1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Vectorization transformations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Analysis/LoopAnalysis.h"
14 #include "mlir/Analysis/SliceAnalysis.h"
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
17 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/Tensor/IR/Tensor.h"
21 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
22 #include "mlir/Dialect/Vector/VectorOps.h"
23 #include "mlir/Dialect/Vector/VectorTransforms.h"
24 #include "mlir/IR/AffineExpr.h"
25 #include "mlir/IR/Matchers.h"
26 #include "mlir/IR/PatternMatch.h"
27 #include "mlir/Pass/Pass.h"
28 #include "mlir/Support/LLVM.h"
29 #include "mlir/Transforms/RegionUtils.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/ADT/Sequence.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/TypeSwitch.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <type_traits>
37 
38 using namespace mlir;
39 using namespace mlir::linalg;
40 
41 using llvm::dbgs;
42 
43 #define DEBUG_TYPE "linalg-vectorization"
44 
45 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
46 #define LDBG(X) LLVM_DEBUG(DBGS() << X)
47 
48 static FailureOr<Operation *>
49 vectorizeConvolution(OpBuilder &b, ConvolutionOpInterface convOp);
50 
51 /// Return the unique instance of OpType in `block` if it is indeed unique.
52 /// Return null if none or more than 1 instances exist.
53 template <typename OpType>
54 static OpType getSingleOpOfType(Block &block) {
55   OpType res;
56   block.walk([&](OpType op) {
57     if (res) {
58       res = nullptr;
59       return WalkResult::interrupt();
60     }
61     res = op;
62     return WalkResult::advance();
63   });
64   return res;
65 }
66 
67 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a
68 /// projectedPermutation, compress the unused dimensions to serve as a
69 /// permutation_map for a vector transfer operation.
70 /// For example, given a linalg op such as:
71 ///
72 /// ```
73 ///   %0 = linalg.generic {
74 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>,
75 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)>
76 ///      }
77 ///     ins(%0 : tensor<2x3x4xf32>)
78 ///    outs(%1 : tensor<5x6xf32>)
79 /// ```
80 ///
81 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine
82 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second
83 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`.
84 static AffineMap reindexIndexingMap(AffineMap map) {
85   assert(map.isProjectedPermutation(/*allowZerosInResults=*/true) &&
86          "expected projected permutation");
87   auto res = compressUnusedDims(map);
88   assert(res.getNumDims() == res.getNumResults() &&
89          "expected reindexed map with same number of dims and results");
90   return res;
91 }
92 
93 /// Helper data structure to represent the result of vectorization.
94 /// In certain specific cases, like terminators, we do not want to propagate/
95 enum VectorizationStatus {
96   /// Op failed to vectorize.
97   Failure = 0,
98   /// Op vectorized and custom function took care of replacement logic
99   NoReplace,
100   /// Op vectorized into a new Op whose results will replace original Op's
101   /// results.
102   NewOp
103   // TODO: support values if Op vectorized to Many-Ops whose results we need to
104   // aggregate for replacement.
105 };
106 struct VectorizationResult {
107   /// Return status from vectorizing the current op.
108   enum VectorizationStatus status = VectorizationStatus::Failure;
109   /// New vectorized operation to replace the current op.
110   /// Replacement behavior is specified by `status`.
111   Operation *newOp;
112 };
113 
114 /// Return a vector type of the same shape and element type as the (assumed)
115 /// ShapedType of `v`.
116 static VectorType extractVectorTypeFromShapedValue(Value v) {
117   auto st = v.getType().cast<ShapedType>();
118   if (st.getShape().empty())
119     return VectorType();
120   return VectorType::get(st.getShape(), st.getElementType());
121 }
122 
123 static llvm::Optional<vector::CombiningKind>
124 getKindForOp(Operation *reductionOp) {
125   if (!reductionOp)
126     return llvm::None;
127   return llvm::TypeSwitch<Operation *, llvm::Optional<vector::CombiningKind>>(
128              reductionOp)
129       .Case<arith::AddIOp, arith::AddFOp>(
130           [&](auto op) { return vector::CombiningKind::ADD; })
131       .Case<arith::AndIOp>([&](auto op) { return vector::CombiningKind::AND; })
132       .Case<arith::MaxSIOp>(
133           [&](auto op) { return vector::CombiningKind::MAXSI; })
134       .Case<arith::MaxFOp>([&](auto op) { return vector::CombiningKind::MAXF; })
135       .Case<arith::MinSIOp>(
136           [&](auto op) { return vector::CombiningKind::MINSI; })
137       .Case<arith::MinFOp>([&](auto op) { return vector::CombiningKind::MINF; })
138       .Case<arith::MulIOp, arith::MulFOp>(
139           [&](auto op) { return vector::CombiningKind::MUL; })
140       .Case<arith::OrIOp>([&](auto op) { return vector::CombiningKind::OR; })
141       .Case<arith::XOrIOp>([&](auto op) { return vector::CombiningKind::XOR; })
142       .Default([&](auto op) { return llvm::None; });
143 }
144 
145 /// Check whether `outputOperand` is a reduction with a single combiner
146 /// operation. Return the combiner operation of the reduction. Return
147 /// nullptr otherwise. Multiple reduction operations would impose an
148 /// ordering between reduction dimensions and is currently unsupported in
149 /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) !=
150 /// max(min(X))
151 // TODO: use in LinalgOp verification, there is a circular dependency atm.
152 static Operation *matchLinalgReduction(OpOperand *outputOperand) {
153   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
154   unsigned outputPos =
155       outputOperand->getOperandNumber() - linalgOp.getNumInputs();
156   // Only single combiner operations are supported for now.
157   SmallVector<Operation *, 4> combinerOps;
158   if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) ||
159       combinerOps.size() != 1)
160     return nullptr;
161 
162   // Return the combiner operation.
163   return combinerOps[0];
164 }
165 
166 /// Broadcast `value` to a vector of `shape` if possible. Return value
167 /// otherwise.
168 static Value broadcastIfNeeded(OpBuilder &b, Value value,
169                                ArrayRef<int64_t> shape) {
170   // If no shape to broadcast to, just return `value`.
171   if (shape.empty())
172     return value;
173   VectorType targetVectorType =
174       VectorType::get(shape, getElementTypeOrSelf(value));
175   if (vector::isBroadcastableTo(value.getType(), targetVectorType) !=
176       vector::BroadcastableToResult::Success)
177     return value;
178   Location loc = b.getInsertionPoint()->getLoc();
179   return b.createOrFold<vector::BroadcastOp>(loc, targetVectorType, value);
180 }
181 
182 /// Build a vector.transfer_read from `source` at indices set to all `0`.
183 /// If source has rank zero, build a `vector<1xt> transfer_read + extract`.
184 /// Return the produced value.
185 static Value buildVectorRead(OpBuilder &b, Value source, Type readType,
186                              AffineMap map) {
187   Location loc = source.getLoc();
188   auto shapedType = source.getType().cast<ShapedType>();
189   SmallVector<Value> indices(shapedType.getRank(),
190                              b.create<arith::ConstantIndexOp>(loc, 0));
191   if (auto vectorType = readType.dyn_cast<VectorType>())
192     return b.create<vector::TransferReadOp>(loc, vectorType, source, indices,
193                                             map);
194   return vector::TransferReadOp::createScalarOp(b, loc, source, indices);
195 }
196 
197 /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This
198 /// assumes that `reductionOp` has two operands and one of them is the reduction
199 /// initial value.
200 static Value buildMultiDimReduce(OpBuilder &b, Operation *reduceOp,
201                                  Value valueToReduce,
202                                  const SmallVector<bool> &reductionMask) {
203   auto maybeKind = getKindForOp(reduceOp);
204   assert(maybeKind && "Failed precondition: could not get reduction kind");
205   return b.create<vector::MultiDimReductionOp>(
206       reduceOp->getLoc(), valueToReduce, reductionMask, *maybeKind);
207 }
208 
209 static SmallVector<bool> getReductionMask(LinalgOp linalgOp) {
210   unsigned idx = 0;
211   SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false);
212   for (auto attr : linalgOp.iterator_types()) {
213     if (isReductionIterator(attr))
214       reductionMask[idx] = true;
215     ++idx;
216   }
217   return reductionMask;
218 }
219 
220 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set
221 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp
222 /// currently being vectorized. If `dest` has null rank, build an memref.store.
223 /// Return the produced value or null if no value is produced.
224 static Value buildVectorWrite(OpBuilder &b, Value value,
225                               OpOperand *outputOperand) {
226   Operation *write;
227   Location loc = value.getLoc();
228   auto linalgOp = cast<LinalgOp>(outputOperand->getOwner());
229   if (VectorType vectorType =
230           extractVectorTypeFromShapedValue(outputOperand->get())) {
231     AffineMap map =
232         reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand));
233     SmallVector<int64_t> transposeShape =
234         applyPermutationMap(inversePermutation(map), vectorType.getShape());
235     assert(!transposeShape.empty() && "unexpected empty transpose shape");
236     vectorType = VectorType::get(transposeShape, vectorType.getElementType());
237     SmallVector<Value> indices(linalgOp.getRank(outputOperand),
238                                b.create<arith::ConstantIndexOp>(loc, 0));
239     value = broadcastIfNeeded(b, value, vectorType.getShape());
240     write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(),
241                                               indices, map);
242   } else {
243     write = vector::TransferWriteOp::createScalarOp(
244         b, loc, value, outputOperand->get(), ValueRange{});
245   }
246   LDBG("vectorized op: " << *write);
247   if (!write->getResults().empty())
248     return write->getResult(0);
249   return Value();
250 }
251 
252 // Custom vectorization function type. Produce a vector form of Operation*
253 // assuming all its vectorized operands are already in the BlockAndValueMapping.
254 // Return nullptr if the Operation cannot be vectorized.
255 using CustomVectorizationHook = std::function<VectorizationResult(
256     Operation *, const BlockAndValueMapping &)>;
257 
258 /// Helper function to vectorize the terminator of a `linalgOp`. New result
259 /// vector values are appended to `newResults`. Return
260 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it
261 /// should not try to map produced operations and instead return the results
262 /// using the `newResults` vector making them available to the
263 /// vectorization algorithm for RAUW. This function is meant to be used as a
264 /// CustomVectorizationHook.
265 static VectorizationResult
266 vectorizeLinalgYield(OpBuilder &b, Operation *op,
267                      const BlockAndValueMapping &bvm, LinalgOp linalgOp,
268                      SmallVectorImpl<Value> &newResults) {
269   auto yieldOp = dyn_cast<linalg::YieldOp>(op);
270   if (!yieldOp)
271     return VectorizationResult{VectorizationStatus::Failure, nullptr};
272   for (auto outputs : llvm::enumerate(yieldOp.values())) {
273     // TODO: Scan for an opportunity for reuse.
274     // TODO: use a map.
275     Value vectorValue = bvm.lookup(outputs.value());
276     Value newResult = buildVectorWrite(
277         b, vectorValue, linalgOp.getOutputOperand(outputs.index()));
278     if (newResult)
279       newResults.push_back(newResult);
280   }
281   return VectorizationResult{VectorizationStatus::NoReplace, nullptr};
282 }
283 
284 /// Helper function to vectorize the index operations of a `linalgOp`. Return
285 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it
286 /// should map the produced operations. This function is meant to be used as a
287 /// CustomVectorizationHook.
288 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op,
289                                                 LinalgOp linalgOp) {
290   IndexOp indexOp = dyn_cast<linalg::IndexOp>(op);
291   if (!indexOp)
292     return VectorizationResult{VectorizationStatus::Failure, nullptr};
293   auto loc = indexOp.getLoc();
294   // Compute the static loop sizes of the index op.
295   auto targetShape = linalgOp.computeStaticLoopSizes();
296   // Compute a one-dimensional index vector for the index op dimension.
297   SmallVector<int64_t> constantSeq =
298       llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()]));
299   auto constantOp =
300       b.create<arith::ConstantOp>(loc, b.getIndexVectorAttr(constantSeq));
301   // Return the one-dimensional index vector if it lives in the trailing
302   // dimension of the iteration space since the vectorization algorithm in this
303   // case can handle the broadcast.
304   if (indexOp.dim() == targetShape.size() - 1)
305     return VectorizationResult{VectorizationStatus::NewOp, constantOp};
306   // Otherwise permute the targetShape to move the index dimension last,
307   // broadcast the one-dimensional index vector to the permuted shape, and
308   // finally transpose the broadcasted index vector to undo the permutation.
309   std::swap(targetShape[indexOp.dim()], targetShape.back());
310   auto broadCastOp = b.create<vector::BroadcastOp>(
311       loc, VectorType::get(targetShape, b.getIndexType()), constantOp);
312   SmallVector<int64_t> transposition =
313       llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops()));
314   std::swap(transposition.back(), transposition[indexOp.dim()]);
315   auto transposeOp =
316       b.create<vector::TransposeOp>(loc, broadCastOp, transposition);
317   return VectorizationResult{VectorizationStatus::NewOp, transposeOp};
318 }
319 
320 /// Create a new vectorized verstion of `op` with the given operands and types.
321 static Operation *createVectorizedOp(OpBuilder &b, Operation *op,
322                                      ValueRange newOperands,
323                                      ArrayRef<Type> types) {
324   OperationState state(op->getLoc(), op->getName());
325   state.addAttributes(op->getAttrs());
326   state.addOperands(newOperands);
327   state.addTypes(types);
328   return b.createOperation(state);
329 }
330 
331 /// Emit reduction operations if the shapes of the value to reduce is different
332 /// that the result shape.
333 static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op,
334                                  Value reduceValue, Value initialValue,
335                                  const BlockAndValueMapping &bvm) {
336   Value reduceVec = bvm.lookup(reduceValue);
337   Value outputVec = bvm.lookup(initialValue);
338   auto reduceType = reduceVec.getType().dyn_cast<VectorType>();
339   auto outputType = outputVec.getType().dyn_cast<VectorType>();
340   // Reduce only if needed as the value may already have been reduce for
341   // contraction vectorization.
342   if (!reduceType ||
343       (outputType && reduceType.getShape() == outputType.getShape()))
344     return nullptr;
345   SmallVector<bool> reductionMask = getReductionMask(linalgOp);
346   Value reduce = buildMultiDimReduce(b, op, reduceVec, reductionMask);
347   return createVectorizedOp(b, op, {reduce, outputVec}, reduce.getType());
348 }
349 
350 /// Generic vectorization for a single operation `op`, given already vectorized
351 /// operands carried by `bvm`. Vectorization occurs as follows:
352 ///   1. Try to apply any of the `customVectorizationHooks` and return its
353 ///   result on success.
354 ///   2. Clone any constant in the current scope without vectorization: each
355 ///   consumer of the constant will later determine the shape to which the
356 ///   constant needs to be broadcast to.
357 ///   3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
358 ///   of the `customVectorizationHooks` to cover such cases.
359 ///   4. Clone `op` in vector form to a vector of shape prescribed by the first
360 ///   operand of maximal rank. Other operands have smaller rank and are
361 ///   broadcast accordingly. It is assumed this broadcast is always legal,
362 ///   otherwise, it means one of the `customVectorizationHooks` is incorrect.
363 ///
364 /// This function assumes all operands of `op` have been vectorized and are in
365 /// the `bvm` mapping. As a consequence, this function is meant to be called on
366 /// a topologically-sorted list of ops.
367 /// This function does not update `bvm` but returns a VectorizationStatus that
368 /// instructs the caller what `bvm` update needs to occur.
369 static VectorizationResult
370 vectorizeOneOp(OpBuilder &b, LinalgOp linalgOp, Operation *op,
371                const BlockAndValueMapping &bvm,
372                ArrayRef<CustomVectorizationHook> customVectorizationHooks) {
373   LDBG("vectorize op " << *op);
374 
375   // 1. Try to apply any CustomVectorizationHook.
376   if (!customVectorizationHooks.empty()) {
377     for (auto &customFunc : customVectorizationHooks) {
378       VectorizationResult result = customFunc(op, bvm);
379       if (result.status == VectorizationStatus::Failure)
380         continue;
381       return result;
382     }
383   }
384 
385   // 2. Constant ops don't get vectorized but rather broadcasted at their users.
386   // Clone so that the constant is not confined to the linalgOp block .
387   if (isa<arith::ConstantOp, ConstantOp>(op))
388     return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)};
389 
390   // 3. Only ElementwiseMappable are allowed in the generic vectorization.
391   if (!OpTrait::hasElementwiseMappableTraits(op))
392     return VectorizationResult{VectorizationStatus::Failure, nullptr};
393 
394   // 4 . Check if the operation is a reduction.
395   SmallVector<std::pair<Value, Value>> reductionOperands;
396   for (Value operand : op->getOperands()) {
397     auto arg = operand.dyn_cast<BlockArgument>();
398     if (!arg || arg.getArgNumber() < linalgOp.getNumInputs())
399       continue;
400     SmallVector<Operation *> reductionOps;
401     Value reduceValue = matchReduction(
402         linalgOp.getRegionOutputArgs(),
403         arg.getArgNumber() - linalgOp.getNumInputs(), reductionOps);
404     if (!reduceValue)
405       continue;
406     reductionOperands.push_back(std::make_pair(reduceValue, operand));
407   }
408   if (!reductionOperands.empty()) {
409     assert(reductionOperands.size() == 1);
410     Operation *reduceOp =
411         reduceIfNeeded(b, linalgOp, op, reductionOperands[0].first,
412                        reductionOperands[0].second, bvm);
413     if (reduceOp)
414       return VectorizationResult{VectorizationStatus::NewOp, reduceOp};
415   }
416 
417   // 5. Generic vectorization path for ElementwiseMappable ops.
418   //   a. first get the first max ranked shape.
419   SmallVector<int64_t, 4> firstMaxRankedShape;
420   for (Value operand : op->getOperands()) {
421     auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>();
422     if (vt && firstMaxRankedShape.size() < vt.getShape().size())
423       firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end());
424   }
425   //   b. broadcast each op if needed.
426   auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) {
427     return firstMaxRankedShape.empty()
428                ? bvm.lookup(v)
429                : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape);
430   });
431   //   c. for elementwise, the result is the vector with the firstMaxRankedShape
432   auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) {
433     return firstMaxRankedShape.empty()
434                ? t
435                : VectorType::get(firstMaxRankedShape, t);
436   });
437 
438   // Build and return the new op.
439   return VectorizationResult{
440       VectorizationStatus::NewOp,
441       createVectorizedOp(b, op, llvm::to_vector<4>(vectorizedOperands),
442                          llvm::to_vector<4>(returnTypes))};
443 }
444 
445 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp.
446 static bool hasOnlyScalarElementwiseOp(Region &r) {
447   if (!llvm::hasSingleElement(r))
448     return false;
449   for (Operation &op : r.front()) {
450     if (!(isa<arith::ConstantOp, ConstantOp, linalg::YieldOp, linalg::IndexOp>(
451               op) ||
452           OpTrait::hasElementwiseMappableTraits(&op)) ||
453         llvm::any_of(op.getResultTypes(),
454                      [](Type type) { return !type.isIntOrIndexOrFloat(); }))
455       return false;
456   }
457   return true;
458 }
459 
460 // Return true if the op is an element-wise linalg op.
461 static bool isElementwise(Operation *op) {
462   auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
463   if (!linalgOp)
464     return false;
465   if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops())
466     return false;
467   // TODO: relax the restrictions on indexing map.
468   for (OpOperand *opOperand : linalgOp.getOutputOperands()) {
469     if (!linalgOp.getTiedIndexingMap(opOperand).isIdentity())
470       return false;
471   }
472   return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0));
473 }
474 
475 /// Generic vectorization function that rewrites the body of a `linalgOp` into
476 /// vector form. Generic vectorization proceeds as follows:
477 ///   1. Verify the `linalgOp` has one non-empty region.
478 ///   2. Values defined above the region are mapped to themselves and will be
479 ///   broadcasted on a per-need basis by their consumers.
480 ///   3. Each region argument is vectorized into a vector.transfer_read (or 0-d
481 ///   load).
482 ///   TODO: Reuse opportunities for RAR dependencies.
483 ///   4a. Register CustomVectorizationHook for YieldOp to capture the results.
484 ///   4b. Register CustomVectorizationHook for IndexOp to access the iteration
485 ///   indices.
486 ///   5. Iteratively call vectorizeOneOp on the region operations.
487 ///
488 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is
489 /// performed to the maximal common vector size implied by the `linalgOp`
490 /// iteration space. This eager broadcasting is introduced in the
491 /// permutation_map of the vector.transfer_read operations. The eager
492 /// broadcasting makes it trivial to detrmine where broadcast, transposes and
493 /// reductions should occur, without any bookkeeping. The tradeoff is that, in
494 /// the absence of good canonicalizations, the amount of work increases.
495 /// This is not deemed a problem as we expect canonicalizations and foldings to
496 /// aggressively clean up the useless work.
497 static LogicalResult
498 vectorizeAsLinalgGeneric(OpBuilder &b, LinalgOp linalgOp,
499                          SmallVectorImpl<Value> &newResults) {
500   Block *block = linalgOp.getBlock();
501 
502   // 2. Values defined above the region can only be broadcast for now. Make them
503   // map to themselves.
504   BlockAndValueMapping bvm;
505   SetVector<Value> valuesSet;
506   mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet);
507   bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef());
508 
509   if (linalgOp.getNumOutputs() == 0)
510     return failure();
511 
512   // TODO: the common vector shape is equal to the static loop sizes only when
513   // all indexing maps are projected permutations. For convs and stencils the
514   // logic will need to evolve.
515   SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes();
516 
517   // 3. Turn all BBArgs into vector.transfer_read / load.
518   SmallVector<AffineMap> indexings;
519   for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) {
520     BlockArgument bbarg = block->getArgument(opOperand->getOperandNumber());
521     if (linalgOp.isScalar(opOperand)) {
522       bvm.map(bbarg, opOperand->get());
523       continue;
524     }
525     // TODO: 0-d vectors.
526     Type readType;
527     AffineMap map;
528     if (linalgOp.getShape(opOperand).empty()) {
529       readType = bbarg.getType();
530     } else {
531       if (opOperand->getOperandNumber() < linalgOp.getNumInputs()) {
532         map = inverseAndBroadcastProjectedPermuation(
533             linalgOp.getTiedIndexingMap(opOperand));
534         readType = VectorType::get(commonVectorShape,
535                                    getElementTypeOrSelf(opOperand->get()));
536       } else {
537         map = inversePermutation(
538             reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand)));
539         readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)),
540                                    getElementTypeOrSelf(opOperand->get()));
541       }
542     }
543     Value readValue = buildVectorRead(b, opOperand->get(), readType, map);
544     LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue);
545     bvm.map(bbarg, readValue);
546     bvm.map(opOperand->get(), readValue);
547   }
548 
549   SmallVector<CustomVectorizationHook> hooks;
550   // 4a. Register CustomVectorizationHook for yieldOp.
551   CustomVectorizationHook vectorizeYield =
552       [&](Operation *op,
553           const BlockAndValueMapping &bvm) -> VectorizationResult {
554     return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults);
555   };
556   hooks.push_back(vectorizeYield);
557 
558   // 4b. Register CustomVectorizationHook for indexOp.
559   CustomVectorizationHook vectorizeIndex =
560       [&](Operation *op,
561           const BlockAndValueMapping &bvm) -> VectorizationResult {
562     return vectorizeLinalgIndex(b, op, linalgOp);
563   };
564   hooks.push_back(vectorizeIndex);
565 
566   // 5. Iteratively call `vectorizeOneOp` to each op in the slice.
567   for (Operation &op : block->getOperations()) {
568     VectorizationResult result = vectorizeOneOp(b, linalgOp, &op, bvm, hooks);
569     if (result.status == VectorizationStatus::Failure) {
570       LDBG("failed to vectorize: " << op);
571       return failure();
572     }
573     if (result.status == VectorizationStatus::NewOp) {
574       LDBG("new vector op: " << *result.newOp;);
575       bvm.map(op.getResults(), result.newOp->getResults());
576     }
577   }
578 
579   return success();
580 }
581 
582 /// Helper function to vectorize a `linalgOp` with contraction semantics in a
583 /// generic fashion.
584 /// This helper is needed atm because the truly generic implementation requires
585 /// good vector.multi_reduce folding patterns that are currently NYI.
586 // TODO: drop reliance on a specific pattern.
587 static bool allIndexingsAreProjectedPermutation(LinalgOp op) {
588   return llvm::all_of(op.getIndexingMaps(), [](AffineMap m) {
589     return m.isProjectedPermutation(/*allowZerosInResults=*/true);
590   });
591 }
592 
593 // TODO: probably need some extra checks for reduction followed by consumer
594 // ops that may not commute (e.g. linear reduction + non-linear instructions).
595 static LogicalResult reductionPreconditions(LinalgOp op) {
596   if (llvm::none_of(op.iterator_types(), isReductionIterator)) {
597     LDBG("reduction precondition failed: no reduction iterator");
598     return failure();
599   }
600   for (OpOperand *opOperand : op.getOutputOperands()) {
601     Operation *reduceOp = matchLinalgReduction(opOperand);
602     if (!reduceOp || !getKindForOp(reduceOp)) {
603       LDBG("reduction precondition failed: reduction detection failed");
604       return failure();
605     }
606   }
607   return success();
608 }
609 
610 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) {
611   auto linalgOp = cast<linalg::LinalgOp>(op);
612   // All types must be static shape to go to vector.
613   if (linalgOp.hasDynamicShape()) {
614     LDBG("precondition failed: dynamic shape");
615     return failure();
616   }
617   if (isElementwise(op))
618     return success();
619   // TODO: isaConvolutionOpInterface that can also infer from generic features.
620   // But we will still need stride/dilation attributes that will be annoying to
621   // reverse-engineer...
622   if (isa<ConvolutionOpInterface>(op))
623     return success();
624   // TODO: the common vector shape is equal to the static loop sizes only when
625   // all indexing maps are projected permutations. For convs and stencils the
626   // logic will need to evolve.
627   if (!allIndexingsAreProjectedPermutation(linalgOp)) {
628     LDBG("precondition failed: not projected permutations");
629     return failure();
630   }
631   if (failed(reductionPreconditions(linalgOp))) {
632     LDBG("precondition failed: reduction preconditions");
633     return failure();
634   }
635   return success();
636 }
637 
638 LogicalResult
639 mlir::linalg::vectorizeLinalgOp(OpBuilder &b, Operation *op,
640                                 SmallVectorImpl<Value> &newResults) {
641   if (failed(vectorizeLinalgOpPrecondition(op)))
642     return failure();
643 
644   auto linalgOp = cast<LinalgOp>(op);
645 
646   // TODO: isaConvolutionOpInterface that can also infer from generic features.
647   // But we will still need stride/dilation attributes that will be annoying to
648   // reverse-engineer...
649   if (auto convOp = dyn_cast<ConvolutionOpInterface>(op)) {
650     FailureOr<Operation *> resultOrFail = vectorizeConvolution(b, convOp);
651     if (failed(resultOrFail))
652       return failure();
653     Operation *newOp = *resultOrFail;
654     llvm::append_range(newResults, newOp->getResults());
655     return success();
656   }
657 
658   LDBG(""
659        << "Vectorize linalg op as a generic by broadcasting to "
660           "maximal common shape: "
661        << *op);
662   return vectorizeAsLinalgGeneric(b, linalgOp, newResults);
663 }
664 
665 //----------------------------------------------------------------------------//
666 // Misc. vectorization patterns.
667 //----------------------------------------------------------------------------//
668 
669 /// Helper function that retrieves the value of an IntegerAttr.
670 static int64_t getIntFromAttr(Attribute attr) {
671   return attr.cast<IntegerAttr>().getInt();
672 }
673 
674 /// Given an ArrayRef of OpFoldResults, return a vector of Values. IntegerAttrs
675 /// are converted to ConstantIndexOps. Other attribute types are not supported.
676 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc,
677                                            ArrayRef<OpFoldResult> ofrs) {
678   SmallVector<Value> result;
679   llvm::for_each(ofrs, [&](auto o) {
680     if (auto val = o.template dyn_cast<Value>()) {
681       result.push_back(val);
682     } else {
683       result.push_back(builder.create<arith::ConstantIndexOp>(
684           loc, getIntFromAttr(o.template get<Attribute>())));
685     }
686   });
687   return result;
688 }
689 
690 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, FillOp and
691 /// InsertSliceOp. For now, only constant padding values are supported.
692 /// If there is enough static type information, TransferReadOps and
693 /// TransferWriteOps may be generated instead of InsertSliceOps.
694 struct GenericPadTensorOpVectorizationPattern
695     : public GeneralizePadTensorOpPattern {
696   GenericPadTensorOpVectorizationPattern(MLIRContext *context,
697                                          PatternBenefit benefit = 1)
698       : GeneralizePadTensorOpPattern(context, tryVectorizeCopy, benefit) {}
699   /// Vectorize the copying of a PadTensorOp's source. This is possible if each
700   /// dimension size is statically know in the source type or the result type
701   /// (or both).
702   static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter,
703                                         PadTensorOp padOp, Value dest) {
704     auto sourceType = padOp.getSourceType();
705     auto resultType = padOp.getResultType();
706 
707     // Copy cannot be vectorized if pad value is non-constant and source shape
708     // is dynamic. In case of a dynamic source shape, padding must be appended
709     // by TransferReadOp, but TransferReadOp supports only constant padding.
710     auto padValue = padOp.getConstantPaddingValue();
711     if (!padValue) {
712       if (!sourceType.hasStaticShape())
713         return failure();
714       // Create dummy padding value.
715       auto elemType = sourceType.getElementType();
716       padValue = rewriter.create<arith::ConstantOp>(
717           padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType));
718     }
719 
720     SmallVector<int64_t> vecShape;
721     SmallVector<bool> readInBounds;
722     SmallVector<bool> writeInBounds;
723     for (unsigned i = 0; i < sourceType.getRank(); ++i) {
724       if (!sourceType.isDynamicDim(i)) {
725         vecShape.push_back(sourceType.getDimSize(i));
726         // Source shape is statically known: Neither read nor write are out-of-
727         // bounds.
728         readInBounds.push_back(true);
729         writeInBounds.push_back(true);
730       } else if (!resultType.isDynamicDim(i)) {
731         // Source shape is not statically known, but result shape is. Vectorize
732         // with size of result shape. This may be larger than the source size.
733         vecShape.push_back(resultType.getDimSize(i));
734         // Read may be out-of-bounds because the result size could be larger
735         // than the source size.
736         readInBounds.push_back(false);
737         // Write is out-of-bounds if low padding > 0.
738         writeInBounds.push_back(
739             getConstantIntValue(padOp.getMixedLowPad()[i]) ==
740             static_cast<int64_t>(0));
741       } else {
742         // Neither source nor result dim of padOp is static. Cannot vectorize
743         // the copy.
744         return failure();
745       }
746     }
747     auto vecType = VectorType::get(vecShape, sourceType.getElementType());
748 
749     // Generate TransferReadOp.
750     SmallVector<Value> readIndices(
751         vecType.getRank(),
752         rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
753     auto read = rewriter.create<vector::TransferReadOp>(
754         padOp.getLoc(), vecType, padOp.source(), readIndices, padValue,
755         readInBounds);
756 
757     // If `dest` is a FillOp and the TransferWriteOp would overwrite the entire
758     // tensor, write directly to the FillOp's operand.
759     if (llvm::equal(vecShape, resultType.getShape()) &&
760         llvm::all_of(writeInBounds, [](bool b) { return b; }))
761       if (auto fill = dest.getDefiningOp<FillOp>())
762         dest = fill.output();
763 
764     // Generate TransferWriteOp.
765     auto writeIndices =
766         ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad());
767     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
768         padOp, read, dest, writeIndices, writeInBounds);
769 
770     return success();
771   }
772 };
773 
774 /// Base pattern for rewriting PadTensorOps whose result is consumed by a given
775 /// operation type OpTy.
776 template <typename OpTy>
777 struct VectorizePadTensorOpUserPattern : public OpRewritePattern<PadTensorOp> {
778   using OpRewritePattern<PadTensorOp>::OpRewritePattern;
779 
780   LogicalResult matchAndRewrite(PadTensorOp padOp,
781                                 PatternRewriter &rewriter) const final {
782     bool changed = false;
783     // Insert users in vector, because some users may be replaced/removed.
784     for (auto *user : llvm::to_vector<4>(padOp->getUsers()))
785       if (auto op = dyn_cast<OpTy>(user))
786         changed |= rewriteUser(rewriter, padOp, op).succeeded();
787     return success(changed);
788   }
789 
790 protected:
791   virtual LogicalResult rewriteUser(PatternRewriter &rewriter,
792                                     PadTensorOp padOp, OpTy op) const = 0;
793 };
794 
795 /// Rewrite use of PadTensorOp result in TransferReadOp. E.g.:
796 /// ```
797 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32>
798 /// %r = vector.transfer_read %0[%c0, %c0], %cst
799 ///     {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32>
800 /// ```
801 /// is rewritten to:
802 /// ```
803 /// %r = vector.transfer_read %src[%c0, %c0], %padding
804 ///     {in_bounds = [true, true]}
805 ///     : tensor<?x?xf32>, vector<17x5xf32>
806 /// ```
807 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be
808 /// sure that the original padding value %cst was never used.
809 ///
810 /// This rewrite is possible if:
811 /// - `xferOp` has no out-of-bounds dims or mask.
812 /// - Low padding is static 0.
813 /// - Single, scalar padding value.
814 struct PadTensorOpVectorizationWithTransferReadPattern
815     : public VectorizePadTensorOpUserPattern<vector::TransferReadOp> {
816   using VectorizePadTensorOpUserPattern<
817       vector::TransferReadOp>::VectorizePadTensorOpUserPattern;
818 
819   LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
820                             vector::TransferReadOp xferOp) const override {
821     // Low padding must be static 0.
822     if (!padOp.hasZeroLowPad())
823       return failure();
824     // Pad value must be a constant.
825     auto padValue = padOp.getConstantPaddingValue();
826     if (!padValue)
827       return failure();
828     // Padding value of existing `xferOp` is unused.
829     if (xferOp.hasOutOfBoundsDim() || xferOp.mask())
830       return failure();
831 
832     rewriter.updateRootInPlace(xferOp, [&]() {
833       SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
834       xferOp->setAttr(xferOp.getInBoundsAttrName(),
835                       rewriter.getBoolArrayAttr(inBounds));
836       xferOp.sourceMutable().assign(padOp.source());
837       xferOp.paddingMutable().assign(padValue);
838     });
839 
840     return success();
841   }
842 };
843 
844 /// Rewrite use of PadTensorOp result in TransferWriteOp.
845 /// This pattern rewrites TransferWriteOps that write to a padded tensor value,
846 /// where the same amount of padding is immediately removed again after the
847 /// write. In such cases, the TransferWriteOp can write to the non-padded tensor
848 /// value and apply out-of-bounds masking. E.g.:
849 /// ```
850 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
851 ///     : tensor<...> to tensor<?x?xf32>
852 /// %1 = linalg.pad_tensor %0 ... : tensor<?x?xf32> to tensor<17x5xf32>
853 /// %2 = vector.transfer_write %vec, %1[...]
854 ///     : vector<17x5xf32>, tensor<17x5xf32>
855 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1]
856 ///     : tensor<17x5xf32> to tensor<?x?xf32>
857 /// ```
858 /// is rewritten to:
859 /// ```
860 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1]
861 ///     : tensor<...> to tensor<?x?xf32>
862 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, tensor<?x?xf32>
863 /// ```
864 /// Note: It is important that the ExtractSliceOp %r resizes the result of the
865 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an even
866 /// smaller size). Otherwise, %r's new (dynamic) dimensions would differ from
867 /// %r's old dimensions.
868 ///
869 /// This rewrite is possible if:
870 /// - Low padding is static 0.
871 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This
872 ///   ExtractSliceOp trims the same amount of padding that was added beforehand.
873 /// - Single, scalar padding value.
874 struct PadTensorOpVectorizationWithTransferWritePattern
875     : public VectorizePadTensorOpUserPattern<vector::TransferWriteOp> {
876   using VectorizePadTensorOpUserPattern<
877       vector::TransferWriteOp>::VectorizePadTensorOpUserPattern;
878 
879   LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
880                             vector::TransferWriteOp xferOp) const override {
881     // Low padding must be static 0.
882     if (!padOp.hasZeroLowPad())
883       return failure();
884     // Pad value must be a constant.
885     auto padValue = padOp.getConstantPaddingValue();
886     if (!padValue)
887       return failure();
888     // TransferWriteOp result must be directly consumed by an ExtractSliceOp.
889     if (!xferOp->hasOneUse())
890       return failure();
891     auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin());
892     if (!trimPadding)
893       return failure();
894     // Only static zero offsets supported when trimming padding.
895     if (!trimPadding.hasZeroOffset())
896       return failure();
897     // trimPadding must remove the amount of padding that was added earlier.
898     if (!hasSameTensorSize(padOp.source(), trimPadding))
899       return failure();
900 
901     // Insert the new TransferWriteOp at position of the old TransferWriteOp.
902     rewriter.setInsertionPoint(xferOp);
903 
904     SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false);
905     auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
906         xferOp, padOp.source().getType(), xferOp.vector(), padOp.source(),
907         xferOp.indices(), xferOp.permutation_mapAttr(), xferOp.mask(),
908         rewriter.getBoolArrayAttr(inBounds));
909     rewriter.replaceOp(trimPadding, newXferOp->getResult(0));
910 
911     return success();
912   }
913 
914   /// Check if `beforePadding` and `afterTrimming` have the same tensor size,
915   /// i.e., same dimensions.
916   ///
917   /// Dimensions may be static, dynamic or mix of both. In case of dynamic
918   /// dimensions, this function tries to infer the (static) tensor size by
919   /// looking at the defining op and utilizing op-specific knowledge.
920   ///
921   /// This is a conservative analysis. In case equal tensor sizes cannot be
922   /// proven statically, this analysis returns `false` even though the tensor
923   /// sizes may turn out to be equal at runtime.
924   bool hasSameTensorSize(Value beforePadding,
925                          tensor::ExtractSliceOp afterTrimming) const {
926     // If the input to PadTensorOp is a CastOp, try with with both CastOp result
927     // and CastOp operand.
928     if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>())
929       if (hasSameTensorSize(castOp.source(), afterTrimming))
930         return true;
931 
932     auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>();
933     auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>();
934     // Only RankedTensorType supported.
935     if (!t1 || !t2)
936       return false;
937     // Rank of both values must be the same.
938     if (t1.getRank() != t2.getRank())
939       return false;
940 
941     // All static dimensions must be the same. Mixed cases (e.g., dimension
942     // static in `t1` but dynamic in `t2`) are not supported.
943     for (unsigned i = 0; i < t1.getRank(); ++i) {
944       if (t1.isDynamicDim(i) != t2.isDynamicDim(i))
945         return false;
946       if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i))
947         return false;
948     }
949 
950     // Nothing more to check if all dimensions are static.
951     if (t1.getNumDynamicDims() == 0)
952       return true;
953 
954     // All dynamic sizes must be the same. The only supported case at the moment
955     // is when `beforePadding` is an ExtractSliceOp (or a cast thereof).
956 
957     // Apart from CastOp, only ExtractSliceOp is supported.
958     auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>();
959     if (!beforeSlice)
960       return false;
961 
962     assert(static_cast<size_t>(t1.getRank()) ==
963            beforeSlice.getMixedSizes().size());
964     assert(static_cast<size_t>(t2.getRank()) ==
965            afterTrimming.getMixedSizes().size());
966 
967     for (unsigned i = 0; i < t1.getRank(); ++i) {
968       // Skip static dimensions.
969       if (!t1.isDynamicDim(i))
970         continue;
971       auto size1 = beforeSlice.getMixedSizes()[i];
972       auto size2 = afterTrimming.getMixedSizes()[i];
973 
974       // Case 1: Same value or same constant int.
975       if (isEqualConstantIntOrValue(size1, size2))
976         continue;
977 
978       // Other cases: Take a deeper look at defining ops of values.
979       auto v1 = size1.dyn_cast<Value>();
980       auto v2 = size2.dyn_cast<Value>();
981       if (!v1 || !v2)
982         return false;
983 
984       // Case 2: Both values are identical AffineMinOps. (Should not happen if
985       // CSE is run.)
986       auto minOp1 = v1.getDefiningOp<AffineMinOp>();
987       auto minOp2 = v2.getDefiningOp<AffineMinOp>();
988       if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() &&
989           minOp1.operands() == minOp2.operands())
990         continue;
991 
992       // Add additional cases as needed.
993     }
994 
995     // All tests passed.
996     return true;
997   }
998 };
999 
1000 /// Rewrite use of PadTensorOp result in InsertSliceOp. E.g.:
1001 /// ```
1002 /// %0 = linalg.pad_tensor %src ... : tensor<?x?xf32> to tensor<17x5xf32>
1003 /// %r = tensor.insert_slice %0
1004 ///     into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1]
1005 ///     : tensor<17x5xf32> into tensor<?x?x17x5xf32>
1006 /// ```
1007 /// is rewritten to:
1008 /// ```
1009 /// %0 = vector.transfer_read %src[%c0, %c0], %padding
1010 ///     : tensor<?x?xf32>, vector<17x5xf32>
1011 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0]
1012 ///     {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32>
1013 /// ```
1014 ///
1015 /// This rewrite is possible if:
1016 /// - Low padding is static 0.
1017 /// - `padOp` result shape is static.
1018 /// - The entire padded tensor is inserted.
1019 ///   (Implies that sizes of `insertOp` are all static.)
1020 /// - Only unit strides in `insertOp`.
1021 /// - Single, scalar padding value.
1022 struct PadTensorOpVectorizationWithInsertSlicePattern
1023     : public VectorizePadTensorOpUserPattern<tensor::InsertSliceOp> {
1024   using VectorizePadTensorOpUserPattern<
1025       tensor::InsertSliceOp>::VectorizePadTensorOpUserPattern;
1026 
1027   LogicalResult rewriteUser(PatternRewriter &rewriter, PadTensorOp padOp,
1028                             tensor::InsertSliceOp insertOp) const override {
1029     // Low padding must be static 0.
1030     if (!padOp.hasZeroLowPad())
1031       return failure();
1032     // Only unit stride supported.
1033     if (!insertOp.hasUnitStride())
1034       return failure();
1035     // Pad value must be a constant.
1036     auto padValue = padOp.getConstantPaddingValue();
1037     if (!padValue)
1038       return failure();
1039     // Dynamic shapes not supported.
1040     if (!padOp.result().getType().cast<ShapedType>().hasStaticShape())
1041       return failure();
1042 
1043     auto vecType = VectorType::get(padOp.getType().getShape(),
1044                                    padOp.getType().getElementType());
1045     unsigned vecRank = vecType.getRank();
1046     unsigned tensorRank = insertOp.getType().getRank();
1047 
1048     // Check if sizes match: Insert the entire tensor into most minor dims.
1049     // (No permutations allowed.)
1050     SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1);
1051     expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end());
1052     if (!llvm::all_of(
1053             llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) {
1054               return getConstantIntValue(std::get<0>(it)) == std::get<1>(it);
1055             }))
1056       return failure();
1057 
1058     // Insert the TransferReadOp and TransferWriteOp at the position of the
1059     // InsertSliceOp.
1060     rewriter.setInsertionPoint(insertOp);
1061 
1062     // Generate TransferReadOp: Read entire source tensor and add high padding.
1063     SmallVector<Value> readIndices(
1064         vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0));
1065     auto read = rewriter.create<vector::TransferReadOp>(
1066         padOp.getLoc(), vecType, padOp.source(), readIndices, padValue);
1067 
1068     // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at
1069     // specified offsets. Write is fully in-bounds because a InsertSliceOp's
1070     // source must fit into the destination at the specified offsets.
1071     auto writeIndices =
1072         ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets());
1073     SmallVector<bool> inBounds(vecRank, true);
1074     rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
1075         insertOp, read, insertOp.dest(), writeIndices, inBounds);
1076 
1077     return success();
1078   }
1079 };
1080 
1081 void mlir::linalg::populatePadTensorOpVectorizationPatterns(
1082     RewritePatternSet &patterns, PatternBenefit baseBenefit) {
1083   patterns.add<GenericPadTensorOpVectorizationPattern>(patterns.getContext(),
1084                                                        baseBenefit);
1085   // Try these specialized patterns first before resorting to the generic one.
1086   patterns.add<PadTensorOpVectorizationWithTransferReadPattern,
1087                PadTensorOpVectorizationWithTransferWritePattern,
1088                PadTensorOpVectorizationWithInsertSlicePattern>(
1089       patterns.getContext(), baseBenefit.getBenefit() + 1);
1090 }
1091 
1092 // TODO: cleanup all the convolution vectorization patterns.
1093 template <class ConvOp, int N>
1094 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite(
1095     ConvOp op, PatternRewriter &rewriter) const {
1096   Location loc = op.getLoc();
1097   MLIRContext *context = op.getContext();
1098 
1099   OpOperand *input = op.getInputOperand(0);
1100   OpOperand *kernel = op.getInputOperand(1);
1101   OpOperand *output = op.getOutputOperand(0);
1102   ArrayRef<int64_t> inShape = op.getShape(input);
1103   ArrayRef<int64_t> kShape = op.getShape(kernel);
1104 
1105   if (llvm::any_of(inShape, ShapedType::isDynamic) ||
1106       llvm::any_of(kShape, ShapedType::isDynamic))
1107     return failure();
1108 
1109   SmallVector<AffineExpr, 4> mapping;
1110   SmallVector<int64_t, 4> vectorDims;
1111   // Fail to apply when the size of not vectorized dimension is not 1.
1112   for (unsigned i = 0; i < N; i++) {
1113     if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1))
1114       return failure();
1115 
1116     if (mask[i] && inShape[i] != kShape[i])
1117       return failure();
1118 
1119     if (mask[i]) {
1120       mapping.push_back(getAffineDimExpr(i, context));
1121       vectorDims.push_back(inShape[i]);
1122     }
1123   }
1124 
1125   int64_t rank = op.getRank(input);
1126   int64_t numDims = mapping.size();
1127   Type elemType = getElementTypeOrSelf(input->get());
1128 
1129   auto map = AffineMap::get(rank, 0, mapping, context);
1130   SmallVector<Value, 4> zeros(rank,
1131                               rewriter.create<arith::ConstantIndexOp>(loc, 0));
1132   auto vecType = VectorType::get(vectorDims, elemType);
1133 
1134   auto inputVec = rewriter.create<vector::TransferReadOp>(
1135       loc, vecType, input->get(), zeros, map);
1136   auto kernelVec = rewriter.create<vector::TransferReadOp>(
1137       loc, vecType, kernel->get(), zeros, map);
1138 
1139   auto acc = rewriter.create<arith::ConstantOp>(loc, elemType,
1140                                                 rewriter.getZeroAttr(elemType));
1141 
1142   std::array<AffineMap, 3> indexingMaps{
1143       AffineMap::getMultiDimIdentityMap(numDims, context),
1144       AffineMap::getMultiDimIdentityMap(numDims, context),
1145       AffineMap::get(numDims, 0, {}, context)};
1146 
1147   std::vector<StringRef> iteratorTypes(numDims, "reduction");
1148 
1149   auto result = rewriter.create<vector::ContractionOp>(
1150       loc, inputVec, kernelVec, acc,
1151       rewriter.getAffineMapArrayAttr(indexingMaps),
1152       rewriter.getStrArrayAttr(iteratorTypes));
1153 
1154   rewriter.create<memref::StoreOp>(loc, result, output->get(),
1155                                    ValueRange(zeros));
1156   rewriter.eraseOp(op);
1157   return success();
1158 }
1159 
1160 /// Inserts tiling, promotion and vectorization pattern for ConvOp
1161 /// conversion into corresponding pattern lists.
1162 template <typename ConvOp, unsigned N>
1163 static void populateVectorizationPatterns(
1164     RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns,
1165     RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) {
1166   auto *context = tilingPatterns.getContext();
1167   if (tileSizes.size() < N)
1168     return;
1169 
1170   constexpr static StringRef kTiledMarker = "TILED";
1171   constexpr static StringRef kPromotedMarker = "PROMOTED";
1172   tilingPatterns.add<LinalgTilingPattern<ConvOp>>(
1173       context, LinalgTilingOptions().setTileSizes(tileSizes),
1174       LinalgTransformationFilter(ArrayRef<StringAttr>{},
1175                                  StringAttr::get(kTiledMarker, context)));
1176 
1177   promotionPatterns.add<LinalgPromotionPattern<ConvOp>>(
1178       context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
1179       LinalgTransformationFilter(StringAttr::get(kTiledMarker, context),
1180                                  StringAttr::get(kPromotedMarker, context)));
1181 
1182   SmallVector<bool, 4> mask(N);
1183   int offset = tileSizes.size() - N;
1184   std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(),
1185                  [](int64_t i) -> bool { return i > 1; });
1186 
1187   vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask);
1188 }
1189 
1190 void mlir::linalg::populateConvVectorizationPatterns(
1191     MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns,
1192     ArrayRef<int64_t> tileSizes) {
1193   RewritePatternSet tiling(context);
1194   RewritePatternSet promotion(context);
1195   RewritePatternSet vectorization(context);
1196   populateVectorizationPatterns<Conv1DOp, 1>(tiling, promotion, vectorization,
1197                                              tileSizes);
1198 
1199   populateVectorizationPatterns<Conv2DOp, 2>(tiling, promotion, vectorization,
1200                                              tileSizes);
1201 
1202   populateVectorizationPatterns<Conv3DOp, 3>(tiling, promotion, vectorization,
1203                                              tileSizes);
1204 
1205   populateVectorizationPatterns<Conv1DNwcWcfOp, 3>(tiling, promotion,
1206                                                    vectorization, tileSizes);
1207 
1208   populateVectorizationPatterns<Conv2DNhwcHwcfOp, 4>(tiling, promotion,
1209                                                      vectorization, tileSizes);
1210 
1211   populateVectorizationPatterns<Conv3DNdhwcDhwcfOp, 5>(
1212       tiling, promotion, vectorization, tileSizes);
1213 
1214   patterns.push_back(std::move(tiling));
1215   patterns.push_back(std::move(promotion));
1216   patterns.push_back(std::move(vectorization));
1217 }
1218 
1219 //----------------------------------------------------------------------------//
1220 // Forwarding patterns
1221 //----------------------------------------------------------------------------//
1222 
1223 /// Check whether there is any interleaved use of any `values` between `firstOp`
1224 /// and `secondOp`. Conservatively return `true` if any op or value is in a
1225 /// different block.
1226 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
1227                                     ValueRange values) {
1228   if (firstOp->getBlock() != secondOp->getBlock() ||
1229       !firstOp->isBeforeInBlock(secondOp)) {
1230     LDBG("interleavedUses precondition failed, firstOp: "
1231          << *firstOp << ", second op: " << *secondOp);
1232     return true;
1233   }
1234   for (auto v : values) {
1235     for (auto &u : v.getUses()) {
1236       Operation *owner = u.getOwner();
1237       if (owner == firstOp || owner == secondOp)
1238         continue;
1239       // TODO: this is too conservative, use dominance info in the future.
1240       if (owner->getBlock() == firstOp->getBlock() &&
1241           (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
1242         continue;
1243       LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp
1244                                     << ", second op: " << *secondOp);
1245       return true;
1246     }
1247   }
1248   return false;
1249 }
1250 
1251 /// Return the unique subview use of `v` if it is indeed unique, null otherwise.
1252 static memref::SubViewOp getSubViewUseIfUnique(Value v) {
1253   memref::SubViewOp subViewOp;
1254   for (auto &u : v.getUses()) {
1255     if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) {
1256       if (subViewOp)
1257         return memref::SubViewOp();
1258       subViewOp = newSubViewOp;
1259     }
1260   }
1261   return subViewOp;
1262 }
1263 
1264 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1265 /// when available.
1266 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
1267     vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {
1268 
1269   // Transfer into `view`.
1270   Value viewOrAlloc = xferOp.source();
1271   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1272       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1273     return failure();
1274 
1275   LDBG(viewOrAlloc);
1276 
1277   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1278   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1279   if (!subViewOp)
1280     return failure();
1281   Value subView = subViewOp.getResult();
1282   LDBG("with subView " << subView);
1283 
1284   // Find the copy into `subView` without interleaved uses.
1285   CopyOp copyOp;
1286   for (auto &u : subView.getUses()) {
1287     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
1288       assert(newCopyOp.output().getType().isa<MemRefType>());
1289       if (newCopyOp.output() != subView)
1290         continue;
1291       LDBG("copy candidate " << *newCopyOp);
1292       if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
1293         continue;
1294       copyOp = newCopyOp;
1295       break;
1296     }
1297   }
1298   if (!copyOp)
1299     return failure();
1300   LDBG("with copy " << *copyOp);
1301 
1302   // Find the fill into `viewOrAlloc` without interleaved uses before the copy.
1303   FillOp maybeFillOp;
1304   for (auto &u : viewOrAlloc.getUses()) {
1305     if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
1306       assert(newFillOp.output().getType().isa<MemRefType>());
1307       if (newFillOp.output() != viewOrAlloc)
1308         continue;
1309       LDBG("fill candidate " << *newFillOp);
1310       if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
1311         continue;
1312       maybeFillOp = newFillOp;
1313       break;
1314     }
1315   }
1316   // Ensure padding matches.
1317   if (maybeFillOp && xferOp.padding() != maybeFillOp.value())
1318     return failure();
1319   if (maybeFillOp)
1320     LDBG("with maybeFillOp " << *maybeFillOp);
1321 
1322   // `in` is the subview that linalg.copy reads. Replace it.
1323   Value in = copyOp.input();
1324 
1325   // linalg.copy + linalg.fill can be used to create a padded local buffer.
1326   // The `masked` attribute is only valid on this padded buffer.
1327   // When forwarding to vector.transfer_read, the attribute must be reset
1328   // conservatively.
1329   Value res = rewriter.create<vector::TransferReadOp>(
1330       xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(),
1331       xferOp.permutation_map(), xferOp.padding(), ArrayAttr());
1332 
1333   if (maybeFillOp)
1334     rewriter.eraseOp(maybeFillOp);
1335   rewriter.eraseOp(copyOp);
1336   rewriter.replaceOp(xferOp, res);
1337 
1338   return success();
1339 }
1340 
1341 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1342 /// when available.
1343 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
1344     vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
1345   // Transfer into `viewOrAlloc`.
1346   Value viewOrAlloc = xferOp.source();
1347   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1348       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1349     return failure();
1350 
1351   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1352   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1353   if (!subViewOp)
1354     return failure();
1355   Value subView = subViewOp.getResult();
1356 
1357   // Find the copy from `subView` without interleaved uses.
1358   CopyOp copyOp;
1359   for (auto &u : subViewOp.getResult().getUses()) {
1360     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
1361       if (newCopyOp.getInputOperand(0)->get() != subView)
1362         continue;
1363       if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
1364         continue;
1365       copyOp = newCopyOp;
1366       break;
1367     }
1368   }
1369   if (!copyOp)
1370     return failure();
1371 
1372   // `out` is the subview copied into that we replace.
1373   assert(copyOp.output().getType().isa<MemRefType>());
1374   Value out = copyOp.output();
1375 
1376   // Forward vector.transfer into copy.
1377   // linalg.copy + linalg.fill can be used to create a padded local buffer.
1378   // The `masked` attribute is only valid on this padded buffer.
1379   // When forwarding to vector.transfer_write, the attribute must be reset
1380   // conservatively.
1381   rewriter.create<vector::TransferWriteOp>(
1382       xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(),
1383       xferOp.permutation_map(), ArrayAttr());
1384 
1385   rewriter.eraseOp(copyOp);
1386   rewriter.eraseOp(xferOp);
1387 
1388   return success();
1389 }
1390 
1391 //===----------------------------------------------------------------------===//
1392 // Convolution vectorization patterns
1393 //===----------------------------------------------------------------------===//
1394 namespace {
1395 /// Generate a vector implementation for either:
1396 /// ```
1397 ///   Op def: (     n,     w,     c,    kw,    f  )
1398 ///    Iters: ({Par(), Par(), Par(), Red(), Red()})
1399 ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1400 /// ```
1401 /// kw is unrolled, w is unrolled iff dilationW > 1.
1402 ///
1403 /// or
1404 ///
1405 /// ```
1406 ///   Op def: (     n,     w,     c,    kw )
1407 ///    Iters: ({Par(), Par(), Par(), Red()})
1408 ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
1409 /// ```
1410 /// kw is unrolled, w is unrolled iff dilationW > 1.
1411 struct Conv1D_NWC_Generator : public StructuredGenerator<LinalgOp> {
1412   Conv1D_NWC_Generator(OpBuilder &builder, LinalgOp linalgOp, int strideW,
1413                        int dilationW)
1414       : StructuredGenerator<LinalgOp>(builder, linalgOp), valid(false),
1415         strideW(strideW), dilationW(dilationW) {
1416     // Determine whether `linalgOp` can be generated with this generator
1417     if (linalgOp.getNumInputs() != 2 || linalgOp.getNumOutputs() != 1)
1418       return;
1419     lhsShaped = linalgOp.inputs()[0];
1420     rhsShaped = linalgOp.inputs()[1];
1421     resShaped = linalgOp.outputs()[0];
1422     lhsShapedType = lhsShaped.getType().dyn_cast<ShapedType>();
1423     rhsShapedType = rhsShaped.getType().dyn_cast<ShapedType>();
1424     resShapedType = resShaped.getType().dyn_cast<ShapedType>();
1425     if (!lhsShapedType || !rhsShapedType || !resShapedType)
1426       return;
1427     if (lhsShapedType.getRank() != 3 ||
1428         (rhsShapedType.getRank() != 2 && rhsShapedType.getRank() != 3) ||
1429         resShapedType.getRank() != 3)
1430       return;
1431 
1432     // Check for reduction `add` preceded by `mul`.
1433     Operation *reduceOp = matchLinalgReduction(linalgOp.getOutputOperand(0));
1434     if (!reduceOp)
1435       return;
1436     llvm::Optional<vector::CombiningKind> maybeKind;
1437     maybeKind = getKindForOp(reduceOp);
1438     if (!maybeKind || *maybeKind != vector::CombiningKind::ADD)
1439       return;
1440     maybeKind = getKindForOp(&(linalgOp->getRegion(0).front().front()));
1441     if (!maybeKind || *maybeKind != vector::CombiningKind::MUL)
1442       return;
1443 
1444     // The op is now known to be valid.
1445     valid = true;
1446   }
1447 
1448   /// Generate a vector implementation for:
1449   /// ```
1450   ///   Op def: (     n,     w,     c,    kw,    f  )
1451   ///    Iters: ({Par(), Par(), Par(), Red(), Red()})
1452   ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1453   /// ```
1454   /// kw is always unrolled.
1455   /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is > 1.
1456   FailureOr<Operation *> conv() {
1457     if (!valid)
1458       return failure();
1459 
1460     int nSize = lhsShapedType.getShape()[0];
1461     int wSize = resShapedType.getShape()[1];
1462     int cSize = lhsShapedType.getShape()[2];
1463     int kwSize = rhsShapedType.getShape()[0];
1464     int fSize = rhsShapedType.getShape()[2];
1465 
1466     vector::TransferWriteOp write;
1467     Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
1468 
1469     // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1.
1470     // When strideW == 1, we can batch the contiguous loads and avoid unrolling
1471     int64_t wSizeStep = strideW == 1 ? wSize : 1;
1472 
1473     Type lhsEltType = lhsShapedType.getElementType();
1474     Type rhsEltType = rhsShapedType.getElementType();
1475     Type resEltType = resShapedType.getElementType();
1476     VectorType lhsType = VectorType::get(
1477         {nSize,
1478          // iw = ow * sw + kw *  dw - 1
1479          //   (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
1480          // Perform the proper inclusive -> exclusive -> inclusive.
1481          ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1,
1482          cSize},
1483         lhsEltType);
1484     VectorType rhsType = VectorType::get({kwSize, cSize, fSize}, rhsEltType);
1485     VectorType resType = VectorType::get({nSize, wSize, fSize}, resEltType);
1486 
1487     // Read lhs slice of size {w * strideW + kw * dilationW, c, f} @ [0, 0, 0].
1488     Value lhs = builder.create<vector::TransferReadOp>(
1489         loc, lhsType, lhsShaped, ValueRange{zero, zero, zero});
1490     // Read rhs slice of size {kw, c, f} @ [0, 0, 0].
1491     Value rhs = builder.create<vector::TransferReadOp>(
1492         loc, rhsType, rhsShaped, ValueRange{zero, zero, zero});
1493     // Read res slice of size {n, w, f} @ [0, 0, 0].
1494     Value res = builder.create<vector::TransferReadOp>(
1495         loc, resType, resShaped, ValueRange{zero, zero, zero});
1496 
1497     //===------------------------------------------------------------------===//
1498     // Begin vector-only rewrite part
1499     //===------------------------------------------------------------------===//
1500     // Unroll along kw and read slices of lhs and rhs.
1501     SmallVector<Value> lhsVals, rhsVals, resVals;
1502     for (int64_t kw = 0; kw < kwSize; ++kw) {
1503       // Extract rhs slice of size {c, f} @ [kw].
1504       rhsVals.push_back(builder.create<vector::ExtractOp>(
1505           loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw}));
1506 
1507       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1508         // Extract lhs slice of size {n, wSizeStep, c}
1509         //   @ [0, sw * w + dw * kw, 0].
1510         lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1511             loc, lhs,
1512             /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
1513             /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1514             /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1515 
1516         // This does not depend on kw.
1517         if (kw == 0) {
1518           // Extract res slice: {n, wSizeStep, f} @ [0, w, 0].
1519           resVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1520               loc, res,
1521               /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1522               /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, fSize},
1523               /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1524         }
1525       }
1526     }
1527 
1528     auto linearIndex = [&](int64_t kw, int64_t w) {
1529       return kw * (wSize / wSizeStep) + w;
1530     };
1531 
1532     // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f}
1533     for (int64_t kw = 0; kw < kwSize; ++kw) {
1534       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1535         resVals[w] = conv1dSliceAsContraction(
1536             builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]);
1537       }
1538     }
1539 
1540     // Write back res slice: {n, wSizeStep, f} @ [0, w, 0].
1541     // This does not depend on kw.
1542     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1543       res = builder.create<vector::InsertStridedSliceOp>(
1544           loc, resVals[w], res,
1545           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1546           /*strides=*/ArrayRef<int64_t>{1, 1, 1});
1547     }
1548     //===------------------------------------------------------------------===//
1549     // End vector-only rewrite part
1550     //===------------------------------------------------------------------===//
1551 
1552     // Write back res slice of size {n, w, f} @ [0, 0, 0].
1553     return builder
1554         .create<vector::TransferWriteOp>(loc, res, resShaped,
1555                                          ValueRange{zero, zero, zero})
1556         .getOperation();
1557   }
1558 
1559   // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f}
1560   Value conv1dSliceAsContraction(OpBuilder &b, Location loc, Value lhs,
1561                                  Value rhs, Value res) {
1562     StringRef par = Par().strRef, red = Red().strRef;
1563     AffineExpr n, w, f, c;
1564     bindDims(ctx, n, w, f, c);
1565     return builder.create<vector::ContractionOp>(
1566         loc, lhs, rhs, res,
1567         /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}},
1568         /*iteratorTypes=*/ArrayRef<StringRef>{par, par, par, red});
1569   }
1570 
1571   /// Generate a vector implementation for:
1572   /// ```
1573   ///   Op def: (     n,     w,     c,    kw)
1574   ///    Iters: ({Par(), Par(), Par(), Red()})
1575   ///   Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
1576   /// ```
1577   /// kw is always unrolled.
1578   /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is > 1.
1579   FailureOr<Operation *> dilated_conv() {
1580     if (!valid)
1581       return failure();
1582 
1583     int nSize = lhsShapedType.getShape()[0];
1584     int wSize = resShapedType.getShape()[1];
1585     int cSize = lhsShapedType.getShape()[2];
1586     int kwSize = rhsShapedType.getShape()[0];
1587 
1588     vector::TransferWriteOp write;
1589     Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
1590 
1591     // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1.
1592     // When strideW == 1, we can batch the contiguous loads and avoid unrolling
1593     int64_t wSizeStep = strideW == 1 ? wSize : 1;
1594 
1595     Type lhsEltType = lhsShapedType.getElementType();
1596     Type rhsEltType = rhsShapedType.getElementType();
1597     Type resEltType = resShapedType.getElementType();
1598     VectorType lhsType = VectorType::get(
1599         {nSize,
1600          // iw = ow * sw + kw *  dw - 1
1601          //   (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14)
1602          ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1,
1603          cSize},
1604         lhsEltType);
1605     VectorType rhsType = VectorType::get({kwSize, cSize}, rhsEltType);
1606     VectorType resType = VectorType::get({nSize, wSize, cSize}, resEltType);
1607 
1608     // Read lhs slice of size {n, w * strideW + kw * dilationW, c} @ [0, 0, 0].
1609     Value lhs = builder.create<vector::TransferReadOp>(
1610         loc, lhsType, lhsShaped, ValueRange{zero, zero, zero});
1611     // Read rhs slice of size {kw, c} @ [0, 0].
1612     Value rhs = builder.create<vector::TransferReadOp>(loc, rhsType, rhsShaped,
1613                                                        ValueRange{zero, zero});
1614     // Read res slice of size {n, w, c} @ [0, 0, 0].
1615     Value res = builder.create<vector::TransferReadOp>(
1616         loc, resType, resShaped, ValueRange{zero, zero, zero});
1617 
1618     //===------------------------------------------------------------------===//
1619     // Begin vector-only rewrite part
1620     //===------------------------------------------------------------------===//
1621     // Unroll along kw and read slices of lhs and rhs.
1622     SmallVector<Value> lhsVals, rhsVals, resVals;
1623     for (int64_t kw = 0; kw < kwSize; ++kw) {
1624       // Extract rhs slice of size {c} @ [kw].
1625       rhsVals.push_back(builder.create<vector::ExtractOp>(
1626           loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw}));
1627 
1628       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1629         // Extract lhs slice of size {n, wSizeStep, c}
1630         //   @ [0, sw * w + dw * kw, 0].
1631         lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1632             loc, lhs,
1633             /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0},
1634             /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1635             /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1636 
1637         // This does not depend on kw.
1638         if (kw == 0) {
1639           // Extract res slice: {n, wSizeStep, c} @ [0, w, 0].
1640           resVals.push_back(builder.create<vector::ExtractStridedSliceOp>(
1641               loc, res,
1642               /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1643               /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize},
1644               /*strides=*/ArrayRef<int64_t>{1, 1, 1}));
1645         }
1646       }
1647     }
1648 
1649     auto linearIndex = [&](int64_t kw, int64_t w) {
1650       return kw * (wSize / wSizeStep) + w;
1651     };
1652 
1653     // Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c}
1654     for (int64_t kw = 0; kw < kwSize; ++kw) {
1655       for (int64_t w = 0; w < wSize; w += wSizeStep) {
1656         resVals[w] = dilatedConv1dSliceAsFma(
1657             builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]);
1658       }
1659     }
1660 
1661     // Write back res slice: {n, wSizeStep, c} @ [0, w, 0].
1662     // This does not depend on kw.
1663     for (int64_t w = 0; w < wSize; w += wSizeStep) {
1664       res = builder.create<vector::InsertStridedSliceOp>(
1665           loc, resVals[w], res,
1666           /*offsets=*/ArrayRef<int64_t>{0, w, 0},
1667           /*strides=*/ArrayRef<int64_t>{1, 1, 1});
1668     }
1669     //===------------------------------------------------------------------===//
1670     // End vector-only rewrite part
1671     //===------------------------------------------------------------------===//
1672 
1673     // Write back res slice of size {n, w, c} @ [0, 0, 0].
1674     return builder
1675         .create<vector::TransferWriteOp>(loc, res, resShaped,
1676                                          ValueRange{zero, zero, zero})
1677         .getOperation();
1678   }
1679 
1680   /// Lower lhs{n, w, c} * rhs{c} -> res{n, w, c} to fma.
1681   Value dilatedConv1dSliceAsFma(OpBuilder &b, Location loc, Value lhs,
1682                                 Value rhs, Value res) {
1683     Value bcast = builder.create<vector::BroadcastOp>(loc, res.getType(), rhs);
1684     return b.create<vector::FMAOp>(loc, lhs, bcast, res);
1685   }
1686 
1687   /// Entry point that transposes into the common form:
1688   ///   {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}}
1689   FailureOr<Operation *> generateConv() {
1690     AffineExpr n, w, f, kw, c;
1691     bindDims(ctx, n, w, f, kw, c);
1692     if (!iters({Par(), Par(), Par(), Red(), Red()}))
1693       return failure();
1694 
1695     // No transposition needed.
1696     if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
1697                 /*rhsIndex*/ {kw, c, f},
1698                 /*resIndex*/ {n, w, f}}))
1699       return conv();
1700     return failure();
1701   }
1702 
1703   /// Entry point that transposes into the common form:
1704   ///   {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}}
1705   FailureOr<Operation *> generateDilatedConv() {
1706     AffineExpr n, w, c, kw;
1707     bindDims(ctx, n, w, c, kw);
1708     if (!iters({Par(), Par(), Par(), Red()}))
1709       return failure();
1710 
1711     // No transposition needed.
1712     if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c},
1713                 /*rhsIndex*/ {kw, c},
1714                 /*resIndex*/ {n, w, c}}))
1715       return dilated_conv();
1716     return failure();
1717   }
1718 
1719 private:
1720   bool valid;
1721   int strideW, dilationW;
1722   Value lhsShaped, rhsShaped, resShaped;
1723   ShapedType lhsShapedType, rhsShapedType, resShapedType;
1724 };
1725 } // namespace
1726 
1727 /// Helper function to vectorize a `linalgOp` with convolution semantics.
1728 // TODO: extend the generic vectorization to support windows and drop this.
1729 static FailureOr<Operation *>
1730 vectorizeConvolution(OpBuilder &b, ConvolutionOpInterface convOp) {
1731   // TODO: these are legitimately part of ConvolutionOpInterface.
1732   auto strides = convOp->getAttrOfType<DenseIntElementsAttr>("strides");
1733   auto dilations = convOp->getAttrOfType<DenseIntElementsAttr>("dilations");
1734   auto stride = strides ? *strides.getValues<uint64_t>().begin() : 1;
1735   auto dilation = dilations ? *dilations.getValues<uint64_t>().begin() : 1;
1736   LinalgOp linalgOp = cast<LinalgOp>(convOp.getOperation());
1737   Conv1D_NWC_Generator e(b, linalgOp, stride, dilation);
1738   auto res = e.generateConv();
1739   if (succeeded(res))
1740     return res;
1741   return e.generateDilatedConv();
1742 }
1743 
1744 struct VectorizeConvolution
1745     : public OpInterfaceRewritePattern<ConvolutionOpInterface> {
1746   using OpInterfaceRewritePattern::OpInterfaceRewritePattern;
1747 
1748   LogicalResult matchAndRewrite(ConvolutionOpInterface convOp,
1749                                 PatternRewriter &rewriter) const override {
1750     FailureOr<Operation *> resultOrFail =
1751         vectorizeConvolution(rewriter, convOp);
1752     if (failed(resultOrFail))
1753       return failure();
1754     Operation *newOp = *resultOrFail;
1755     if (newOp->getNumResults() == 0) {
1756       rewriter.eraseOp(convOp.getOperation());
1757       return success();
1758     }
1759     assert(newOp->getNumResults() == 1 && "expected single result");
1760     rewriter.replaceOp(convOp.getOperation(), newOp->getResult(0));
1761     return success();
1762   }
1763 };
1764 
1765 void mlir::linalg::populateConvolutionVectorizationPatterns(
1766     RewritePatternSet &patterns, PatternBenefit benefit) {
1767   patterns.add<VectorizeConvolution>(patterns.getContext(), benefit);
1768 }
1769