttr(constantSeq)); 306 // Return the one-dimensional index vector if it lives in the trailing 307 // dimension of the iteration space since the vectorization algorithm in this 308 // case can handle the broadcast. 309 if (indexOp.dim() == targetShape.size() - 1) 310 return VectorizationResult{VectorizationStatus::NewOp, constantOp}; 311 // Otherwise permute the targetShape to move the index dimension last, 312 // broadcast the one-dimensional index vector to the permuted shape, and 313 // finally transpose the broadcasted index vector to undo the permutation. 314 std::swap(targetShape[indexOp.dim()], targetShape.back()); 315 auto broadCastOp = b.create<vector::BroadcastOp>( 316 loc, VectorType::get(targetShape, b.getIndexType()), constantOp); 317 SmallVector<int64_t> transposition = 318 llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops())); 319 std::swap(transposition.back(), transposition[indexOp.dim()]); 320 auto transposeOp = 321 b.create<vector::TransposeOp>(loc, broadCastOp, transposition); 322 return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; 323 } 324 325 /// Generic vectorization for a single operation `op`, given already vectorized 326 /// operands carried by `bvm`. Vectorization occurs as follows: 327 /// 1. Try to apply any of the `customVectorizationHooks` and return its 328 /// result on success. 329 /// 2. Clone any constant in the current scope without vectorization: each 330 /// consumer of the constant will later determine the shape to which the 331 /// constant needs to be broadcast to. 332 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 333 /// of the `customVectorizationHooks` to cover such cases. 334 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 335 /// operand of maximal rank. Other operands have smaller rank and are 336 /// broadcast accordingly. It is assumed this broadcast is always legal, 337 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 338 /// 339 /// This function assumes all operands of `op` have been vectorized and are in 340 /// the `bvm` mapping. As a consequence, this function is meant to be called on 341 /// a topologically-sorted list of ops. 342 /// This function does not update `bvm` but returns a VectorizationStatus that 343 /// instructs the caller what `bvm` update needs to occur. 344 static VectorizationResult 345 vectorizeOneOp(OpBuilder &b, Operation *op, const BlockAndValueMapping &bvm, 346 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 347 LDBG("vectorize op " << *op); 348 349 // 1. Try to apply any CustomVectorizationHook. 350 if (!customVectorizationHooks.empty()) { 351 for (auto &customFunc : customVectorizationHooks) { 352 VectorizationResult result = customFunc(op, bvm); 353 if (result.status == VectorizationStatus::Failure) 354 continue; 355 return result; 356 } 357 } 358 359 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 360 // Clone so that the constant is not confined to the linalgOp block . 361 if (isa<ConstantOp>(op)) 362 return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)}; 363 364 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 365 if (!OpTrait::hasElementwiseMappableTraits(op)) 366 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 367 368 // 4. Generic vectorization path for ElementwiseMappable ops. 369 // a. first get the first max ranked shape. 370 SmallVector<int64_t, 4> firstMaxRankedShape; 371 for (Value operand : op->getOperands()) { 372 auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); 373 if (vt && firstMaxRankedShape.size() < vt.getShape().size()) 374 firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); 375 } 376 // b. broadcast each op if needed. 377 auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { 378 return firstMaxRankedShape.empty() 379 ? bvm.lookup(v) 380 : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape); 381 }); 382 // c. for elementwise, the result is the vector with the firstMaxRankedShape 383 auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { 384 return firstMaxRankedShape.empty() 385 ? t 386 : VectorType::get(firstMaxRankedShape, t); 387 }); 388 389 // Build and return the new op. 390 OperationState state(op->getLoc(), op->getName()); 391 state.addAttributes(op->getAttrs()); 392 state.addOperands(llvm::to_vector<4>(vectorizedOperands)); 393 state.addTypes(llvm::to_vector<4>(returnTypes)); 394 return VectorizationResult{VectorizationStatus::NewOp, 395 b.createOperation(state)}; 396 } 397 398 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. 399 static bool hasOnlyScalarElementwiseOp(Region &r) { 400 if (!llvm::hasSingleElement(r)) 401 return false; 402 for (Operation &op : r.front()) { 403 if (!(isa<ConstantOp, linalg::YieldOp, linalg::IndexOp>(op) || 404 OpTrait::hasElementwiseMappableTraits(&op)) || 405 llvm::any_of(op.getResultTypes(), 406 [](Type type) { return !type.isIntOrIndexOrFloat(); })) 407 return false; 408 } 409 return true; 410 } 411 412 // Return true if the op is an element-wise linalg op. 413 static bool isElementwise(Operation *op) { 414 auto linalgOp = dyn_cast<linalg::LinalgOp>(op); 415 if (!linalgOp) 416 return false; 417 if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) 418 return false; 419 // TODO: relax the restrictions on indexing map. 420 for (OpOperand *opOperand : linalgOp.getOutputOperands()) { 421 if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity()) 422 return false; 423 } 424 if (linalgOp->getNumRegions() != 1) 425 return false; 426 return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0)); 427 } 428 429 /// Generic vectorization function that rewrites the body of a `linalgOp` into 430 /// vector form. Generic vectorization proceeds as follows: 431 /// 1. Verify the `linalgOp` has one non-empty region. 432 /// 2. Values defined above the region are mapped to themselves and will be 433 /// broadcasted on a per-need basis by their consumers. 434 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 435 /// load). 436 /// TODO: Reuse opportunities for RAR dependencies. 437 /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. 438 /// 4b. Register CustomVectorizationHook for IndexOp to access the iteration 439 /// indices. 440 /// 5. Iteratively call vectorizeOneOp on the region operations. 441 /// 442 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is 443 /// performed to the maximal common vector size implied by the `linalgOp` 444 /// iteration space. This eager broadcasting is introduced in the 445 /// permutation_map of the vector.transfer_read operations. The eager 446 /// broadcasting makes it trivial to detrmine where broadcast, transposes and 447 /// reductions should occur, without any bookkeeping. The tradeoff is that, in 448 /// the absence of good canonicalizations, the amount of work increases. 449 /// This is not deemed a problem as we expect canonicalizations and foldings to 450 /// aggressively clean up the useless work. 451 LogicalResult vectorizeAsLinalgGeneric( 452 OpBuilder &b, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults, 453 bool broadcastToMaximalCommonShape = false, 454 ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) { 455 // 1. Fail to vectorize if the operation does not have one non-empty region. 456 if (linalgOp->getNumRegions() != 1 || linalgOp->getRegion(0).empty()) 457 return failure(); 458 auto &block = linalgOp->getRegion(0).front(); 459 460 // 2. Values defined above the region can only be broadcast for now. Make them 461 // map to themselves. 462 BlockAndValueMapping bvm; 463 SetVector<Value> valuesSet; 464 mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); 465 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 466 467 if (linalgOp.getNumOutputs() == 0) 468 return failure(); 469 470 // TODO: the common vector shape is equal to the static loop sizes only when 471 // all indexing maps are projected permutations. For convs and stencils the 472 // logic will need to evolve. 473 SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes(); 474 475 // 3. Turn all BBArgs into vector.transfer_read / load. 476 SmallVector<AffineMap> indexings; 477 for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) { 478 BlockArgument bbarg = block.getArgument(opOperand->getOperandNumber()); 479 if (linalgOp.isScalar(opOperand)) { 480 bvm.map(bbarg, opOperand->get()); 481 continue; 482 } 483 // TODO: 0-d vectors. 484 Type readType; 485 AffineMap map; 486 if (linalgOp.getShape(opOperand).empty()) { 487 readType = bbarg.getType(); 488 } else { 489 if (broadcastToMaximalCommonShape) { 490 map = inverseAndBroadcastProjectedPermuation( 491 linalgOp.getTiedIndexingMap(opOperand)); 492 readType = VectorType::get(commonVectorShape, 493 getElementTypeOrSelf(opOperand->get())); 494 } else { 495 map = inversePermutation( 496 reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand))); 497 readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)), 498 getElementTypeOrSelf(opOperand->get())); 499 } 500 } 501 Value readValue = buildVectorRead(b, opOperand->get(), readType, map); 502 LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue); 503 bvm.map(bbarg, readValue); 504 bvm.map(opOperand->get(), readValue); 505 } 506 507 auto hooks = llvm::to_vector<4>(customVectorizationHooks); 508 // 4a. Register CustomVectorizationHook for yieldOp. 509 CustomVectorizationHook vectorizeYield = 510 [&](Operation *op, 511 const BlockAndValueMapping &bvm) -> VectorizationResult { 512 return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults); 513 }; 514 hooks.push_back(vectorizeYield); 515 516 // 4b. Register CustomVectorizationHook for indexOp. 517 CustomVectorizationHook vectorizeIndex = 518 [&](Operation *op, 519 const BlockAndValueMapping &bvm) -> VectorizationResult { 520 return vectorizeLinalgIndex(b, op, linalgOp); 521 }; 522 hooks.push_back(vectorizeIndex); 523 524 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 525 for (Operation &op : block.getOperations()) { 526 VectorizationResult result = vectorizeOneOp(b, &op, bvm, hooks); 527 if (result.status == VectorizationStatus::Failure) { 528 LDBG("failed to vectorize: " << op); 529 return failure(); 530 } 531 if (result.status == VectorizationStatus::NewOp) { 532 LDBG("new vector op: " << *result.newOp;); 533 bvm.map(op.getResults(), result.newOp->getResults()); 534 } 535 } 536 537 return success(); 538 } 539 540 static LogicalResult vectorizeContraction(OpBuilder &b, LinalgOp linalgOp, 541 SmallVectorImpl<Value> &newResults) { 542 assert(isaContractionOpInterface(linalgOp) && 543 "expected vectorizeContraction preconditions to be met"); 544 Location loc = linalgOp.getLoc(); 545 // Vectorize other ops as vector contraction. 546 // TODO: interface. 547 LDBG("" 548 << "Rewrite linalg op as vector.contract: "; 549 linalgOp.dump()); 550 // Special function that describes how to vectorize the multiplication op in a 551 // linalg contraction. 552 CustomVectorizationHook vectorizeContraction = 553 [&](Operation *op, 554 const BlockAndValueMapping &bvm) -> VectorizationResult { 555 if (!isa<MulIOp, MulFOp>(op)) 556 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 557 ArrayRef<int64_t> outShape = 558 linalgOp.getShape(linalgOp.getOutputOperand(0)); 559 Type vType; 560 if (outShape.empty()) { 561 vType = op->getResult(0).getType(); 562 } else { 563 SmallVector<int64_t> resultShape = applyPermutationMap( 564 inversePermutation(reindexIndexingMap( 565 linalgOp.getTiedIndexingMap(linalgOp.getOutputOperand(0)))), 566 outShape); 567 vType = VectorType::get(resultShape, op->getResult(0).getType()); 568 } 569 auto zero = b.create<ConstantOp>(loc, vType, b.getZeroAttr(vType)); 570 // Indexing maps at the time of vector.transfer_read are adjusted to order 571 // vector dimensions in the same order as the canonical linalg op iteration 572 // space order. 573 // The indexings for the contraction therefore need to be adjusted. 574 // TODO: consider dropping contraction special casing altogether, this will 575 // require more advanced canonicalizations involving vector.multi_reduction 576 // that are not yet available. 577 SmallVector<AffineMap> indexingMaps; 578 indexingMaps.reserve(linalgOp.getNumInputsAndOutputs()); 579 llvm::transform(linalgOp.getIndexingMaps(), 580 std::back_inserter(indexingMaps), 581 [](AffineMap indexingMap) { 582 return inversePermutation(reindexIndexingMap(indexingMap)) 583 .compose(indexingMap); 584 }); 585 Operation *contract = b.create<vector::ContractionOp>( 586 loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero, 587 b.getAffineMapArrayAttr(indexingMaps), linalgOp.iterator_types()); 588 return VectorizationResult{VectorizationStatus::NewOp, contract}; 589 }; 590 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 591 /*broadcastToMaximalCommonShape=*/false, 592 {vectorizeContraction}); 593 } 594 595 static bool allIndexingsAreProjectedPermutation(LinalgOp op) { 596 return llvm::all_of(op.getIndexingMaps(), 597 [](AffineMap m) { return m.isProjectedPermutation(); }); 598 } 599 600 // TODO: probably need some extra checks for reduction followed by consumer 601 // ops that may not commute (e.g. linear reduction + non-linear instructions). 602 static LogicalResult reductionPreconditions(LinalgOp op) { 603 if (llvm::none_of(op.iterator_types(), isReductionIterator)) { 604 LDBG("reduction precondition failed: no reduction iterator"); 605 return failure(); 606 } 607 for (OpOperand *opOperand : op.getOutputOperands()) { 608 if (!matchLinalgReduction(opOperand)) { 609 LDBG("reduction precondition failed: reduction detection failed"); 610 return failure(); 611 } 612 } 613 return success(); 614 } 615 616 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { 617 auto linalgOp = cast<linalg::LinalgOp>(op); 618 // All types must be static shape to go to vector. 619 if (linalgOp.hasDynamicShape()) { 620 LDBG("precondition failed: dynamic shape"); 621 return failure(); 622 } 623 if (isElementwise(op)) 624 return success(); 625 if (isaContractionOpInterface(linalgOp)) 626 return success(); 627 // TODO: the common vector shape is equal to the static loop sizes only when 628 // all indexing maps are projected permutations. For convs and stencils the 629 // logic will need to evolve. 630 if (!allIndexingsAreProjectedPermutation(linalgOp)) { 631 LDBG("precondition failed: not projected permutations"); 632 return failure(); 633 } 634 if (failed(reductionPreconditions(linalgOp))) { 635 LDBG("precondition failed: reduction preconditions"); 636 return failure(); 637 } 638 return success(); 639 } 640 641 LogicalResult 642 mlir::linalg::vectorizeLinalgOp(OpBuilder &b, Operation *op, 643 SmallVectorImpl<Value> &newResults) { 644 if (failed(vectorizeLinalgOpPrecondition(op))) 645 return failure(); 646 647 auto linalgOp = cast<LinalgOp>(op); 648 if (isaContractionOpInterface(linalgOp)) 649 return vectorizeContraction(b, linalgOp, newResults); 650 651 LDBG("" 652 << "Vectorize linalg op as a generic by broadcasting to " 653 "maximal common shape: " 654 << *op); 655 return vectorizeAsLinalgGeneric(b, linalgOp, newResults, 656 /*broadcastToMaximalCommonShape=*/true); 657 } 658 659 //----------------------------------------------------------------------------// 660 // Misc. vectorization patterns. 661 //----------------------------------------------------------------------------// 662 663 /// Helper function that retrieves the value of an IntegerAttr. 664 static int64_t getIntFromAttr(Attribute attr) { 665 return attr.cast<IntegerAttr>().getInt(); 666 } 667 668 /// Given an ArrayRef of OpFoldResults, return a vector of Values. IntegerAttrs 669 /// are converted to ConstantIndexOps. Other attribute types are not supported. 670 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc, 671 ArrayRef<OpFoldResult> ofrs) { 672 SmallVector<Value> result; 673 llvm::for_each(ofrs, [&](auto o) { 674 if (auto val = o.template dyn_cast<Value>()) { 675 result.push_back(val); 676 } else { 677 result.push_back(builder.create<ConstantIndexOp>( 678 loc, getIntFromAttr(o.template get<Attribute>()))); 679 } 680 }); 681 return result; 682 } 683 684 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and 685 /// InsertSliceOp. For now, only constant padding values are supported. 686 /// If there is enough static type information, TransferReadOps and 687 /// TransferWriteOps may be generated instead of InsertSliceOps. 688 struct GenericPadTensorOpVectorizationPattern 689 : public GeneralizePadTensorOpPattern { 690 GenericPadTensorOpVectorizationPattern(MLIRContext *context, 691 PatternBenefit benefit = 1) 692 : GeneralizePadTensorOpPattern(context, tryVectorizeCopy, benefit) {} 693 /// Vectorize the copying of a PadTensorOp's source. This is possible if each 694 /// dimension size is statically know in the source type or the result type 695 /// (or both). 696 static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter, 697 PadTensorOp padOp, Value dest) { 698 auto sourceType = padOp.getSourceType(); 699 auto resultType = padOp.getResultType(); 700 701 // Copy cannot be vectorized if pad value is non-constant and source shape 702 // is dynamic. In case of a dynamic source shape, padding must be appended 703 // by TransferReadOp, but TransferReadOp supports only constant padding. 704 auto padValue = padOp.getConstantPaddingValue(); 705 if (!padValue) { 706 if (!sourceType.hasStaticShape()) 707 return failure(); 708 // Create dummy padding value. 709 auto elemType = sourceType.getElementType(); 710 padValue = rewriter.create<ConstantOp>(padOp.getLoc(), elemType, 711 rewriter.getZeroAttr(elemType)); 712 } 713 714 SmallVector<int64_t> vecShape; 715 SmallVector<bool> readInBounds; 716 SmallVector<bool> writeInBounds; 717 for (unsigned i = 0; i < sourceType.getRank(); ++i) { 718 if (!sourceType.isDynamicDim(i)) { 719 vecShape.push_back(sourceType.getDimSize(i)); 720 // Source shape is statically known: Neither read nor write are out-of- 721 // bounds. 722 readInBounds.push_back(true); 723 writeInBounds.push_back(true); 724 } else if (!resultType.isDynamicDim(i)) { 725 // Source shape is not statically known, but result shape is. Vectorize 726 // with size of result shape. This may be larger than the source size. 727 vecShape.push_back(resultType.getDimSize(i)); 728 // Read may be out-of-bounds because the result size could be larger 729 // than the source size. 730 readInBounds.push_back(false); 731 // Write is out-of-bounds if low padding > 0. 732 writeInBounds.push_back( 733 getConstantIntValue(padOp.getMixedLowPad()[i]) == 734 static_cast<int64_t>(0)); 735 } else { 736 // Neither source nor result dim of padOp is static. Cannot vectorize 737 // the copy. 738 return failure(); 739 } 740 } 741 auto vecType = VectorType::get(vecShape, sourceType.getElementType()); 742 743 // Generate TransferReadOp. 744 SmallVector<Value> readIndices( 745 vecType.getRank(), rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); 746 auto read = rewriter.create<vector::TransferReadOp>( 747 padOp.getLoc(), vecType, padOp.source(), readIndices, padValue, 748 readInBounds); 749 750 // If `dest` is a FillOp and the TransferWriteOp would overwrite the entire 751 // tensor, write directly to the FillOp's operand. 752 if (llvm::equal(vecShape, resultType.getShape()) && 753 llvm::all_of(writeInBounds, [](bool b) { return b; })) 754 if (auto fill = dest.getDefiningOp<FillOp>()) 755 dest = fill.output(); 756 757 // Generate TransferWriteOp. 758 auto writeIndices = 759 ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad()); 760 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 761 padOp, read, dest, writeIndices, writeInBounds); 762 763 return success(); 764 } 765 }; 766 767 /// Base pattern for rewriting PadTensorOps whose result is consumed by a given 768 /// operation type OpTy. 769 template <typename OpTy> 770 struct VectorizePadTensorOpUserPattern : public OpRewritePattern<PadTensorOp> { 771 using OpRewritePattern<PadTensorOp>::OpRewritePattern; 772 773 LogicalResult matchAndRewrite(PadTensorOp padOp, 774 PatternRewriter &rewriter) const final { 775 bool changed = false; 776 // Insert users in vector, because some users may be replaced/removed. 777 for (auto *user : llvm::to_vector<4>(padOp->getUsers())) 778 if (auto op = dyn_cast<OpTy>(user)) 779 changed |= rewriteUser(rewriter, padOp, op).succeeded(); 780 return success(changed); 781 } 782 783 protected: 784 virtual LogicalResult rewriteUser(PatternRewriter &rewriter, 785 PadTensorOp padOp, OpTy op) const = 0; 786 }; 787 788 /// Rewrite use of PadTensorOp result in TransferReadOp. E.g.: 789 /// ``` 790 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> 791 /// %r = vector.transfer_read %0[%c0, %c0], %cst 792 /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> 793 /// ``` 794 /// is rewritten to: 795 /// ``` 796 /// %r = vector.transfer_read %src[%c0, %c0], %padding 797 /// {in_bounds = [true, true]} 798 /// : tensor<?x?xf32>, vector<17x5xf32> 799 /// ``` 800 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be 801 /// sure that the original padding value %cst was never used. 802 /// 803 /// This rewrite is possible if: 804 /// - `xferOp` has no out-of-bounds dims or mask. 805 /// - Low padding is static 0. 806 /// - Single, scalar padding value. 807 struct PadTensorOpVectorizationWithTransferReadPattern 808 : public VectorizePadTensorOpUserPattern<vector::TransferReadOp> { 809 using VectorizePadTensorOpUserPattern< 810 vector::TransferReadOp>::VectorizePadTensorOpUserPattern; 811 812 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 813 vector::TransferReadOp xferOp) const override { 814 // Low padding must be static 0. 815 if (!padOp.hasZeroLowPad()) 816 return failure(); 817 // Pad value must be a constant. 818 auto padValue = padOp.getConstantPaddingValue(); 819 if (!padValue) 820 return failure(); 821 // Padding value of existing `xferOp` is unused. 822 if (xferOp.hasOutOfBoundsDim() || xferOp.mask()) 823 return failure(); 824 825 rewriter.updateRootInPlace(xferOp, [&]() { 826 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 827 xferOp->setAttr(xferOp.getInBoundsAttrName(), 828 rewriter.getBoolArrayAttr(inBounds)); 829 xferOp.sourceMutable().assign(padOp.source()); 830 xferOp.paddingMutable().assign(padValue); 831 }); 832 833 return success(); 834 } 835 }; 836 837 /// Rewrite use of PadTensorOp result in TransferWriteOp. 838 /// This pattern rewrites TransferWriteOps that write to a padded tensor value, 839 /// where the same amount of padding is immediately removed again after the 840 /// write. In such cases, the TransferWriteOp can write to the non-padded tensor 841 /// value and apply out-of-bounds masking. E.g.: 842 /// ``` 843 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 844 /// : tensor<...> to tensor<?x?xf32> 845 /// %1 = linalg.pad_tensor %0 ... : tensor<?x?xf32> to tensor<17x5xf32> 846 /// %2 = vector.transfer_write %vec, %1[...] 847 /// : vector<17x5xf32>, tensor<17x5xf32> 848 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] 849 /// : tensor<17x5xf32> to tensor<?x?xf32> 850 /// ``` 851 /// is rewritten to: 852 /// ``` 853 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 854 /// : tensor<...> to tensor<?x?xf32> 855 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, tensor<?x?xf32> 856 /// ``` 857 /// Note: It is important that the ExtractSliceOp %r resizes the result of the 858 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an even 859 /// smaller size). Otherwise, %r's new (dynamic) dimensions would differ from 860 /// %r's old dimensions. 861 /// 862 /// This rewrite is possible if: 863 /// - Low padding is static 0. 864 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This 865 /// ExtractSliceOp trims the same amount of padding that was added beforehand. 866 /// - Single, scalar padding value. 867 struct PadTensorOpVectorizationWithTransferWritePattern 868 : public VectorizePadTensorOpUserPattern<vector::TransferWriteOp> { 869 using VectorizePadTensorOpUserPattern< 870 vector::TransferWriteOp>::VectorizePadTensorOpUserPattern; 871 872 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 873 vector::TransferWriteOp xferOp) const override { 874 // Low padding must be static 0. 875 if (!padOp.hasZeroLowPad()) 876 return failure(); 877 // Pad value must be a constant. 878 auto padValue = padOp.getConstantPaddingValue(); 879 if (!padValue) 880 return failure(); 881 // TransferWriteOp result must be directly consumed by an ExtractSliceOp. 882 if (!xferOp->hasOneUse()) 883 return failure(); 884 auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin()); 885 if (!trimPadding) 886 return failure(); 887 // Only static zero offsets supported when trimming padding. 888 if (!trimPadding.hasZeroOffset()) 889 return failure(); 890 // trimPadding must remove the amount of padding that was added earlier. 891 if (!hasSameTensorSize(padOp.source(), trimPadding)) 892 return failure(); 893 894 // Insert the new TransferWriteOp at position of the old TransferWriteOp. 895 rewriter.setInsertionPoint(xferOp); 896 897 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 898 auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 899 xferOp, padOp.source().getType(), xferOp.vector(), padOp.source(), 900 xferOp.indices(), xferOp.permutation_mapAttr(), xferOp.mask(), 901 rewriter.getBoolArrayAttr(inBounds)); 902 rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); 903 904 return success(); 905 } 906 907 /// Check if `beforePadding` and `afterTrimming` have the same tensor size, 908 /// i.e., same dimensions. 909 /// 910 /// Dimensions may be static, dynamic or mix of both. In case of dynamic 911 /// dimensions, this function tries to infer the (static) tensor size by 912 /// looking at the defining op and utilizing op-specific knowledge. 913 /// 914 /// This is a conservative analysis. In case equal tensor sizes cannot be 915 /// proven statically, this analysis returns `false` even though the tensor 916 /// sizes may turn out to be equal at runtime. 917 bool hasSameTensorSize(Value beforePadding, 918 tensor::ExtractSliceOp afterTrimming) const { 919 // If the input to PadTensorOp is a CastOp, try with with both CastOp result 920 // and CastOp operand. 921 if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>()) 922 if (hasSameTensorSize(castOp.source(), afterTrimming)) 923 return true; 924 925 auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>(); 926 auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>(); 927 // Only RankedTensorType supported. 928 if (!t1 || !t2) 929 return false; 930 // Rank of both values must be the same. 931 if (t1.getRank() != t2.getRank()) 932 return false; 933 934 // All static dimensions must be the same. Mixed cases (e.g., dimension 935 // static in `t1` but dynamic in `t2`) are not supported. 936 for (unsigned i = 0; i < t1.getRank(); ++i) { 937 if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) 938 return false; 939 if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) 940 return false; 941 } 942 943 // Nothing more to check if all dimensions are static. 944 if (t1.getNumDynamicDims() == 0) 945 return true; 946 947 // All dynamic sizes must be the same. The only supported case at the moment 948 // is when `beforePadding` is an ExtractSliceOp (or a cast thereof). 949 950 // Apart from CastOp, only ExtractSliceOp is supported. 951 auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>(); 952 if (!beforeSlice) 953 return false; 954 955 assert(static_cast<size_t>(t1.getRank()) == 956 beforeSlice.getMixedSizes().size()); 957 assert(static_cast<size_t>(t2.getRank()) == 958 afterTrimming.getMixedSizes().size()); 959 960 for (unsigned i = 0; i < t1.getRank(); ++i) { 961 // Skip static dimensions. 962 if (!t1.isDynamicDim(i)) 963 continue; 964 auto size1 = beforeSlice.getMixedSizes()[i]; 965 auto size2 = afterTrimming.getMixedSizes()[i]; 966 967 // Case 1: Same value or same constant int. 968 if (isEqualConstantIntOrValue(size1, size2)) 969 continue; 970 971 // Other cases: Take a deeper look at defining ops of values. 972 auto v1 = size1.dyn_cast<Value>(); 973 auto v2 = size2.dyn_cast<Value>(); 974 if (!v1 || !v2) 975 return false; 976 977 // Case 2: Both values are identical AffineMinOps. (Should not happen if 978 // CSE is run.) 979 auto minOp1 = v1.getDefiningOp<AffineMinOp>(); 980 auto minOp2 = v2.getDefiningOp<AffineMinOp>(); 981 if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() && 982 minOp1.operands() == minOp2.operands()) 983 continue; 984 985 // Add additional cases as needed. 986 } 987 988 // All tests passed. 989 return true; 990 } 991 }; 992 993 /// Rewrite use of PadTensorOp result in InsertSliceOp. E.g.: 994 /// ``` 995 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32> 996 /// %r = tensor.insert_slice %0 997 /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] 998 /// : tensor<17x5xf32> into tensor<?x?x17x5xf32> 999 /// ``` 1000 /// is rewritten to: 1001 /// ``` 1002 /// %0 = vector.transfer_read %src[%c0, %c0], %padding 1003 /// : tensor<?x?xf32>, vector<17x5xf32> 1004 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] 1005 /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32> 1006 /// ``` 1007 /// 1008 /// This rewrite is possible if: 1009 /// - Low padding is static 0. 1010 /// - `padOp` result shape is static. 1011 /// - The entire padded tensor is inserted. 1012 /// (Implies that sizes of `insertOp` are all static.) 1013 /// - Only unit strides in `insertOp`. 1014 /// - Single, scalar padding value. 1015 struct PadTensorOpVectorizationWithInsertSlicePattern 1016 : public VectorizePadTensorOpUserPattern<tensor::InsertSliceOp> { 1017 using VectorizePadTensorOpUserPattern< 1018 tensor::InsertSliceOp>::VectorizePadTensorOpUserPattern; 1019 1020 LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp, 1021 tensor::InsertSliceOp insertOp) const override { 1022 // Low padding must be static 0. 1023 if (!padOp.hasZeroLowPad()) 1024 return failure(); 1025 // Only unit stride supported. 1026 if (!insertOp.hasUnitStride()) 1027 return failure(); 1028 // Pad value must be a constant. 1029 auto padValue = padOp.getConstantPaddingValue(); 1030 if (!padValue) 1031 return failure(); 1032 // Dynamic shapes not supported. 1033 if (!padOp.result().getType().cast<ShapedType>().hasStaticShape()) 1034 return failure(); 1035 1036 auto vecType = VectorType::get(padOp.getType().getShape(), 1037 padOp.getType().getElementType()); 1038 unsigned vecRank = vecType.getRank(); 1039 unsigned tensorRank = insertOp.getType().getRank(); 1040 1041 // Check if sizes match: Insert the entire tensor into most minor dims. 1042 // (No permutations allowed.) 1043 SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1); 1044 expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); 1045 if (!llvm::all_of( 1046 llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { 1047 return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); 1048 })) 1049 return failure(); 1050 1051 // Insert the TransferReadOp and TransferWriteOp at the position of the 1052 // InsertSliceOp. 1053 rewriter.setInsertionPoint(insertOp); 1054 1055 // Generate TransferReadOp: Read entire source tensor and add high padding. 1056 SmallVector<Value> readIndices( 1057 vecRank, rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0)); 1058 auto read = rewriter.create<vector::TransferReadOp>( 1059 padOp.getLoc(), vecType, padOp.source(), readIndices, padValue); 1060 1061 // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at 1062 // specified offsets. Write is fully in-bounds because a InsertSliceOp's 1063 // source must fit into the destination at the specified offsets. 1064 auto writeIndices = 1065 ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); 1066 SmallVector<bool> inBounds(vecRank, true); 1067 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 1068 insertOp, read, insertOp.dest(), writeIndices, inBounds); 1069 1070 return success(); 1071 } 1072 }; 1073 1074 void mlir::linalg::populatePadTensorOpVectorizationPatterns( 1075 RewritePatternSet &patterns, PatternBenefit baseBenefit) { 1076 patterns.add<GenericPadTensorOpVectorizationPattern>(patterns.getContext(), 1077 baseBenefit); 1078 // Try these specialized patterns first before resorting to the generic one. 1079 patterns.add<PadTensorOpVectorizationWithTransferReadPattern, 1080 PadTensorOpVectorizationWithTransferWritePattern, 1081 PadTensorOpVectorizationWithInsertSlicePattern>( 1082 patterns.getContext(), baseBenefit.getBenefit() + 1); 1083 } 1084 1085 // TODO: cleanup all the convolution vectorization patterns. 1086 template <class ConvOp, int N> 1087 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite( 1088 ConvOp op, PatternRewriter &rewriter) const { 1089 Location loc = op.getLoc(); 1090 MLIRContext *context = op.getContext(); 1091 1092 OpOperand *input = op.getInputOperand(0); 1093 OpOperand *kernel = op.getInputOperand(1); 1094 OpOperand *output = op.getOutputOperand(0); 1095 ArrayRef<int64_t> inShape = op.getShape(input); 1096 ArrayRef<int64_t> kShape = op.getShape(kernel); 1097 1098 if (llvm::any_of(inShape, ShapedType::isDynamic) || 1099 llvm::any_of(kShape, ShapedType::isDynamic)) 1100 return failure(); 1101 1102 SmallVector<AffineExpr, 4> mapping; 1103 SmallVector<int64_t, 4> vectorDims; 1104 // Fail to apply when the size of not vectorized dimension is not 1. 1105 for (unsigned i = 0; i < N; i++) { 1106 if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) 1107 return failure(); 1108 1109 if (mask[i] && inShape[i] != kShape[i]) 1110 return failure(); 1111 1112 if (mask[i]) { 1113 mapping.push_back(getAffineDimExpr(i, context)); 1114 vectorDims.push_back(inShape[i]); 1115 } 1116 } 1117 1118 int64_t rank = op.getRank(input); 1119 int64_t numDims = mapping.size(); 1120 Type elemType = getElementTypeOrSelf(input->get()); 1121 1122 auto map = AffineMap::get(rank, 0, mapping, context); 1123 SmallVector<Value, 4> zeros(rank, rewriter.create<ConstantIndexOp>(loc, 0)); 1124 auto vecType = VectorType::get(vectorDims, elemType); 1125 1126 auto inputVec = rewriter.create<vector::TransferReadOp>( 1127 loc, vecType, input->get(), zeros, map); 1128 auto kernelVec = rewriter.create<vector::TransferReadOp>( 1129 loc, vecType, kernel->get(), zeros, map); 1130 1131 auto acc = rewriter.create<ConstantOp>(loc, elemType, 1132 rewriter.getZeroAttr(elemType)); 1133 1134 std::array<AffineMap, 3> indexingMaps{ 1135 AffineMap::getMultiDimIdentityMap(numDims, context), 1136 AffineMap::getMultiDimIdentityMap(numDims, context), 1137 AffineMap::get(numDims, 0, {}, context)}; 1138 1139 std::vector<StringRef> iteratorTypes(numDims, "reduction"); 1140 1141 auto result = rewriter.create<vector::ContractionOp>( 1142 loc, inputVec, kernelVec, acc, 1143 rewriter.getAffineMapArrayAttr(indexingMaps), 1144 rewriter.getStrArrayAttr(iteratorTypes)); 1145 1146 rewriter.create<memref::StoreOp>(loc, result, output->get(), 1147 ValueRange(zeros)); 1148 rewriter.eraseOp(op); 1149 return success(); 1150 } 1151 1152 /// Inserts tiling, promotion and vectorization pattern for ConvOp 1153 /// conversion into corresponding pattern lists. 1154 template <typename ConvOp, unsigned N> 1155 static void populateVectorizationPatterns( 1156 RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns, 1157 RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) { 1158 auto *context = tilingPatterns.getContext(); 1159 if (tileSizes.size() < N) 1160 return; 1161 1162 constexpr static StringRef kTiledMarker = "TILED"; 1163 constexpr static StringRef kPromotedMarker = "PROMOTED"; 1164 tilingPatterns.add<LinalgTilingPattern<ConvOp>>( 1165 context, LinalgTilingOptions().setTileSizes(tileSizes), 1166 LinalgTransformationFilter(ArrayRef<Identifier>{}, 1167 Identifier::get(kTiledMarker, context))); 1168 1169 promotionPatterns.add<LinalgPromotionPattern<ConvOp>>( 1170 context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), 1171 LinalgTransformationFilter(Identifier::get(kTiledMarker, context), 1172 Identifier::get(kPromotedMarker, context))); 1173 1174 SmallVector<bool, 4> mask(N); 1175 int offset = tileSizes.size() - N; 1176 std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), 1177 [](int64_t i) -> bool { return i > 1; }); 1178 1179 vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask); 1180 } 1181 1182 void mlir::linalg::populateConvVectorizationPatterns( 1183 MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns, 1184 ArrayRef<int64_t> tileSizes) { 1185 RewritePatternSet tiling(context); 1186 RewritePatternSet promotion(context); 1187 RewritePatternSet vectorization(context); 1188 populateVectorizationPatterns<Conv1DOp, 1>(tiling, promotion, vectorization, 1189 tileSizes); 1190 1191 populateVectorizationPatterns<Conv2DOp, 2>(tiling, promotion, vectorization, 1192 tileSizes); 1193 1194 populateVectorizationPatterns<Conv3DOp, 3>(tiling, promotion, vectorization, 1195 tileSizes); 1196 1197 populateVectorizationPatterns<Conv1DNwcWcfOp, 3>(tiling, promotion, 1198 vectorization, tileSizes); 1199 1200 populateVectorizationPatterns<Conv2DNhwcHwcfOp, 4>(tiling, promotion, 1201 vectorization, tileSizes); 1202 1203 populateVectorizationPatterns<Conv3DNdhwcDhwcfOp, 5>( 1204 tiling, promotion, vectorization, tileSizes); 1205 1206 patterns.push_back(std::move(tiling)); 1207 patterns.push_back(std::move(promotion)); 1208 patterns.push_back(std::move(vectorization)); 1209 } 1210 1211 //----------------------------------------------------------------------------// 1212 // Forwarding patterns 1213 //----------------------------------------------------------------------------// 1214 1215 /// Check whether there is any interleaved use of any `values` between `firstOp` 1216 /// and `secondOp`. Conservatively return `true` if any op or value is in a 1217 /// different block. 1218 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 1219 ValueRange values) { 1220 if (firstOp->getBlock() != secondOp->getBlock() || 1221 !firstOp->isBeforeInBlock(secondOp)) { 1222 LDBG("interleavedUses precondition failed, firstOp: " 1223 << *firstOp << ", second op: " << *secondOp); 1224 return true; 1225 } 1226 for (auto v : values) { 1227 for (auto &u : v.getUses()) { 1228 Operation *owner = u.getOwner(); 1229 if (owner == firstOp || owner == secondOp) 1230 continue; 1231 // TODO: this is too conservative, use dominance info in the future. 1232 if (owner->getBlock() == firstOp->getBlock() && 1233 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 1234 continue; 1235 LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp 1236 << ", second op: " << *secondOp); 1237 return true; 1238 } 1239 } 1240 return false; 1241 } 1242 1243 /// Return the unique subview use of `v` if it is indeed unique, null otherwise. 1244 static memref::SubViewOp getSubViewUseIfUnique(Value v) { 1245 memref::SubViewOp subViewOp; 1246 for (auto &u : v.getUses()) { 1247 if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { 1248 if (subViewOp) 1249 return memref::SubViewOp(); 1250 subViewOp = newSubViewOp; 1251 } 1252 } 1253 return subViewOp; 1254 } 1255 1256 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1257 /// when available. 1258 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 1259 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 1260 1261 // Transfer into `view`. 1262 Value viewOrAlloc = xferOp.source(); 1263 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1264 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1265 return failure(); 1266 1267 LDBG(viewOrAlloc); 1268 1269 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1270 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1271 if (!subViewOp) 1272 return failure(); 1273 Value subView = subViewOp.getResult(); 1274 LDBG("with subView " << subView); 1275 1276 // Find the copy into `subView` without interleaved uses. 1277 CopyOp copyOp; 1278 for (auto &u : subView.getUses()) { 1279 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 1280 assert(newCopyOp.output().getType().isa<MemRefType>()); 1281 if (newCopyOp.output() != subView) 1282 continue; 1283 LDBG("copy candidate " << *newCopyOp); 1284 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 1285 continue; 1286 copyOp = newCopyOp; 1287 break; 1288 } 1289 } 1290 if (!copyOp) 1291 return failure(); 1292 LDBG("with copy " << *copyOp); 1293 1294 // Find the fill into `viewOrAlloc` without interleaved uses before the copy. 1295 FillOp maybeFillOp; 1296 for (auto &u : viewOrAlloc.getUses()) { 1297 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 1298 assert(newFillOp.output().getType().isa<MemRefType>()); 1299 if (newFillOp.output() != viewOrAlloc) 1300 continue; 1301 LDBG("fill candidate " << *newFillOp); 1302 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 1303 continue; 1304 maybeFillOp = newFillOp; 1305 break; 1306 } 1307 } 1308 // Ensure padding matches. 1309 if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) 1310 return failure(); 1311 if (maybeFillOp) 1312 LDBG("with maybeFillOp " << *maybeFillOp); 1313 1314 // `in` is the subview that linalg.copy reads. Replace it. 1315 Value in = copyOp.input(); 1316 1317 // linalg.copy + linalg.fill can be used to create a padded local buffer. 1318 // The `masked` attribute is only valid on this padded buffer. 1319 // When forwarding to vector.transfer_read, the attribute must be reset 1320 // conservatively. 1321 Value res = rewriter.create<vector::TransferReadOp>( 1322 xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), 1323 xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); 1324 1325 if (maybeFillOp) 1326 rewriter.eraseOp(maybeFillOp); 1327 rewriter.eraseOp(copyOp); 1328 rewriter.replaceOp(xferOp, res); 1329 1330 return success(); 1331 } 1332 1333 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1334 /// when available. 1335 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 1336 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 1337 // Transfer into `viewOrAlloc`. 1338 Value viewOrAlloc = xferOp.source(); 1339 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1340 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1341 return failure(); 1342 1343 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1344 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1345 if (!subViewOp) 1346 return failure(); 1347 Value subView = subViewOp.getResult(); 1348 1349 // Find the copy from `subView` without interleaved uses. 1350 CopyOp copyOp; 1351 for (auto &u : subViewOp.getResult().getUses()) { 1352 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 1353 if (newCopyOp.getInputOperand(0)->get() != subView) 1354 continue; 1355 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 1356 continue; 1357 copyOp = newCopyOp; 1358 break; 1359 } 1360 } 1361 if (!copyOp) 1362 return failure(); 1363 1364 // `out` is the subview copied into that we replace. 1365 assert(copyOp.output().getType().isa<MemRefType>()); 1366 Value out = copyOp.output(); 1367 1368 // Forward vector.transfer into copy. 1369 // linalg.copy + linalg.fill can be used to create a padded local buffer. 1370 // The `masked` attribute is only valid on this padded buffer. 1371 // When forwarding to vector.transfer_write, the attribute must be reset 1372 // conservatively. 1373 rewriter.create<vector::TransferWriteOp>( 1374 xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), 1375 xferOp.permutation_map(), ArrayAttr()); 1376 1377 rewriter.eraseOp(copyOp); 1378 rewriter.eraseOp(xferOp); 1379 1380 return success(); 1381 } 1382