1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 14 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 15 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 16 #include "mlir/Dialect/Linalg/Utils/Utils.h" 17 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 18 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 19 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h" 20 #include "mlir/Dialect/Vector/VectorOps.h" 21 #include "mlir/IR/AffineExpr.h" 22 #include "mlir/IR/Matchers.h" 23 #include "mlir/IR/PatternMatch.h" 24 #include "mlir/Pass/Pass.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/RegionUtils.h" 27 #include "llvm/ADT/ScopeExit.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <type_traits> 31 32 using namespace mlir; 33 using namespace mlir::edsc; 34 using namespace mlir::edsc::intrinsics; 35 using namespace mlir::linalg; 36 37 using llvm::dbgs; 38 39 #define DEBUG_TYPE "linalg-vectorization" 40 41 /// Helper data structure to represent the result of vectorization. 42 /// In certain specific cases, like terminators, we do not want to propagate/ 43 enum VectorizationStatus { 44 /// Op failed to vectorize. 45 Failure = 0, 46 /// Op vectorized and custom function took care of replacement logic 47 NoReplace, 48 /// Op vectorized into a new Op whose results will replace original Op's 49 /// results. 50 NewOp 51 // TODO: support values if Op vectorized to Many-Ops whose results we need to 52 // aggregate for replacement. 53 }; 54 struct VectorizationResult { 55 /// Return status from vectorizing the current op. 56 enum VectorizationStatus status = VectorizationStatus::Failure; 57 /// New vectorized operation to replace the current op. 58 /// Replacement behavior is specified by `status`. 59 Operation *newOp; 60 }; 61 62 /// Return a vector type of the same shape and element type as the (assumed) 63 /// ShapedType of `v`. 64 static VectorType extractVectorTypeFromShapedValue(Value v) { 65 auto st = v.getType().cast<ShapedType>(); 66 if (st.isa<MemRefType>() && st.getShape().empty()) 67 return VectorType(); 68 return VectorType::get(st.getShape(), st.getElementType()); 69 } 70 71 /// Build a vector.transfer_read from `source` at indices set to all `0`. 72 /// If source has rank zero, build an std.load. 73 /// Return the produced value. 74 static Value buildVectorRead(OpBuilder &builder, Value source) { 75 edsc::ScopedContext scope(builder); 76 auto shapedType = source.getType().cast<ShapedType>(); 77 if (VectorType vectorType = extractVectorTypeFromShapedValue(source)) { 78 SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0)); 79 return vector_transfer_read(vectorType, source, indices); 80 } 81 return std_load(source); 82 } 83 84 /// Build a vector.transfer_write of `value` into `dest` at indices set to all 85 /// `0`. If `dest` has null rank, build an std.store. 86 /// Return the produced value or null if no value is produced. 87 static Value buildVectorWrite(OpBuilder &builder, Value value, Value dest) { 88 edsc::ScopedContext scope(builder); 89 Operation *write; 90 auto shapedType = dest.getType().cast<ShapedType>(); 91 if (VectorType vectorType = extractVectorTypeFromShapedValue(dest)) { 92 SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0)); 93 if (vectorType != value.getType()) 94 value = vector_broadcast(vectorType, value); 95 write = vector_transfer_write(value, dest, indices); 96 } else { 97 write = std_store(value, dest); 98 } 99 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write); 100 if (!write->getResults().empty()) 101 return write->getResult(0); 102 return Value(); 103 } 104 105 /// If value of assumed VectorType has a shape different than `shape`, buil and 106 /// return a new vector.broadcast to `shape`. 107 /// Otherwise, just return value. 108 static Value broadcastIfNeeded(OpBuilder &builder, Value value, 109 ArrayRef<int64_t> shape) { 110 auto vecType = value.getType().dyn_cast<VectorType>(); 111 if (shape.empty() || (vecType != nullptr && vecType.getShape() == shape)) 112 return value; 113 auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType() 114 : value.getType()); 115 return builder.create<vector::BroadcastOp>( 116 builder.getInsertionPoint()->getLoc(), newVecType, value); 117 } 118 119 // Custom vectorization function type. Produce a vector form of Operation* 120 // assuming all its vectorized operands are already in the BlockAndValueMapping. 121 // Return nullptr if the Operation cannot be vectorized. 122 using CustomVectorizationHook = std::function<VectorizationResult( 123 Operation *, const BlockAndValueMapping &)>; 124 125 /// Helper function to vectorize the terminator of a `linalgOp`. New result 126 /// vector values are appended to `results`. 127 /// Return VectorizationStatus::NoReplace to signal the vectorization algorithm 128 /// that it should not try to map produced operations: this is the purpose of 129 /// the `results` argument to capture such values and make them available for 130 /// RAUW to the vectorization algorithm. 131 /// This function is meant to be used as a CustomVectorizationHook. 132 static VectorizationResult 133 vectorizeLinalgYield(OpBuilder &builder, Operation *op, 134 const BlockAndValueMapping &bvm, LinalgOp linalgOp, 135 SmallVectorImpl<Value> &results) { 136 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 137 if (!yieldOp) 138 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 139 for (auto outputs : llvm::enumerate(yieldOp.values())) { 140 // TODO: Scan for an opportunity for reuse. 141 // TODO: use a map. 142 Value vectorValue = bvm.lookup(outputs.value()); 143 Value result = buildVectorWrite(builder, vectorValue, 144 linalgOp.getOutput(outputs.index())); 145 if (result) 146 results.push_back(result); 147 } 148 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 149 }; 150 151 /// Generic vectorization for a single operation `op`, given already vectorized 152 /// operands carried by `bvm`. Vectorization occurs as follows: 153 /// 1. Try to apply any of the `customVectorizationHooks` and return its 154 /// result on success. 155 /// 2. Clone any constant in the current scope without vectorization: each 156 /// consumer of the constant will later determine the shape to which the 157 /// constant needs to be broadcast to. 158 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 159 /// of the `customVectorizationHooks` to cover such cases. 160 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 161 /// operand of maximal rank. Other operands have smaller rank and are 162 /// broadcast accordingly. It is assumed this broadcast is always legal, 163 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 164 /// 165 /// This function assumes all operands of `op` have been vectorized and are in 166 /// the `bvm` mapping. As a consequence, this function is meant to be called on 167 /// a topologically-sorted list of ops. 168 /// This function does not update `bvm` but returns a VectorizationStatus that 169 /// instructs the caller what `bvm` update needs to occur. 170 static VectorizationResult 171 vectorizeOneOp(OpBuilder &builder, Operation *op, 172 const BlockAndValueMapping &bvm, 173 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 174 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op); 175 176 // 1. Try to apply any CustomVectorizationHook. 177 if (!customVectorizationHooks.empty()) { 178 for (auto &customFunc : customVectorizationHooks) { 179 VectorizationResult result = customFunc(op, bvm); 180 if (result.status == VectorizationStatus::Failure) 181 continue; 182 return result; 183 } 184 } 185 186 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 187 // Clone so that the constant is not confined to the linalgOp block . 188 if (isa<ConstantOp>(op)) 189 return VectorizationResult{VectorizationStatus::NewOp, builder.clone(*op)}; 190 191 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 192 if (!op->hasTrait<OpTrait::ElementwiseMappable>()) 193 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 194 195 // 4. Generic vectorization path for ElementwiseMappable ops. 196 // a. first get the first max ranked shape. 197 SmallVector<int64_t, 4> firstMaxRankedShape; 198 for (Value operand : op->getOperands()) { 199 auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); 200 if (vt && firstMaxRankedShape.size() < vt.getShape().size()) 201 firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); 202 } 203 // b. broadcast each op if needed. 204 auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { 205 return firstMaxRankedShape.empty() 206 ? bvm.lookup(v) 207 : broadcastIfNeeded(builder, bvm.lookup(v), firstMaxRankedShape); 208 }); 209 // c. for elementwise, the result is the vector with the firstMaxRankedShape 210 auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { 211 return firstMaxRankedShape.empty() 212 ? t 213 : VectorType::get(firstMaxRankedShape, t); 214 }); 215 216 // Build and return the new op. 217 OperationState state(op->getLoc(), op->getName()); 218 state.addAttributes(op->getAttrs()); 219 state.addOperands(llvm::to_vector<4>(vectorizedOperands)); 220 state.addTypes(llvm::to_vector<4>(returnTypes)); 221 return VectorizationResult{VectorizationStatus::NewOp, 222 builder.createOperation(state)}; 223 } 224 225 /// Generic vectorization function that rewrites the body of a `linalgOp` into 226 /// vector form. Generic vectorization proceeds as follows: 227 /// 1. The region for the linalg op is created if necessary. 228 /// 2. Values defined above the region are mapped to themselves and will be 229 /// broadcasted on a per-need basis by their consumers. 230 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 231 /// load). 232 /// TODO: Reuse opportunities for RAR dependencies. 233 /// 4. Register CustomVectorizationHook for YieldOp to capture the results. 234 /// 5. Iteratively call vectorizeOneOp on the region operations. 235 /// 6. RAUW the linalg op by the results captured vectorizing the YieldOp. 236 static LogicalResult vectorizeAsLinalgGeneric( 237 OpBuilder &builder, LinalgOp linalgOp, 238 ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) { 239 // 1. Certain Linalg ops do not have a region but only a region builder. 240 // If so, build the region so we can vectorize. 241 std::unique_ptr<Region> owningRegion; 242 Region *region; 243 if (linalgOp->getNumRegions() > 0) { 244 region = &linalgOp->getRegion(0); 245 } else { 246 // RAII avoid remaining in block. 247 OpBuilder::InsertionGuard g(builder); 248 owningRegion = std::make_unique<Region>(); 249 region = owningRegion.get(); 250 Block *block = builder.createBlock(region); 251 auto elementTypes = llvm::to_vector<4>( 252 llvm::map_range(linalgOp.getShapedOperandTypes(), 253 [](ShapedType t) { return t.getElementType(); })); 254 block->addArguments(elementTypes); 255 linalgOp.getRegionBuilder()(*block); 256 } 257 Block *block = ®ion->front(); 258 259 BlockAndValueMapping bvm; 260 // 2. Values defined above the region can only be broadcast for now. Make them 261 // map to themselves. 262 llvm::SetVector<Value> valuesSet; 263 mlir::getUsedValuesDefinedAbove(*region, valuesSet); 264 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 265 266 // 3. Turn all BBArgs into vector.transfer_read / load. 267 SmallVector<AffineMap> indexings; 268 for (auto bbarg : block->getArguments()) { 269 Value vectorArg = linalgOp.getShapedOperand(bbarg.getArgNumber()); 270 Value vectorRead = buildVectorRead(builder, vectorArg); 271 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg(" 272 << bbarg.getArgNumber() << "): " << vectorRead); 273 bvm.map(bbarg, vectorRead); 274 bvm.map(vectorArg, vectorRead); 275 } 276 277 // 4. Register CustomVectorizationHook for yieldOp. 278 SmallVector<Value> results; 279 CustomVectorizationHook vectorizeYield = 280 [&](Operation *op, 281 const BlockAndValueMapping &bvm) -> VectorizationResult { 282 return vectorizeLinalgYield(builder, op, bvm, linalgOp, results); 283 }; 284 // Append the vectorizeYield hook. 285 auto hooks = llvm::to_vector<4>(customVectorizationHooks); 286 hooks.push_back(vectorizeYield); 287 288 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 289 for (Operation &op : block->getOperations()) { 290 VectorizationResult result = vectorizeOneOp(builder, &op, bvm, hooks); 291 if (result.status == VectorizationStatus::Failure) { 292 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op); 293 return failure(); 294 } 295 if (result.status == VectorizationStatus::NewOp) { 296 LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: " 297 << *result.newOp;); 298 bvm.map(op.getResults(), result.newOp->getResults()); 299 } 300 } 301 302 // 6. RAUW the linalg op by the results captured vectorizing the YieldOp. 303 if (!results.empty()) 304 linalgOp->replaceAllUsesWith(results); 305 return success(); 306 } 307 308 /// Detect whether `r` exactly computes a floating-point or integer 309 /// multiply-accumulate. 310 static bool hasMultiplyAddBody(Region &r) { 311 if (!llvm::hasSingleElement(r)) 312 return false; 313 if (!llvm::hasNItems(r.front().begin(), r.front().end(), 3)) 314 return false; 315 316 using mlir::matchers::m_Val; 317 auto a = m_Val(r.getArgument(0)); 318 auto b = m_Val(r.getArgument(1)); 319 auto c = m_Val(r.getArgument(2)); 320 // TODO: Update this detection once we have matcher support for specifying 321 // that any permutation of operands matches. 322 auto pattern1 = m_Op<linalg::YieldOp>(m_Op<AddFOp>(m_Op<MulFOp>(a, b), c)); 323 auto pattern2 = m_Op<linalg::YieldOp>(m_Op<AddFOp>(c, m_Op<MulFOp>(a, b))); 324 auto pattern3 = m_Op<linalg::YieldOp>(m_Op<AddFOp>(m_Op<MulFOp>(b, a), c)); 325 auto pattern4 = m_Op<linalg::YieldOp>(m_Op<AddFOp>(c, m_Op<MulFOp>(b, a))); 326 auto pattern5 = m_Op<linalg::YieldOp>(m_Op<AddIOp>(m_Op<MulIOp>(a, b), c)); 327 auto pattern6 = m_Op<linalg::YieldOp>(m_Op<AddIOp>(c, m_Op<MulIOp>(a, b))); 328 auto pattern7 = m_Op<linalg::YieldOp>(m_Op<AddIOp>(m_Op<MulIOp>(b, a), c)); 329 auto pattern8 = m_Op<linalg::YieldOp>(m_Op<AddIOp>(c, m_Op<MulIOp>(b, a))); 330 return pattern1.match(&r.front().back()) || 331 pattern2.match(&r.front().back()) || 332 pattern3.match(&r.front().back()) || 333 pattern4.match(&r.front().back()) || 334 pattern5.match(&r.front().back()) || 335 pattern6.match(&r.front().back()) || 336 pattern7.match(&r.front().back()) || pattern8.match(&r.front().back()); 337 } 338 339 /// Detect whether the LinalgOp `op` is a contraction. 340 // TODO: Should be Tablegen'd from a single source that generates the op itself. 341 static LogicalResult isContraction(Operation *op) { 342 // TODO: interface for named ops. 343 if (isa<linalg::BatchMatmulOp, linalg::MatmulOp, linalg::MatmulColumnMajorOp, 344 linalg::MatvecOp, linalg::VecmatOp, linalg::DotOp>(op)) 345 return success(); 346 347 auto genericOp = dyn_cast<linalg::GenericOp>(op); 348 if (!genericOp) 349 return failure(); 350 351 auto mapRange = genericOp.indexing_maps().getAsValueRange<AffineMapAttr>(); 352 return success( 353 genericOp.getNumInputs() == 2 && genericOp.getNumOutputs() == 1 && 354 llvm::all_of(mapRange, 355 [](AffineMap m) { return m.isProjectedPermutation(); }) && 356 hasMultiplyAddBody(genericOp.region())); 357 } 358 359 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp. 360 static bool hasOnlyScalarElementwiseOp(Region &r) { 361 if (!llvm::hasSingleElement(r)) 362 return false; 363 for (Operation &op : r.front()) { 364 if (!(isa<ConstantOp, linalg::YieldOp>(op) || 365 op.hasTrait<OpTrait::ElementwiseMappable>()) || 366 llvm::any_of(op.getResultTypes(), 367 [](Type type) { return !type.isIntOrIndexOrFloat(); })) 368 return false; 369 } 370 return true; 371 } 372 373 // Return true if the op is an element-wise linalg op. 374 static bool isElementwise(Operation *op) { 375 auto genericOp = dyn_cast<linalg::GenericOp>(op); 376 if (!genericOp) 377 return false; 378 if (genericOp.getNumLoops() != genericOp.getNumParallelLoops()) 379 return false; 380 // TODO: relax the restrictions on indexing map. 381 for (unsigned i = 0, e = genericOp.getNumOutputs(); i < e; i++) { 382 if (!genericOp.getOutputIndexingMap(i).isIdentity()) 383 return false; 384 } 385 // Currently limit the input indexing map to minor identity as other 386 // permutations might require adding transpose ops to convert the vector read 387 // to the right shape. 388 for (unsigned i = 0, e = genericOp.getNumInputs(); i < e; i++) { 389 if (!genericOp.getInputIndexingMap(i).isMinorIdentity()) 390 return false; 391 } 392 return hasOnlyScalarElementwiseOp(genericOp.getRegion()); 393 } 394 395 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) { 396 auto linalgOp = cast<linalg::LinalgOp>(op); 397 // All types must be static shape to go to vector. 398 for (Value operand : linalgOp.getShapedOperands()) 399 if (!operand.getType().cast<ShapedType>().hasStaticShape()) 400 return failure(); 401 for (Type outputTensorType : linalgOp.getOutputTensorTypes()) 402 if (!outputTensorType.cast<ShapedType>().hasStaticShape()) 403 return failure(); 404 405 if (isa<linalg::FillOp, linalg::CopyOp>(op)) 406 return success(); 407 if (isElementwise(op)) 408 return success(); 409 return isContraction(op); 410 } 411 412 void mlir::linalg::vectorizeLinalgOp(OpBuilder &builder, Operation *op) { 413 assert(succeeded(vectorizeLinalgOpPrecondition(op))); 414 415 StringRef dbgPref = "\n[" DEBUG_TYPE "]: "; 416 (void)dbgPref; 417 edsc::ScopedContext scope(builder, op->getLoc()); 418 // In the case of 0-D memrefs, return null and special case to scalar load or 419 // store later. 420 if (auto fillOp = dyn_cast<linalg::FillOp>(op)) { 421 // Vectorize fill as a vector.broadcast. 422 LLVM_DEBUG(dbgs() << dbgPref 423 << "Rewrite linalg.fill as vector.broadcast: " << *op); 424 buildVectorWrite(builder, fillOp.value(), fillOp.output()); 425 return; 426 } 427 if (auto copyOp = dyn_cast<linalg::CopyOp>(op)) { 428 // Vectorize copy as a vector.transfer_read+vector.transfer_write. 429 LLVM_DEBUG(dbgs() << dbgPref 430 << "Rewrite linalg.copy as vector.transfer_read + " 431 "vector.transfer_write: " 432 << *op); 433 Value vector = buildVectorRead(builder, copyOp.input()); 434 buildVectorWrite(builder, vector, copyOp.output()); 435 return; 436 } 437 438 auto linalgOp = cast<linalg::LinalgOp>(op); 439 Location loc = linalgOp.getLoc(); 440 441 if (isElementwise(op)) { 442 LLVM_DEBUG(dbgs() << dbgPref 443 << "Rewrite linalg op as vector.transfer_read + " << *op); 444 auto status = vectorizeAsLinalgGeneric(builder, linalgOp); 445 (void)status; 446 assert(succeeded(status) && 447 "Unexpected vectorization failed despite preconditions"); 448 return; 449 } 450 451 assert(succeeded(isContraction(op)) && "Expected contraction"); 452 453 // Vectorize other ops as vector contraction. 454 // TODO: interface. 455 LLVM_DEBUG(dbgs() << dbgPref 456 << "Rewrite linalg op as vector.contract: " << *op); 457 // Special function that describes how to vectorize the multiplication op in a 458 // linalg contraction. 459 CustomVectorizationHook vectorizeContraction = 460 [&](Operation *op, 461 const BlockAndValueMapping &bvm) -> VectorizationResult { 462 if (!isa<MulIOp, MulFOp>(op)) 463 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 464 auto outShape = linalgOp.getOutputShapedType(0).getShape(); 465 auto vType = outShape.empty() 466 ? op->getResult(0).getType() 467 : VectorType::get(outShape, op->getResult(0).getType()); 468 auto zero = 469 builder.create<ConstantOp>(loc, vType, builder.getZeroAttr(vType)); 470 Operation *contract = builder.create<vector::ContractionOp>( 471 loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero, 472 linalgOp.indexing_maps(), linalgOp.iterator_types()); 473 return VectorizationResult{VectorizationStatus::NewOp, contract}; 474 }; 475 auto status = 476 vectorizeAsLinalgGeneric(builder, linalgOp, {vectorizeContraction}); 477 (void)status; 478 assert(succeeded(status) && 479 "Unexpected vectorization failed despite preconditions"); 480 } 481 482 /// Check whether there is any interleaved use of any `values` between `firstOp` 483 /// and `secondOp`. Conservatively return `true` if any op or value is in a 484 /// different block. 485 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 486 ValueRange values) { 487 StringRef dbgPref = "\n[" DEBUG_TYPE "]: "; 488 (void)dbgPref; 489 if (firstOp->getBlock() != secondOp->getBlock() || 490 !firstOp->isBeforeInBlock(secondOp)) { 491 LLVM_DEBUG(llvm::dbgs() 492 << dbgPref << "interleavedUses precondition failed, firstOp: " 493 << *firstOp << ", second op: " << *secondOp); 494 return true; 495 } 496 for (auto v : values) { 497 for (auto &u : v.getUses()) { 498 Operation *owner = u.getOwner(); 499 if (owner == firstOp || owner == secondOp) 500 continue; 501 // TODO: this is too conservative, use dominance info in the future. 502 if (owner->getBlock() == firstOp->getBlock() && 503 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 504 continue; 505 LLVM_DEBUG(llvm::dbgs() 506 << dbgPref << " found interleaved op " << *owner 507 << ", firstOp: " << *firstOp << ", second op: " << *secondOp); 508 return true; 509 } 510 } 511 return false; 512 } 513 514 /// Return the unique subview use of `v` if it is indeed unique, null otherwise. 515 static SubViewOp getSubViewUseIfUnique(Value v) { 516 SubViewOp subViewOp; 517 for (auto &u : v.getUses()) { 518 if (auto newSubViewOp = dyn_cast<SubViewOp>(u.getOwner())) { 519 if (subViewOp) 520 return SubViewOp(); 521 subViewOp = newSubViewOp; 522 } 523 } 524 return subViewOp; 525 } 526 527 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 528 /// when available. 529 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 530 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 531 532 // Transfer into `view`. 533 Value viewOrAlloc = xferOp.source(); 534 if (!viewOrAlloc.getDefiningOp<ViewOp>() && 535 !viewOrAlloc.getDefiningOp<AllocOp>()) 536 return failure(); 537 538 StringRef dbgPref = "\n[" DEBUG_TYPE "]: VTRForwarding: "; 539 (void)dbgPref; 540 LLVM_DEBUG(llvm::dbgs() << dbgPref << viewOrAlloc); 541 542 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 543 SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 544 if (!subViewOp) 545 return failure(); 546 Value subView = subViewOp.getResult(); 547 LLVM_DEBUG(llvm::dbgs() << dbgPref << "with subView " << subView); 548 549 // Find the copy into `subView` without interleaved uses. 550 CopyOp copyOp; 551 for (auto &u : subView.getUses()) { 552 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 553 if (newCopyOp.getOutputBuffer(0) != subView) 554 continue; 555 LLVM_DEBUG(llvm::dbgs() << dbgPref << "copy candidate " << *newCopyOp); 556 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 557 continue; 558 copyOp = newCopyOp; 559 break; 560 } 561 } 562 if (!copyOp) 563 return failure(); 564 LLVM_DEBUG(llvm::dbgs() << dbgPref << "with copy " << *copyOp); 565 566 // Find the fill into `viewOrAlloc` without interleaved uses before the copy. 567 FillOp maybeFillOp; 568 for (auto &u : viewOrAlloc.getUses()) { 569 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 570 if (newFillOp.getOutputBuffer(0) != viewOrAlloc) 571 continue; 572 LLVM_DEBUG(llvm::dbgs() << dbgPref << "fill candidate " << *newFillOp); 573 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 574 continue; 575 maybeFillOp = newFillOp; 576 break; 577 } 578 } 579 // Ensure padding matches. 580 if (maybeFillOp && xferOp.padding() != maybeFillOp.value()) 581 return failure(); 582 if (maybeFillOp) 583 LLVM_DEBUG(llvm::dbgs() << dbgPref << "with maybeFillOp " << *maybeFillOp); 584 585 // `in` is the subview that linalg.copy reads. Replace it. 586 Value in = copyOp.getInput(0); 587 588 // linalg.copy + linalg.fill can be used to create a padded local buffer. 589 // The `masked` attribute is only valid on this padded buffer. 590 // When forwarding to vector.transfer_read, the attribute must be reset 591 // conservatively. 592 Value res = rewriter.create<vector::TransferReadOp>( 593 xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(), 594 xferOp.permutation_map(), xferOp.padding(), ArrayAttr()); 595 596 if (maybeFillOp) 597 rewriter.eraseOp(maybeFillOp); 598 rewriter.eraseOp(copyOp); 599 rewriter.replaceOp(xferOp, res); 600 601 return success(); 602 } 603 604 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 605 /// when available. 606 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 607 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 608 // Transfer into `viewOrAlloc`. 609 Value viewOrAlloc = xferOp.source(); 610 if (!viewOrAlloc.getDefiningOp<ViewOp>() && 611 !viewOrAlloc.getDefiningOp<AllocOp>()) 612 return failure(); 613 614 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 615 SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 616 if (!subViewOp) 617 return failure(); 618 Value subView = subViewOp.getResult(); 619 620 // Find the copy from `subView` without interleaved uses. 621 CopyOp copyOp; 622 for (auto &u : subViewOp.getResult().getUses()) { 623 if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) { 624 if (newCopyOp.getInput(0) != subView) 625 continue; 626 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 627 continue; 628 copyOp = newCopyOp; 629 break; 630 } 631 } 632 if (!copyOp) 633 return failure(); 634 635 // `out` is the subview copied into that we replace. 636 Value out = copyOp.getOutputBuffer(0); 637 638 // Forward vector.transfer into copy. 639 // linalg.copy + linalg.fill can be used to create a padded local buffer. 640 // The `masked` attribute is only valid on this padded buffer. 641 // When forwarding to vector.transfer_write, the attribute must be reset 642 // conservatively. 643 rewriter.create<vector::TransferWriteOp>( 644 xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(), 645 xferOp.permutation_map(), ArrayAttr()); 646 647 rewriter.eraseOp(copyOp); 648 rewriter.eraseOp(xferOp); 649 650 return success(); 651 } 652 653 template <class ConvOp, int N> 654 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite( 655 ConvOp op, PatternRewriter &rewriter) const { 656 Location loc = op.getLoc(); 657 MLIRContext *context = op.getContext(); 658 edsc::ScopedContext scope(rewriter, loc); 659 660 ShapedType inShapeType = op.getInputShapedType(0); 661 ShapedType kShapeType = op.getInputShapedType(1); 662 663 ArrayRef<int64_t> inShape = inShapeType.getShape(); 664 ArrayRef<int64_t> kShape = kShapeType.getShape(); 665 666 if (!inShapeType.hasStaticShape() || !kShapeType.hasStaticShape()) 667 return failure(); 668 669 SmallVector<AffineExpr, 4> mapping; 670 SmallVector<int64_t, 4> vectorDims; 671 // Fail to apply when the size of not vectorized dimension is not 1. 672 for (unsigned i = 0; i < N; i++) { 673 if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1)) 674 return failure(); 675 676 if (mask[i] && inShape[i] != kShape[i]) 677 return failure(); 678 679 if (mask[i]) { 680 mapping.push_back(getAffineDimExpr(i, context)); 681 vectorDims.push_back(inShape[i]); 682 } 683 } 684 685 Value input = op.getInput(0); 686 Value kernel = op.getInput(1); 687 Value output = op.getOutputBuffer(0); 688 689 unsigned rank = inShapeType.getRank(); 690 unsigned numDims = mapping.size(); 691 Type elemType = inShapeType.getElementType(); 692 693 auto map = AffineMap::get(rank, 0, mapping, context); 694 SmallVector<Value, 4> zeros(rank, std_constant_index(0)); 695 auto vecType = VectorType::get(vectorDims, elemType); 696 697 auto inputVec = vector_transfer_read(vecType, input, zeros, map); 698 auto kernelVec = vector_transfer_read(vecType, kernel, zeros, map); 699 700 auto acc = std_constant(elemType, rewriter.getZeroAttr(elemType)); 701 702 std::array<AffineMap, 3> indexingMaps{ 703 AffineMap::getMultiDimIdentityMap(numDims, context), 704 AffineMap::getMultiDimIdentityMap(numDims, context), 705 AffineMap::get(numDims, 0, {}, context)}; 706 707 std::vector<StringRef> iteratorTypes(numDims, "reduction"); 708 709 auto result = rewriter.create<vector::ContractionOp>( 710 loc, inputVec, kernelVec, acc, 711 rewriter.getAffineMapArrayAttr(indexingMaps), 712 rewriter.getStrArrayAttr(iteratorTypes)); 713 714 rewriter.create<StoreOp>(loc, result, output, ValueRange(zeros)); 715 rewriter.eraseOp(op); 716 return success(); 717 } 718 719 using ConvOpConst = ConvOpVectorization<ConvWOp, 1>; 720 721 /// Inserts tiling, promotion and vectorization pattern for ConvOp 722 /// conversion into corresponding pattern lists. 723 template <typename ConvOp, unsigned N> 724 static void 725 populateVectorizationPatterns(OwningRewritePatternList &tilingPatterns, 726 OwningRewritePatternList &promotionPatterns, 727 OwningRewritePatternList &vectorizationPatterns, 728 ArrayRef<int64_t> tileSizes, 729 MLIRContext *context) { 730 if (tileSizes.size() < N) 731 return; 732 733 constexpr static StringRef kTiledMarker = "TILED"; 734 constexpr static StringRef kPromotedMarker = "PROMOTED"; 735 tilingPatterns.insert<LinalgTilingPattern<ConvOp>>( 736 context, LinalgTilingOptions().setTileSizes(tileSizes), 737 LinalgTransformationFilter(ArrayRef<Identifier>{}, 738 Identifier::get(kTiledMarker, context))); 739 740 promotionPatterns.insert<LinalgPromotionPattern<ConvOp>>( 741 context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), 742 LinalgTransformationFilter(Identifier::get(kTiledMarker, context), 743 Identifier::get(kPromotedMarker, context))); 744 745 SmallVector<bool, 4> mask(N); 746 int offset = tileSizes.size() - N; 747 std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(), 748 [](int64_t i) -> bool { return i > 1; }); 749 750 vectorizationPatterns.insert<ConvOpVectorization<ConvOp, N>>(context, mask); 751 } 752 753 void mlir::linalg::populateConvVectorizationPatterns( 754 MLIRContext *context, SmallVectorImpl<OwningRewritePatternList> &patterns, 755 ArrayRef<int64_t> tileSizes) { 756 OwningRewritePatternList tiling, promotion, vectorization; 757 populateVectorizationPatterns<ConvWOp, 1>(tiling, promotion, vectorization, 758 tileSizes, context); 759 760 populateVectorizationPatterns<ConvNWCOp, 3>(tiling, promotion, vectorization, 761 tileSizes, context); 762 763 populateVectorizationPatterns<ConvNCWOp, 3>(tiling, promotion, vectorization, 764 tileSizes, context); 765 766 populateVectorizationPatterns<ConvHWOp, 2>(tiling, promotion, vectorization, 767 tileSizes, context); 768 769 populateVectorizationPatterns<ConvNHWCOp, 4>(tiling, promotion, vectorization, 770 tileSizes, context); 771 772 populateVectorizationPatterns<ConvNCHWOp, 4>(tiling, promotion, vectorization, 773 tileSizes, context); 774 775 populateVectorizationPatterns<ConvDHWOp, 3>(tiling, promotion, vectorization, 776 tileSizes, context); 777 778 populateVectorizationPatterns<ConvNDHWCOp, 5>( 779 tiling, promotion, vectorization, tileSizes, context); 780 781 populateVectorizationPatterns<ConvNCDHWOp, 5>( 782 tiling, promotion, vectorization, tileSizes, context); 783 784 patterns.push_back(std::move(tiling)); 785 patterns.push_back(std::move(promotion)); 786 patterns.push_back(std::move(vectorization)); 787 } 788