1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Vectorization transformations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
14 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
15 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
16 #include "mlir/Dialect/Linalg/Utils/Utils.h"
17 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
18 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
19 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
20 #include "mlir/Dialect/Vector/VectorOps.h"
21 #include "mlir/IR/AffineExpr.h"
22 #include "mlir/IR/Matchers.h"
23 #include "mlir/IR/PatternMatch.h"
24 #include "mlir/Pass/Pass.h"
25 #include "mlir/Support/LLVM.h"
26 #include "mlir/Transforms/RegionUtils.h"
27 #include "llvm/ADT/ScopeExit.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <type_traits>
31 
32 using namespace mlir;
33 using namespace mlir::edsc;
34 using namespace mlir::edsc::intrinsics;
35 using namespace mlir::linalg;
36 
37 using llvm::dbgs;
38 
39 #define DEBUG_TYPE "linalg-vectorization"
40 
41 /// Return the unique instance of OpType in `block` if it is indeed unique.
42 /// Return null if none or more than 1 instances exist.
43 template <typename OpType>
44 static OpType getSingleOpOfType(Block &block) {
45   OpType res;
46   block.walk([&](OpType op) {
47     if (res) {
48       res = nullptr;
49       return WalkResult::interrupt();
50     }
51     res = op;
52     return WalkResult::advance();
53   });
54   return res;
55 }
56 
57 /// Helper data structure to represent the result of vectorization.
58 /// In certain specific cases, like terminators, we do not want to propagate/
59 enum VectorizationStatus {
60   /// Op failed to vectorize.
61   Failure = 0,
62   /// Op vectorized and custom function took care of replacement logic
63   NoReplace,
64   /// Op vectorized into a new Op whose results will replace original Op's
65   /// results.
66   NewOp
67   // TODO: support values if Op vectorized to Many-Ops whose results we need to
68   // aggregate for replacement.
69 };
70 struct VectorizationResult {
71   /// Return status from vectorizing the current op.
72   enum VectorizationStatus status = VectorizationStatus::Failure;
73   /// New vectorized operation to replace the current op.
74   /// Replacement behavior is specified by `status`.
75   Operation *newOp;
76 };
77 
78 /// Return a vector type of the same shape and element type as the (assumed)
79 /// ShapedType of `v`.
80 static VectorType extractVectorTypeFromShapedValue(Value v) {
81   auto st = v.getType().cast<ShapedType>();
82   if (st.isa<MemRefType>() && st.getShape().empty())
83     return VectorType();
84   return VectorType::get(st.getShape(), st.getElementType());
85 }
86 
87 /// Build a vector.transfer_read from `source` at indices set to all `0`.
88 /// If source has rank zero, build an memref.load.
89 /// Return the produced value.
90 static Value buildVectorRead(OpBuilder &builder, Value source,
91                              VectorType vectorType, AffineMap map) {
92   edsc::ScopedContext scope(builder);
93   auto shapedType = source.getType().cast<ShapedType>();
94   if (vectorType) {
95     SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0));
96     if (map)
97       return vector_transfer_read(vectorType, source, indices, map);
98     return vector_transfer_read(vectorType, source, indices);
99   }
100   return memref_load(source);
101 }
102 
103 /// Build a vector.transfer_write of `value` into `dest` at indices set to all
104 /// `0`. If `dest` has null rank, build an memref.store.
105 /// Return the produced value or null if no value is produced.
106 static Value buildVectorWrite(OpBuilder &builder, Value value, Value dest) {
107   edsc::ScopedContext scope(builder);
108   Operation *write;
109   auto shapedType = dest.getType().cast<ShapedType>();
110   if (VectorType vectorType = extractVectorTypeFromShapedValue(dest)) {
111     SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0));
112     if (vectorType != value.getType())
113       value = vector_broadcast(vectorType, value);
114     write = vector_transfer_write(value, dest, indices);
115   } else {
116     write = memref_store(value, dest);
117   }
118   LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write);
119   if (!write->getResults().empty())
120     return write->getResult(0);
121   return Value();
122 }
123 
124 /// If value of assumed VectorType has a shape different than `shape`, buil and
125 /// return a new vector.broadcast to `shape`.
126 /// Otherwise, just return value.
127 static Value broadcastIfNeeded(OpBuilder &builder, Value value,
128                                ArrayRef<int64_t> shape) {
129   auto vecType = value.getType().dyn_cast<VectorType>();
130   if (shape.empty() || (vecType != nullptr && vecType.getShape() == shape))
131     return value;
132   auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType()
133                                                    : value.getType());
134   return builder.create<vector::BroadcastOp>(
135       builder.getInsertionPoint()->getLoc(), newVecType, value);
136 }
137 
138 // Custom vectorization function type. Produce a vector form of Operation*
139 // assuming all its vectorized operands are already in the BlockAndValueMapping.
140 // Return nullptr if the Operation cannot be vectorized.
141 using CustomVectorizationHook = std::function<VectorizationResult(
142     Operation *, const BlockAndValueMapping &)>;
143 
144 /// Helper function to vectorize the terminator of a `linalgOp`. New result
145 /// vector values are appended to `newResults`. Return
146 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it
147 /// should not try to map produced operations and instead return the results
148 /// using the `newResults` vector making them available to the
149 /// vectorization algorithm for RAUW. This function is meant to be used as a
150 /// CustomVectorizationHook.
151 static VectorizationResult
152 vectorizeLinalgYield(OpBuilder &builder, Operation *op,
153                      const BlockAndValueMapping &bvm, LinalgOp linalgOp,
154                      SmallVectorImpl<Value> &newResults) {
155   auto yieldOp = dyn_cast<linalg::YieldOp>(op);
156   if (!yieldOp)
157     return VectorizationResult{VectorizationStatus::Failure, nullptr};
158   for (auto outputs : llvm::enumerate(yieldOp.values())) {
159     // TODO: Scan for an opportunity for reuse.
160     // TODO: use a map.
161     Value vectorValue = bvm.lookup(outputs.value());
162     Value newResult = buildVectorWrite(builder, vectorValue,
163                                        linalgOp.getOutput(outputs.index()));
164     if (newResult)
165       newResults.push_back(newResult);
166   }
167   return VectorizationResult{VectorizationStatus::NoReplace, nullptr};
168 }
169 
170 /// Generic vectorization for a single operation `op`, given already vectorized
171 /// operands carried by `bvm`. Vectorization occurs as follows:
172 ///   1. Try to apply any of the `customVectorizationHooks` and return its
173 ///   result on success.
174 ///   2. Clone any constant in the current scope without vectorization: each
175 ///   consumer of the constant will later determine the shape to which the
176 ///   constant needs to be broadcast to.
177 ///   3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
178 ///   of the `customVectorizationHooks` to cover such cases.
179 ///   4. Clone `op` in vector form to a vector of shape prescribed by the first
180 ///   operand of maximal rank. Other operands have smaller rank and are
181 ///   broadcast accordingly. It is assumed this broadcast is always legal,
182 ///   otherwise, it means one of the `customVectorizationHooks` is incorrect.
183 ///
184 /// This function assumes all operands of `op` have been vectorized and are in
185 /// the `bvm` mapping. As a consequence, this function is meant to be called on
186 /// a topologically-sorted list of ops.
187 /// This function does not update `bvm` but returns a VectorizationStatus that
188 /// instructs the caller what `bvm` update needs to occur.
189 static VectorizationResult
190 vectorizeOneOp(OpBuilder &builder, Operation *op,
191                const BlockAndValueMapping &bvm,
192                ArrayRef<CustomVectorizationHook> customVectorizationHooks) {
193   LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op);
194 
195   // 1. Try to apply any CustomVectorizationHook.
196   if (!customVectorizationHooks.empty()) {
197     for (auto &customFunc : customVectorizationHooks) {
198       VectorizationResult result = customFunc(op, bvm);
199       if (result.status == VectorizationStatus::Failure)
200         continue;
201       return result;
202     }
203   }
204 
205   // 2. Constant ops don't get vectorized but rather broadcasted at their users.
206   // Clone so that the constant is not confined to the linalgOp block .
207   if (isa<ConstantOp>(op))
208     return VectorizationResult{VectorizationStatus::NewOp, builder.clone(*op)};
209 
210   // 3. Only ElementwiseMappable are allowed in the generic vectorization.
211   if (!OpTrait::hasElementwiseMappableTraits(op))
212     return VectorizationResult{VectorizationStatus::Failure, nullptr};
213 
214   // 4. Generic vectorization path for ElementwiseMappable ops.
215   //   a. first get the first max ranked shape.
216   SmallVector<int64_t, 4> firstMaxRankedShape;
217   for (Value operand : op->getOperands()) {
218     auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>();
219     if (vt && firstMaxRankedShape.size() < vt.getShape().size())
220       firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end());
221   }
222   //   b. broadcast each op if needed.
223   auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) {
224     return firstMaxRankedShape.empty()
225                ? bvm.lookup(v)
226                : broadcastIfNeeded(builder, bvm.lookup(v), firstMaxRankedShape);
227   });
228   //   c. for elementwise, the result is the vector with the firstMaxRankedShape
229   auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) {
230     return firstMaxRankedShape.empty()
231                ? t
232                : VectorType::get(firstMaxRankedShape, t);
233   });
234 
235   // Build and return the new op.
236   OperationState state(op->getLoc(), op->getName());
237   state.addAttributes(op->getAttrs());
238   state.addOperands(llvm::to_vector<4>(vectorizedOperands));
239   state.addTypes(llvm::to_vector<4>(returnTypes));
240   return VectorizationResult{VectorizationStatus::NewOp,
241                              builder.createOperation(state)};
242 }
243 
244 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp.
245 static bool hasOnlyScalarElementwiseOp(Region &r) {
246   if (!llvm::hasSingleElement(r))
247     return false;
248   for (Operation &op : r.front()) {
249     if (!(isa<ConstantOp, linalg::YieldOp>(op) ||
250           OpTrait::hasElementwiseMappableTraits(&op)) ||
251         llvm::any_of(op.getResultTypes(),
252                      [](Type type) { return !type.isIntOrIndexOrFloat(); }))
253       return false;
254   }
255   return true;
256 }
257 
258 // Return true if the op is an element-wise linalg op.
259 static bool isElementwise(Operation *op) {
260   auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
261   if (!linalgOp)
262     return false;
263   if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops())
264     return false;
265   // TODO: relax the restrictions on indexing map.
266   for (unsigned i = 0, e = linalgOp.getNumOutputs(); i < e; i++) {
267     if (!linalgOp.getOutputIndexingMap(i).isIdentity())
268       return false;
269   }
270   if (linalgOp->getNumRegions() != 1)
271     return false;
272   return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0));
273 }
274 
275 // Calculate the map to apply to transfer_read to convert the input shape into
276 // the output shape.
277 static AffineMap getTransferReadMap(LinalgOp linalgOp, unsigned argIndex) {
278   AffineMap linalgMap = linalgOp.getIndexingMap(argIndex);
279   MLIRContext *context = linalgMap.getContext();
280   AffineExpr zero = mlir::getAffineConstantExpr(0, context);
281   SmallVector<AffineExpr, 4> exprs(linalgMap.getNumInputs(), zero);
282   for (unsigned i : llvm::seq(unsigned(0), linalgMap.getNumResults())) {
283     exprs[linalgMap.getDimPosition(i)] = getAffineDimExpr(i, context);
284   }
285   return AffineMap::get(linalgMap.getNumResults(), /*symbolCount=*/0, exprs,
286                         context);
287 }
288 
289 /// Generic vectorization function that rewrites the body of a `linalgOp` into
290 /// vector form. Generic vectorization proceeds as follows:
291 ///   1. The region for the linalg op is created if necessary.
292 ///   2. Values defined above the region are mapped to themselves and will be
293 ///   broadcasted on a per-need basis by their consumers.
294 ///   3. Each region argument is vectorized into a vector.transfer_read (or 0-d
295 ///   load).
296 ///   TODO: Reuse opportunities for RAR dependencies.
297 ///   4. Register CustomVectorizationHook for YieldOp to capture the results.
298 ///   5. Iteratively call vectorizeOneOp on the region operations.
299 LogicalResult vectorizeAsLinalgGeneric(
300     OpBuilder &builder, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults,
301     ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) {
302   // 1. Certain Linalg ops do not have a region but only a region builder.
303   // If so, build the region so we can vectorize.
304   std::unique_ptr<Region> owningRegion;
305   Region *region;
306   if (linalgOp->getNumRegions() > 0) {
307     region = &linalgOp->getRegion(0);
308   } else {
309     // RAII avoid remaining in block.
310     OpBuilder::InsertionGuard g(builder);
311     owningRegion = std::make_unique<Region>();
312     region = owningRegion.get();
313     Block *block = builder.createBlock(region);
314     auto elementTypes = llvm::to_vector<4>(
315         llvm::map_range(linalgOp.getShapedOperandTypes(),
316                         [](ShapedType t) { return t.getElementType(); }));
317     block->addArguments(elementTypes);
318     linalgOp.getRegionBuilder()(*block, /*captures=*/{});
319   }
320   Block *block = &region->front();
321 
322   BlockAndValueMapping bvm;
323   // 2. Values defined above the region can only be broadcast for now. Make them
324   // map to themselves.
325   llvm::SetVector<Value> valuesSet;
326   mlir::getUsedValuesDefinedAbove(*region, valuesSet);
327   bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef());
328 
329   // 3. Turn all BBArgs into vector.transfer_read / load.
330   SmallVector<AffineMap> indexings;
331   for (auto bbarg : block->getArguments()) {
332     Value vectorArg = linalgOp.getShapedOperand(bbarg.getArgNumber());
333     AffineMap map;
334     VectorType vectorType = extractVectorTypeFromShapedValue(vectorArg);
335     if (isElementwise(linalgOp) &&
336         !linalgOp.getIndexingMap(bbarg.getArgNumber()).isMinorIdentity()) {
337       // Currently assume we don't support output permutations.
338       assert(linalgOp.getNumOutputs() > 0 &&
339              linalgOp.getOutputIndexingMap(0).isIdentity());
340       ArrayRef<int64_t> outputShape =
341           linalgOp.getOutputShapedType(0).getShape();
342       vectorType = VectorType::get(outputShape, vectorType.getElementType());
343       map = getTransferReadMap(linalgOp, bbarg.getArgNumber());
344     }
345     Value vectorRead = buildVectorRead(builder, vectorArg, vectorType, map);
346     LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg("
347                       << bbarg.getArgNumber() << "): " << vectorRead);
348     bvm.map(bbarg, vectorRead);
349     bvm.map(vectorArg, vectorRead);
350   }
351 
352   // 4. Register CustomVectorizationHook for yieldOp.
353   CustomVectorizationHook vectorizeYield =
354       [&](Operation *op,
355           const BlockAndValueMapping &bvm) -> VectorizationResult {
356     return vectorizeLinalgYield(builder, op, bvm, linalgOp, newResults);
357   };
358   // Append the vectorizeYield hook.
359   auto hooks = llvm::to_vector<4>(customVectorizationHooks);
360   hooks.push_back(vectorizeYield);
361 
362   // 5. Iteratively call `vectorizeOneOp` to each op in the slice.
363   for (Operation &op : block->getOperations()) {
364     VectorizationResult result = vectorizeOneOp(builder, &op, bvm, hooks);
365     if (result.status == VectorizationStatus::Failure) {
366       LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op);
367       return failure();
368     }
369     if (result.status == VectorizationStatus::NewOp) {
370       LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: "
371                         << *result.newOp;);
372       bvm.map(op.getResults(), result.newOp->getResults());
373     }
374   }
375 
376   return success();
377 }
378 
379 static LogicalResult vectorizeContraction(OpBuilder &builder, LinalgOp linalgOp,
380                                           SmallVectorImpl<Value> &newResults) {
381   assert(isaContractionOpInterface(linalgOp) &&
382          "expected vectorizeContraction preconditions to be met");
383   Location loc = linalgOp.getLoc();
384   // Vectorize other ops as vector contraction.
385   // TODO: interface.
386   LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: "
387                     << "Rewrite linalg op as vector.contract: ";
388              linalgOp.dump());
389   // Special function that describes how to vectorize the multiplication op in a
390   // linalg contraction.
391   CustomVectorizationHook vectorizeContraction =
392       [&](Operation *op,
393           const BlockAndValueMapping &bvm) -> VectorizationResult {
394     if (!isa<MulIOp, MulFOp>(op))
395       return VectorizationResult{VectorizationStatus::Failure, nullptr};
396     auto outShape = linalgOp.getOutputShapedType(0).getShape();
397     auto vType = outShape.empty()
398                      ? op->getResult(0).getType()
399                      : VectorType::get(outShape, op->getResult(0).getType());
400     auto zero =
401         builder.create<ConstantOp>(loc, vType, builder.getZeroAttr(vType));
402     Operation *contract = builder.create<vector::ContractionOp>(
403         loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero,
404         linalgOp.indexing_maps(), linalgOp.iterator_types());
405     return VectorizationResult{VectorizationStatus::NewOp, contract};
406   };
407   return vectorizeAsLinalgGeneric(builder, linalgOp, newResults,
408                                   {vectorizeContraction});
409 }
410 
411 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) {
412   auto linalgOp = cast<linalg::LinalgOp>(op);
413   // All types must be static shape to go to vector.
414   for (Value operand : linalgOp.getShapedOperands())
415     if (!operand.getType().cast<ShapedType>().hasStaticShape())
416       return failure();
417   for (Type outputTensorType : linalgOp.getOutputTensorTypes())
418     if (!outputTensorType.cast<ShapedType>().hasStaticShape())
419       return failure();
420   if (isElementwise(op))
421     return success();
422   return success(isaContractionOpInterface(linalgOp));
423 }
424 
425 LogicalResult
426 mlir::linalg::vectorizeLinalgOp(OpBuilder &builder, Operation *op,
427                                 SmallVectorImpl<Value> &newResults) {
428   if (failed(vectorizeLinalgOpPrecondition(op)))
429     return failure();
430 
431   edsc::ScopedContext scope(builder, op->getLoc());
432   if (isElementwise(op)) {
433     LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: "
434                       << "Vectorize linalg op as a generic: " << *op);
435     return vectorizeAsLinalgGeneric(builder, cast<LinalgOp>(op), newResults);
436   }
437 
438   return vectorizeContraction(builder, cast<LinalgOp>(op), newResults);
439 }
440 
441 //----------------------------------------------------------------------------//
442 // Misc. vectorization patterns.
443 //----------------------------------------------------------------------------//
444 
445 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, TransferReadOp and
446 /// TransferWriteOp. For now, this only applies when all low and high paddings
447 /// are determined to be zero.
448 LogicalResult PadTensorOpVectorizationPattern::matchAndRewrite(
449     linalg::PadTensorOp padOp, PatternRewriter &rewriter) const {
450   // Helper function to determine whether an OpFoldResult is not a zero Index.
451   auto isNotZeroIndex = [](OpFoldResult ofr) {
452     if (Attribute attr = ofr.dyn_cast<Attribute>())
453       return attr.cast<IntegerAttr>().getInt() != 0;
454     Value v = ofr.get<Value>();
455     if (auto constOp = v.getDefiningOp<ConstantOp>())
456       if (auto intAttr = constOp.getValue().dyn_cast<IntegerAttr>())
457         return intAttr.getValue().getSExtValue() != 0;
458     return true;
459   };
460 
461   auto resultShapedType = padOp.result().getType().cast<ShapedType>();
462   // Bail on non-static shapes.
463   if (!resultShapedType.hasStaticShape())
464     return failure();
465 
466   // If any pad_low is not a static 0, needs a mask. Bail for now.
467   if (llvm::any_of(padOp.getMixedLowPad(), isNotZeroIndex))
468     return failure();
469   VectorType vectorType = extractVectorTypeFromShapedValue(padOp.result());
470   if (!vectorType)
471     return failure();
472 
473   // Only support padding with a constant for now, i.e. either:
474   //   1. A BBarg from a different block.
475   //   2. A value defined outside of the current block.
476   Block &block = padOp.region().front();
477   auto yieldOp = cast<YieldOp>(block.getTerminator());
478   assert(yieldOp.getNumOperands() == 1 && "expected single operand yield");
479   Value padValue = yieldOp.values().front();
480   Operation *definingOp = padValue.getDefiningOp();
481   if (definingOp && definingOp->getBlock() == &block)
482     return failure();
483   if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block)
484     return failure();
485 
486   // TODO: if any pad_high is not a static 0, needs a mask. For now, just bail.
487   if (llvm::any_of(padOp.getMixedHighPad(),
488                    [&](OpFoldResult ofr) { return isNotZeroIndex(ofr); }))
489     return failure();
490 
491   // Now we can rewrite as InitTensorOp + TransferReadOp@[0..0] +
492   // TransferWriteOp@[0..0].
493   SmallVector<Value> indices(
494       resultShapedType.getRank(),
495       rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0));
496   Value read = rewriter.create<vector::TransferReadOp>(
497       padOp.getLoc(), vectorType, padOp.source(), indices, padValue);
498   Value init =
499       rewriter.create<InitTensorOp>(padOp.getLoc(), resultShapedType.getShape(),
500                                     resultShapedType.getElementType());
501   rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(padOp, read, init,
502                                                        indices);
503 
504   return success();
505 }
506 
507 // TODO: cleanup all the convolution vectorization patterns.
508 template <class ConvOp, int N>
509 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite(
510     ConvOp op, PatternRewriter &rewriter) const {
511   Location loc = op.getLoc();
512   MLIRContext *context = op.getContext();
513   edsc::ScopedContext scope(rewriter, loc);
514 
515   ShapedType inShapeType = op.getInputShapedType(0);
516   ShapedType kShapeType = op.getInputShapedType(1);
517 
518   ArrayRef<int64_t> inShape = inShapeType.getShape();
519   ArrayRef<int64_t> kShape = kShapeType.getShape();
520 
521   if (!inShapeType.hasStaticShape() || !kShapeType.hasStaticShape())
522     return failure();
523 
524   SmallVector<AffineExpr, 4> mapping;
525   SmallVector<int64_t, 4> vectorDims;
526   // Fail to apply when the size of not vectorized dimension is not 1.
527   for (unsigned i = 0; i < N; i++) {
528     if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1))
529       return failure();
530 
531     if (mask[i] && inShape[i] != kShape[i])
532       return failure();
533 
534     if (mask[i]) {
535       mapping.push_back(getAffineDimExpr(i, context));
536       vectorDims.push_back(inShape[i]);
537     }
538   }
539 
540   Value input = op.getInput(0);
541   Value kernel = op.getInput(1);
542   Value output = op.getOutputBuffer(0);
543 
544   unsigned rank = inShapeType.getRank();
545   unsigned numDims = mapping.size();
546   Type elemType = inShapeType.getElementType();
547 
548   auto map = AffineMap::get(rank, 0, mapping, context);
549   SmallVector<Value, 4> zeros(rank, std_constant_index(0));
550   auto vecType = VectorType::get(vectorDims, elemType);
551 
552   auto inputVec = vector_transfer_read(vecType, input, zeros, map);
553   auto kernelVec = vector_transfer_read(vecType, kernel, zeros, map);
554 
555   auto acc = std_constant(elemType, rewriter.getZeroAttr(elemType));
556 
557   std::array<AffineMap, 3> indexingMaps{
558       AffineMap::getMultiDimIdentityMap(numDims, context),
559       AffineMap::getMultiDimIdentityMap(numDims, context),
560       AffineMap::get(numDims, 0, {}, context)};
561 
562   std::vector<StringRef> iteratorTypes(numDims, "reduction");
563 
564   auto result = rewriter.create<vector::ContractionOp>(
565       loc, inputVec, kernelVec, acc,
566       rewriter.getAffineMapArrayAttr(indexingMaps),
567       rewriter.getStrArrayAttr(iteratorTypes));
568 
569   rewriter.create<memref::StoreOp>(loc, result, output, ValueRange(zeros));
570   rewriter.eraseOp(op);
571   return success();
572 }
573 
574 using ConvOpConst = ConvOpVectorization<ConvWOp, 1>;
575 
576 /// Inserts tiling, promotion and vectorization pattern for ConvOp
577 /// conversion into corresponding pattern lists.
578 template <typename ConvOp, unsigned N>
579 static void
580 populateVectorizationPatterns(OwningRewritePatternList &tilingPatterns,
581                               OwningRewritePatternList &promotionPatterns,
582                               OwningRewritePatternList &vectorizationPatterns,
583                               ArrayRef<int64_t> tileSizes) {
584   auto *context = tilingPatterns.getContext();
585   if (tileSizes.size() < N)
586     return;
587 
588   constexpr static StringRef kTiledMarker = "TILED";
589   constexpr static StringRef kPromotedMarker = "PROMOTED";
590   tilingPatterns.insert<LinalgTilingPattern<ConvOp>>(
591       context, LinalgTilingOptions().setTileSizes(tileSizes),
592       LinalgTransformationFilter(ArrayRef<Identifier>{},
593                                  Identifier::get(kTiledMarker, context)));
594 
595   promotionPatterns.insert<LinalgPromotionPattern<ConvOp>>(
596       context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
597       LinalgTransformationFilter(Identifier::get(kTiledMarker, context),
598                                  Identifier::get(kPromotedMarker, context)));
599 
600   SmallVector<bool, 4> mask(N);
601   int offset = tileSizes.size() - N;
602   std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(),
603                  [](int64_t i) -> bool { return i > 1; });
604 
605   vectorizationPatterns.insert<ConvOpVectorization<ConvOp, N>>(context, mask);
606 }
607 
608 void mlir::linalg::populateConvVectorizationPatterns(
609     MLIRContext *context, SmallVectorImpl<OwningRewritePatternList> &patterns,
610     ArrayRef<int64_t> tileSizes) {
611   OwningRewritePatternList tiling(context);
612   OwningRewritePatternList promotion(context);
613   OwningRewritePatternList vectorization(context);
614   populateVectorizationPatterns<ConvWOp, 1>(tiling, promotion, vectorization,
615                                             tileSizes);
616 
617   populateVectorizationPatterns<ConvNWCOp, 3>(tiling, promotion, vectorization,
618                                               tileSizes);
619   populateVectorizationPatterns<ConvInputNWCFilterWCFOp, 3>(
620       tiling, promotion, vectorization, tileSizes);
621 
622   populateVectorizationPatterns<ConvNCWOp, 3>(tiling, promotion, vectorization,
623                                               tileSizes);
624   populateVectorizationPatterns<ConvInputNCWFilterWCFOp, 3>(
625       tiling, promotion, vectorization, tileSizes);
626 
627   populateVectorizationPatterns<ConvHWOp, 2>(tiling, promotion, vectorization,
628                                              tileSizes);
629 
630   populateVectorizationPatterns<ConvNHWCOp, 4>(tiling, promotion, vectorization,
631                                                tileSizes);
632   populateVectorizationPatterns<ConvInputNHWCFilterHWCFOp, 4>(
633       tiling, promotion, vectorization, tileSizes);
634 
635   populateVectorizationPatterns<ConvNCHWOp, 4>(tiling, promotion, vectorization,
636                                                tileSizes);
637   populateVectorizationPatterns<ConvInputNCHWFilterHWCFOp, 4>(
638       tiling, promotion, vectorization, tileSizes);
639 
640   populateVectorizationPatterns<ConvDHWOp, 3>(tiling, promotion, vectorization,
641                                               tileSizes);
642 
643   populateVectorizationPatterns<ConvNDHWCOp, 5>(tiling, promotion,
644                                                 vectorization, tileSizes);
645   populateVectorizationPatterns<ConvInputNDHWCFilterDHWCFOp, 5>(
646       tiling, promotion, vectorization, tileSizes);
647 
648   populateVectorizationPatterns<ConvNCDHWOp, 5>(tiling, promotion,
649                                                 vectorization, tileSizes);
650   populateVectorizationPatterns<ConvInputNCDHWFilterDHWCFOp, 5>(
651       tiling, promotion, vectorization, tileSizes);
652 
653   patterns.push_back(std::move(tiling));
654   patterns.push_back(std::move(promotion));
655   patterns.push_back(std::move(vectorization));
656 }
657 
658 //----------------------------------------------------------------------------//
659 // Forwarding patterns
660 //----------------------------------------------------------------------------//
661 
662 /// Check whether there is any interleaved use of any `values` between `firstOp`
663 /// and `secondOp`. Conservatively return `true` if any op or value is in a
664 /// different block.
665 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
666                                     ValueRange values) {
667   if (firstOp->getBlock() != secondOp->getBlock() ||
668       !firstOp->isBeforeInBlock(secondOp)) {
669     LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
670                             << "interleavedUses precondition failed, firstOp: "
671                             << *firstOp << ", second op: " << *secondOp);
672     return true;
673   }
674   for (auto v : values) {
675     for (auto &u : v.getUses()) {
676       Operation *owner = u.getOwner();
677       if (owner == firstOp || owner == secondOp)
678         continue;
679       // TODO: this is too conservative, use dominance info in the future.
680       if (owner->getBlock() == firstOp->getBlock() &&
681           (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
682         continue;
683       LLVM_DEBUG(llvm::dbgs()
684                  << "\n[" DEBUG_TYPE "]: "
685                  << " found interleaved op " << *owner
686                  << ", firstOp: " << *firstOp << ", second op: " << *secondOp);
687       return true;
688     }
689   }
690   return false;
691 }
692 
693 /// Return the unique subview use of `v` if it is indeed unique, null otherwise.
694 static memref::SubViewOp getSubViewUseIfUnique(Value v) {
695   memref::SubViewOp subViewOp;
696   for (auto &u : v.getUses()) {
697     if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) {
698       if (subViewOp)
699         return memref::SubViewOp();
700       subViewOp = newSubViewOp;
701     }
702   }
703   return subViewOp;
704 }
705 
706 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
707 /// when available.
708 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
709     vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {
710 
711   // Transfer into `view`.
712   Value viewOrAlloc = xferOp.source();
713   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
714       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
715     return failure();
716 
717   LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << viewOrAlloc);
718 
719   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
720   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
721   if (!subViewOp)
722     return failure();
723   Value subView = subViewOp.getResult();
724   LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
725                           << "with subView " << subView);
726 
727   // Find the copy into `subView` without interleaved uses.
728   CopyOp copyOp;
729   for (auto &u : subView.getUses()) {
730     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
731       if (newCopyOp.getOutputBuffer(0) != subView)
732         continue;
733       LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
734                               << "copy candidate " << *newCopyOp);
735       if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
736         continue;
737       copyOp = newCopyOp;
738       break;
739     }
740   }
741   if (!copyOp)
742     return failure();
743   LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
744                           << "with copy " << *copyOp);
745 
746   // Find the fill into `viewOrAlloc` without interleaved uses before the copy.
747   FillOp maybeFillOp;
748   for (auto &u : viewOrAlloc.getUses()) {
749     if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
750       if (newFillOp.getOutputBuffer(0) != viewOrAlloc)
751         continue;
752       LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
753                               << "fill candidate " << *newFillOp);
754       if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
755         continue;
756       maybeFillOp = newFillOp;
757       break;
758     }
759   }
760   // Ensure padding matches.
761   if (maybeFillOp && xferOp.padding() != maybeFillOp.value())
762     return failure();
763   if (maybeFillOp)
764     LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
765                             << "with maybeFillOp " << *maybeFillOp);
766 
767   // `in` is the subview that linalg.copy reads. Replace it.
768   Value in = copyOp.getInput(0);
769 
770   // linalg.copy + linalg.fill can be used to create a padded local buffer.
771   // The `masked` attribute is only valid on this padded buffer.
772   // When forwarding to vector.transfer_read, the attribute must be reset
773   // conservatively.
774   Value res = rewriter.create<vector::TransferReadOp>(
775       xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(),
776       xferOp.permutation_map(), xferOp.padding(), ArrayAttr());
777 
778   if (maybeFillOp)
779     rewriter.eraseOp(maybeFillOp);
780   rewriter.eraseOp(copyOp);
781   rewriter.replaceOp(xferOp, res);
782 
783   return success();
784 }
785 
786 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
787 /// when available.
788 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
789     vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
790   // Transfer into `viewOrAlloc`.
791   Value viewOrAlloc = xferOp.source();
792   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
793       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
794     return failure();
795 
796   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
797   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
798   if (!subViewOp)
799     return failure();
800   Value subView = subViewOp.getResult();
801 
802   // Find the copy from `subView` without interleaved uses.
803   CopyOp copyOp;
804   for (auto &u : subViewOp.getResult().getUses()) {
805     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
806       if (newCopyOp.getInput(0) != subView)
807         continue;
808       if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
809         continue;
810       copyOp = newCopyOp;
811       break;
812     }
813   }
814   if (!copyOp)
815     return failure();
816 
817   // `out` is the subview copied into that we replace.
818   Value out = copyOp.getOutputBuffer(0);
819 
820   // Forward vector.transfer into copy.
821   // linalg.copy + linalg.fill can be used to create a padded local buffer.
822   // The `masked` attribute is only valid on this padded buffer.
823   // When forwarding to vector.transfer_write, the attribute must be reset
824   // conservatively.
825   rewriter.create<vector::TransferWriteOp>(
826       xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(),
827       xferOp.permutation_map(), ArrayAttr());
828 
829   rewriter.eraseOp(copyOp);
830   rewriter.eraseOp(xferOp);
831 
832   return success();
833 }
834