1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Analysis/SliceAnalysis.h" 14 #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h" 15 #include "mlir/Dialect/Affine/IR/AffineOps.h" 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Func/IR/FuncOps.h" 18 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 19 #include "mlir/Dialect/Linalg/IR/Linalg.h" 20 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 21 #include "mlir/Dialect/Linalg/Utils/Utils.h" 22 #include "mlir/Dialect/Tensor/IR/Tensor.h" 23 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 24 #include "mlir/Dialect/Vector/IR/VectorOps.h" 25 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" 26 #include "mlir/IR/AffineExpr.h" 27 #include "mlir/IR/Matchers.h" 28 #include "mlir/IR/PatternMatch.h" 29 #include "mlir/Pass/Pass.h" 30 #include "mlir/Support/LLVM.h" 31 #include "mlir/Transforms/RegionUtils.h" 32 #include "llvm/ADT/ScopeExit.h" 33 #include "llvm/ADT/Sequence.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/TypeSwitch.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <type_traits> 39 40 using namespace mlir; 41 using namespace mlir::linalg; 42 43 #define DEBUG_TYPE "linalg-vectorization" 44 45 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") 46 #define LDBG(X) LLVM_DEBUG(DBGS() << X) 47 48 /// Try to vectorize `convOp` as a convolution. 49 static FailureOr<Operation *> vectorizeConvolution(OpBuilder &b, 50 LinalgOp convOp); 51 52 /// Return the unique instance of OpType in `block` if it is indeed unique. 53 /// Return null if none or more than 1 instances exist. 54 template <typename OpType> 55 static OpType getSingleOpOfType(Block &block) { 56 OpType res; 57 block.walk([&](OpType op) { 58 if (res) { 59 res = nullptr; 60 return WalkResult::interrupt(); 61 } 62 res = op; 63 return WalkResult::advance(); 64 }); 65 return res; 66 } 67 68 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a 69 /// projectedPermutation, compress the unused dimensions to serve as a 70 /// permutation_map for a vector transfer operation. 71 /// For example, given a linalg op such as: 72 /// 73 /// ``` 74 /// %0 = linalg.generic { 75 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, 76 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> 77 /// } 78 /// ins(%0 : tensor<2x3x4xf32>) 79 /// outs(%1 : tensor<5x6xf32>) 80 /// ``` 81 /// 82 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine 83 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second 84 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. 85 static AffineMap reindexIndexingMap(AffineMap map) { 86 assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) && 87 "expected projected permutation"); 88 auto res = compressUnusedDims(map); 89 assert(res.getNumDims() == res.getNumResults() && 90 "expected reindexed map with same number of dims and results"); 91 return res; 92 } 93 94 /// Helper data structure to represent the result of vectorization. 95 /// In certain specific cases, like terminators, we do not want to propagate/ 96 enum VectorizationStatus { 97 /// Op failed to vectorize. 98 Failure = 0, 99 /// Op vectorized and custom function took care of replacement logic 100 NoReplace, 101 /// Op vectorized into a new Op whose results will replace original Op's 102 /// results. 103 NewOp 104 // TODO: support values if Op vectorized to Many-Ops whose results we need to 105 // aggregate for replacement. 106 }; 107 struct VectorizationResult { 108 /// Return status from vectorizing the current op. 109 enum VectorizationStatus status = VectorizationStatus::Failure; 110 /// New vectorized operation to replace the current op. 111 /// Replacement behavior is specified by `status`. 112 Operation *newOp; 113 }; 114 115 llvm::Optional<vector::CombiningKind> 116 mlir::linalg::getCombinerOpKind(Operation *combinerOp) { 117 using ::mlir::vector::CombiningKind; 118 119 if (!combinerOp) 120 return llvm::None; 121 return llvm::TypeSwitch<Operation *, llvm::Optional<CombiningKind>>( 122 combinerOp) 123 .Case<arith::AddIOp, arith::AddFOp>( 124 [&](auto op) { return CombiningKind::ADD; }) 125 .Case<arith::AndIOp>([&](auto op) { return CombiningKind::AND; }) 126 .Case<arith::MaxSIOp>([&](auto op) { return CombiningKind::MAXSI; }) 127 .Case<arith::MaxFOp>([&](auto op) { return CombiningKind::MAXF; }) 128 .Case<arith::MinSIOp>([&](auto op) { return CombiningKind::MINSI; }) 129 .Case<arith::MinFOp>([&](auto op) { return CombiningKind::MINF; }) 130 .Case<arith::MulIOp, arith::MulFOp>( 131 [&](auto op) { return CombiningKind::MUL; }) 132 .Case<arith::OrIOp>([&](auto op) { return CombiningKind::OR; }) 133 .Case<arith::XOrIOp>([&](auto op) { return CombiningKind::XOR; }) 134 .Default([&](auto op) { return llvm::None; }); 135 } 136 137 /// Check whether `outputOperand` is a reduction with a single combiner 138 /// operation. Return the combiner operation of the reduction. Return 139 /// nullptr otherwise. Multiple reduction operations would impose an 140 /// ordering between reduction dimensions and is currently unsupported in 141 /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) != 142 /// max(min(X)) 143 // TODO: use in LinalgOp verification, there is a circular dependency atm. 144 static Operation *matchLinalgReduction(OpOperand *outputOperand) { 145 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 146 unsigned outputPos = 147 outputOperand->getOperandNumber() - linalgOp.getNumInputs(); 148 // Only single combiner operations are supported for now. 149 SmallVector<Operation *, 4> combinerOps; 150 if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) || 151 combinerOps.size() != 1) 152 return nullptr; 153 154 // Return the combiner operation. 155 return combinerOps[0]; 156 } 157 158 /// Broadcast `value` to a vector of `shape` if possible. Return value 159 /// otherwise. 160 static Value broadcastIfNeeded(OpBuilder &b, Value value, 161 ArrayRef<int64_t> shape) { 162 // If no shape to broadcast to, just return `value`. 163 if (shape.empty()) 164 return value; 165 VectorType targetVectorType = 166 VectorType::get(shape, getElementTypeOrSelf(value)); 167 if (vector::isBroadcastableTo(value.getType(), targetVectorType) != 168 vector::BroadcastableToResult::Success) 169 return value; 170 Location loc = b.getInsertionPoint()->getLoc(); 171 return b.createOrFold<vector::BroadcastOp>(loc, targetVectorType, value); 172 } 173 174 /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This 175 /// assumes that `reductionOp` has two operands and one of them is the reduction 176 /// initial value. 177 static Value buildMultiDimReduce(OpBuilder &b, Operation *reduceOp, 178 Value valueToReduce, 179 const SmallVector<bool> &reductionMask) { 180 auto maybeKind = getCombinerOpKind(reduceOp); 181 assert(maybeKind && "Failed precondition: could not get reduction kind"); 182 return b.create<vector::MultiDimReductionOp>( 183 reduceOp->getLoc(), valueToReduce, reductionMask, *maybeKind); 184 } 185 186 static SmallVector<bool> getReductionMask(LinalgOp linalgOp) { 187 unsigned idx = 0; 188 SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false); 189 for (auto attr : linalgOp.iterator_types()) { 190 if (isReductionIterator(attr)) 191 reductionMask[idx] = true; 192 ++idx; 193 } 194 return reductionMask; 195 } 196 197 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set 198 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp 199 /// currently being vectorized. If `dest` has null rank, build an memref.store. 200 /// Return the produced value or null if no value is produced. 201 static Value buildVectorWrite(OpBuilder &b, Value value, 202 OpOperand *outputOperand) { 203 Operation *write; 204 Location loc = value.getLoc(); 205 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 206 ArrayRef<int64_t> shape = linalgOp.getShape(outputOperand); 207 auto vectorType = VectorType::get( 208 shape, getElementTypeOrSelf(outputOperand->get().getType())); 209 if (vectorType.getRank() > 0) { 210 // 0-d case is still special: do not invert the reindexing map. 211 AffineMap map = 212 reindexIndexingMap(linalgOp.getTiedIndexingMap(outputOperand)); 213 SmallVector<int64_t> transposeShape = 214 applyPermutationMap(inversePermutation(map), vectorType.getShape()); 215 assert(!transposeShape.empty() && "unexpected empty transpose shape"); 216 vectorType = VectorType::get(transposeShape, vectorType.getElementType()); 217 SmallVector<Value> indices(linalgOp.getRank(outputOperand), 218 b.create<arith::ConstantIndexOp>(loc, 0)); 219 value = broadcastIfNeeded(b, value, vectorType.getShape()); 220 write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(), 221 indices, map); 222 } else { 223 if (!value.getType().isa<VectorType>()) 224 value = b.create<vector::BroadcastOp>(loc, vectorType, value); 225 assert(value.getType() == vectorType && "incorrect type"); 226 write = b.create<vector::TransferWriteOp>(loc, value, outputOperand->get(), 227 ValueRange{}); 228 } 229 LDBG("vectorized op: " << *write); 230 if (!write->getResults().empty()) 231 return write->getResult(0); 232 return Value(); 233 } 234 235 // Custom vectorization function type. Produce a vector form of Operation* 236 // assuming all its vectorized operands are already in the BlockAndValueMapping. 237 // Return nullptr if the Operation cannot be vectorized. 238 using CustomVectorizationHook = std::function<VectorizationResult( 239 Operation *, const BlockAndValueMapping &)>; 240 241 /// Helper function to vectorize the terminator of a `linalgOp`. New result 242 /// vector values are appended to `newResults`. Return 243 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it 244 /// should not try to map produced operations and instead return the results 245 /// using the `newResults` vector making them available to the 246 /// vectorization algorithm for RAUW. This function is meant to be used as a 247 /// CustomVectorizationHook. 248 static VectorizationResult 249 vectorizeLinalgYield(OpBuilder &b, Operation *op, 250 const BlockAndValueMapping &bvm, LinalgOp linalgOp, 251 SmallVectorImpl<Value> &newResults) { 252 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 253 if (!yieldOp) 254 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 255 for (const auto &outputs : llvm::enumerate(yieldOp.values())) { 256 // TODO: Scan for an opportunity for reuse. 257 // TODO: use a map. 258 Value vectorValue = bvm.lookup(outputs.value()); 259 Value newResult = buildVectorWrite( 260 b, vectorValue, linalgOp.getOutputOperand(outputs.index())); 261 if (newResult) 262 newResults.push_back(newResult); 263 } 264 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 265 } 266 267 /// Helper function to vectorize the index operations of a `linalgOp`. Return 268 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it 269 /// should map the produced operations. This function is meant to be used as a 270 /// CustomVectorizationHook. 271 static VectorizationResult vectorizeLinalgIndex(OpBuilder &b, Operation *op, 272 LinalgOp linalgOp) { 273 IndexOp indexOp = dyn_cast<linalg::IndexOp>(op); 274 if (!indexOp) 275 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 276 auto loc = indexOp.getLoc(); 277 // Compute the static loop sizes of the index op. 278 auto targetShape = linalgOp.computeStaticLoopSizes(); 279 // Compute a one-dimensional index vector for the index op dimension. 280 SmallVector<int64_t> constantSeq = 281 llvm::to_vector<16>(llvm::seq<int64_t>(0, targetShape[indexOp.dim()])); 282 auto constantOp = 283 b.create<arith::ConstantOp>(loc, b.getIndexVectorAttr(constantSeq)); 284 // Return the one-dimensional index vector if it lives in the trailing 285 // dimension of the iteration space since the vectorization algorithm in this 286 // case can handle the broadcast. 287 if (indexOp.dim() == targetShape.size() - 1) 288 return VectorizationResult{VectorizationStatus::NewOp, constantOp}; 289 // Otherwise permute the targetShape to move the index dimension last, 290 // broadcast the one-dimensional index vector to the permuted shape, and 291 // finally transpose the broadcasted index vector to undo the permutation. 292 std::swap(targetShape[indexOp.dim()], targetShape.back()); 293 auto broadCastOp = b.create<vector::BroadcastOp>( 294 loc, VectorType::get(targetShape, b.getIndexType()), constantOp); 295 SmallVector<int64_t> transposition = 296 llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops())); 297 std::swap(transposition.back(), transposition[indexOp.dim()]); 298 auto transposeOp = 299 b.create<vector::TransposeOp>(loc, broadCastOp, transposition); 300 return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; 301 } 302 303 /// Emit reduction operations if the shapes of the value to reduce is different 304 /// that the result shape. 305 static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op, 306 Value reduceValue, Value initialValue, 307 const BlockAndValueMapping &bvm) { 308 Value reduceVec = bvm.lookup(reduceValue); 309 Value outputVec = bvm.lookup(initialValue); 310 auto reduceType = reduceVec.getType().dyn_cast<VectorType>(); 311 auto outputType = outputVec.getType().dyn_cast<VectorType>(); 312 // Reduce only if needed as the value may already have been reduce for 313 // contraction vectorization. 314 if (!reduceType || 315 (outputType && reduceType.getShape() == outputType.getShape())) 316 return nullptr; 317 SmallVector<bool> reductionMask = getReductionMask(linalgOp); 318 Value reduce = buildMultiDimReduce(b, op, reduceVec, reductionMask); 319 return b.create(op->getLoc(), op->getName().getIdentifier(), 320 /*operands=*/{reduce, outputVec}, reduce.getType(), 321 op->getAttrs()); 322 } 323 324 /// Generic vectorization for a single operation `op`, given already vectorized 325 /// operands carried by `bvm`. Vectorization occurs as follows: 326 /// 1. Try to apply any of the `customVectorizationHooks` and return its 327 /// result on success. 328 /// 2. Clone any constant in the current scope without vectorization: each 329 /// consumer of the constant will later determine the shape to which the 330 /// constant needs to be broadcast to. 331 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 332 /// of the `customVectorizationHooks` to cover such cases. 333 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 334 /// operand of maximal rank. Other operands have smaller rank and are 335 /// broadcast accordingly. It is assumed this broadcast is always legal, 336 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 337 /// 338 /// This function assumes all operands of `op` have been vectorized and are in 339 /// the `bvm` mapping. As a consequence, this function is meant to be called on 340 /// a topologically-sorted list of ops. 341 /// This function does not update `bvm` but returns a VectorizationStatus that 342 /// instructs the caller what `bvm` update needs to occur. 343 static VectorizationResult 344 vectorizeOneOp(OpBuilder &b, LinalgOp linalgOp, Operation *op, 345 const BlockAndValueMapping &bvm, 346 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 347 LDBG("vectorize op " << *op); 348 349 // 1. Try to apply any CustomVectorizationHook. 350 if (!customVectorizationHooks.empty()) { 351 for (auto &customFunc : customVectorizationHooks) { 352 VectorizationResult result = customFunc(op, bvm); 353 if (result.status == VectorizationStatus::Failure) 354 continue; 355 return result; 356 } 357 } 358 359 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 360 // Clone so that the constant is not confined to the linalgOp block . 361 if (isa<arith::ConstantOp, func::ConstantOp>(op)) 362 return VectorizationResult{VectorizationStatus::NewOp, b.clone(*op)}; 363 364 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 365 if (!OpTrait::hasElementwiseMappableTraits(op)) 366 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 367 368 // 4 . Check if the operation is a reduction. 369 SmallVector<std::pair<Value, Value>> reductionOperands; 370 for (Value operand : op->getOperands()) { 371 auto arg = operand.dyn_cast<BlockArgument>(); 372 if (!arg || arg.getArgNumber() < linalgOp.getNumInputs()) 373 continue; 374 SmallVector<Operation *> reductionOps; 375 Value reduceValue = matchReduction( 376 linalgOp.getRegionOutputArgs(), 377 arg.getArgNumber() - linalgOp.getNumInputs(), reductionOps); 378 if (!reduceValue) 379 continue; 380 reductionOperands.push_back(std::make_pair(reduceValue, operand)); 381 } 382 if (!reductionOperands.empty()) { 383 assert(reductionOperands.size() == 1); 384 Operation *reduceOp = 385 reduceIfNeeded(b, linalgOp, op, reductionOperands[0].first, 386 reductionOperands[0].second, bvm); 387 if (reduceOp) 388 return VectorizationResult{VectorizationStatus::NewOp, reduceOp}; 389 } 390 391 // 5. Generic vectorization path for ElementwiseMappable ops. 392 // a. first get the first max ranked shape. 393 SmallVector<int64_t, 4> firstMaxRankedShape; 394 for (Value operand : op->getOperands()) { 395 auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>(); 396 if (vt && firstMaxRankedShape.size() < vt.getShape().size()) 397 firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end()); 398 } 399 // b. broadcast each op if needed. 400 auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) { 401 return firstMaxRankedShape.empty() 402 ? bvm.lookup(v) 403 : broadcastIfNeeded(b, bvm.lookup(v), firstMaxRankedShape); 404 }); 405 // c. for elementwise, the result is the vector with the firstMaxRankedShape 406 auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) { 407 return firstMaxRankedShape.empty() 408 ? t 409 : VectorType::get(firstMaxRankedShape, t); 410 }); 411 412 // Build and return the new op. 413 return VectorizationResult{ 414 VectorizationStatus::NewOp, 415 b.create(op->getLoc(), op->getName().getIdentifier(), 416 llvm::to_vector<4>(vectorizedOperands), 417 llvm::to_vector<4>(returnTypes), op->getAttrs())}; 418 } 419 420 /// Generic vectorization function that rewrites the body of a `linalgOp` into 421 /// vector form. Generic vectorization proceeds as follows: 422 /// 1. Verify the `linalgOp` has one non-empty region. 423 /// 2. Values defined above the region are mapped to themselves and will be 424 /// broadcasted on a per-need basis by their consumers. 425 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 426 /// load). 427 /// TODO: Reuse opportunities for RAR dependencies. 428 /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. 429 /// 4b. Register CustomVectorizationHook for IndexOp to access the iteration 430 /// indices. 431 /// 5. Iteratively call vectorizeOneOp on the region operations. 432 /// 433 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is 434 /// performed to the maximal common vector size implied by the `linalgOp` 435 /// iteration space. This eager broadcasting is introduced in the 436 /// permutation_map of the vector.transfer_read operations. The eager 437 /// broadcasting makes it trivial to detrmine where broadcast, transposes and 438 /// reductions should occur, without any bookkeeping. The tradeoff is that, in 439 /// the absence of good canonicalizations, the amount of work increases. 440 /// This is not deemed a problem as we expect canonicalizations and foldings to 441 /// aggressively clean up the useless work. 442 static LogicalResult 443 vectorizeAsLinalgGeneric(OpBuilder &b, LinalgOp linalgOp, 444 SmallVectorImpl<Value> &newResults) { 445 Block *block = linalgOp.getBlock(); 446 447 // 2. Values defined above the region can only be broadcast for now. Make them 448 // map to themselves. 449 BlockAndValueMapping bvm; 450 SetVector<Value> valuesSet; 451 mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); 452 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 453 454 if (linalgOp.getNumOutputs() == 0) 455 return failure(); 456 457 // TODO: the common vector shape is equal to the static loop sizes only when 458 // all indexing maps are projected permutations. For convs and stencils the 459 // logic will need to evolve. 460 SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes(); 461 462 // 3. Turn all BBArgs into vector.transfer_read / load. 463 Location loc = linalgOp.getLoc(); 464 Value zero = b.create<arith::ConstantIndexOp>(loc, 0); 465 for (OpOperand *opOperand : linalgOp.getInputAndOutputOperands()) { 466 BlockArgument bbarg = block->getArgument(opOperand->getOperandNumber()); 467 if (linalgOp.isScalar(opOperand)) { 468 bvm.map(bbarg, opOperand->get()); 469 continue; 470 } 471 VectorType readType; 472 AffineMap map; 473 // TODO: can we keep this simplification? 474 // if (linalgOp.getShape(opOperand).empty()) { 475 // readType = VectorType::get({}, bbarg.getType()); 476 // } else { 477 if (opOperand->getOperandNumber() < linalgOp.getNumInputs()) { 478 map = inverseAndBroadcastProjectedPermutation( 479 linalgOp.getTiedIndexingMap(opOperand)); 480 readType = VectorType::get(commonVectorShape, 481 getElementTypeOrSelf(opOperand->get())); 482 } else { 483 map = inversePermutation( 484 reindexIndexingMap(linalgOp.getTiedIndexingMap(opOperand))); 485 readType = VectorType::get(map.compose(linalgOp.getShape(opOperand)), 486 getElementTypeOrSelf(opOperand->get())); 487 } 488 // } 489 490 auto shape = linalgOp.getShape(opOperand); 491 SmallVector<Value> indices(shape.size(), zero); 492 Value readValue = b.create<vector::TransferReadOp>( 493 loc, readType, opOperand->get(), indices, map); 494 // Not all ops support 0-d vectors, extract the scalar for now. 495 // TODO: remove this. 496 if (readValue.getType().cast<VectorType>().getRank() == 0) 497 readValue = b.create<vector::ExtractElementOp>(loc, readValue); 498 499 LDBG("new vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue); 500 bvm.map(bbarg, readValue); 501 bvm.map(opOperand->get(), readValue); 502 } 503 504 SmallVector<CustomVectorizationHook> hooks; 505 // 4a. Register CustomVectorizationHook for yieldOp. 506 CustomVectorizationHook vectorizeYield = 507 [&](Operation *op, 508 const BlockAndValueMapping &bvm) -> VectorizationResult { 509 return vectorizeLinalgYield(b, op, bvm, linalgOp, newResults); 510 }; 511 hooks.push_back(vectorizeYield); 512 513 // 4b. Register CustomVectorizationHook for indexOp. 514 CustomVectorizationHook vectorizeIndex = 515 [&](Operation *op, 516 const BlockAndValueMapping &bvm) -> VectorizationResult { 517 return vectorizeLinalgIndex(b, op, linalgOp); 518 }; 519 hooks.push_back(vectorizeIndex); 520 521 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 522 for (Operation &op : block->getOperations()) { 523 VectorizationResult result = vectorizeOneOp(b, linalgOp, &op, bvm, hooks); 524 if (result.status == VectorizationStatus::Failure) { 525 LDBG("failed to vectorize: " << op); 526 return failure(); 527 } 528 if (result.status == VectorizationStatus::NewOp) { 529 LDBG("new vector op: " << *result.newOp;); 530 bvm.map(op.getResults(), result.newOp->getResults()); 531 } 532 } 533 534 return success(); 535 } 536 537 // TODO: probably need some extra checks for reduction followed by consumer 538 // ops that may not commute (e.g. linear reduction + non-linear instructions). 539 static LogicalResult reductionPreconditions(LinalgOp op) { 540 if (llvm::none_of(op.iterator_types(), isReductionIterator)) { 541 LDBG("reduction precondition failed: no reduction iterator"); 542 return failure(); 543 } 544 for (OpOperand *opOperand : op.getOutputOperands()) { 545 Operation *reduceOp = matchLinalgReduction(opOperand); 546 if (!reduceOp || !getCombinerOpKind(reduceOp)) { 547 LDBG("reduction precondition failed: reduction detection failed"); 548 return failure(); 549 } 550 } 551 return success(); 552 } 553 554 static LogicalResult vectorizeStaticLinalgOpPrecondition(linalg::LinalgOp op) { 555 // All types in the body should be a supported element type for VectorType. 556 for (Operation &innerOp : op->getRegion(0).front()) { 557 if (llvm::any_of(innerOp.getOperandTypes(), [](Type type) { 558 return !VectorType::isValidElementType(type); 559 })) { 560 return failure(); 561 } 562 if (llvm::any_of(innerOp.getResultTypes(), [](Type type) { 563 return !VectorType::isValidElementType(type); 564 })) { 565 return failure(); 566 } 567 } 568 if (isElementwise(op)) 569 return success(); 570 // TODO: isaConvolutionOpInterface that can also infer from generic features. 571 // But we will still need stride/dilation attributes that will be annoying to 572 // reverse-engineer... 573 if (isa<ConvolutionOpInterface>(op.getOperation())) 574 return success(); 575 // TODO: the common vector shape is equal to the static loop sizes only when 576 // all indexing maps are projected permutations. For convs and stencils the 577 // logic will need to evolve. 578 if (!allIndexingsAreProjectedPermutation(op)) { 579 LDBG("precondition failed: not projected permutations"); 580 return failure(); 581 } 582 if (failed(reductionPreconditions(op))) { 583 LDBG("precondition failed: reduction preconditions"); 584 return failure(); 585 } 586 return success(); 587 } 588 589 static LogicalResult vectorizeLinalgOpPrecondition(LinalgOp linalgOp) { 590 // All types must be static shape to go to vector. 591 if (linalgOp.hasDynamicShape()) { 592 LDBG("precondition failed: dynamic shape"); 593 return failure(); 594 } 595 return vectorizeStaticLinalgOpPrecondition(linalgOp); 596 } 597 598 LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, 599 LinalgOp linalgOp) { 600 if (failed(vectorizeLinalgOpPrecondition(linalgOp))) 601 return failure(); 602 603 SmallVector<Value> results; 604 // TODO: isaConvolutionOpInterface that can also infer from generic 605 // features. Will require stride/dilation attributes inference. 606 FailureOr<Operation *> convOr = vectorizeConvolution(rewriter, linalgOp); 607 if (succeeded(convOr)) { 608 llvm::append_range(results, (*convOr)->getResults()); 609 } else { 610 if (failed(vectorizeLinalgOpPrecondition(linalgOp))) 611 return failure(); 612 LDBG("Vectorize generic by broadcasting to a common shape: " << linalgOp); 613 if (failed(vectorizeAsLinalgGeneric(rewriter, linalgOp, results))) 614 return failure(); 615 } 616 617 if (!results.empty()) 618 rewriter.replaceOp(linalgOp, results); 619 else 620 rewriter.eraseOp(linalgOp); 621 622 return success(); 623 } 624 625 LogicalResult mlir::linalg::vectorizeCopy(RewriterBase &rewriter, 626 memref::CopyOp copyOp) { 627 628 auto srcType = copyOp.source().getType().cast<MemRefType>(); 629 auto dstType = copyOp.target().getType().cast<MemRefType>(); 630 if (!srcType.hasStaticShape() || !dstType.hasStaticShape()) 631 return failure(); 632 633 auto readType = 634 VectorType::get(srcType.getShape(), getElementTypeOrSelf(srcType)); 635 auto writeType = 636 VectorType::get(dstType.getShape(), getElementTypeOrSelf(dstType)); 637 638 Location loc = copyOp->getLoc(); 639 Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0); 640 SmallVector<Value> indices(srcType.getRank(), zero); 641 642 Value readValue = rewriter.create<vector::TransferReadOp>( 643 loc, readType, copyOp.source(), indices, 644 rewriter.getMultiDimIdentityMap(srcType.getRank())); 645 if (readValue.getType().cast<VectorType>().getRank() == 0) { 646 readValue = rewriter.create<vector::ExtractElementOp>(loc, readValue); 647 readValue = rewriter.create<vector::BroadcastOp>(loc, writeType, readValue); 648 } 649 Operation *writeValue = rewriter.create<vector::TransferWriteOp>( 650 loc, readValue, copyOp.target(), indices, 651 rewriter.getMultiDimIdentityMap(srcType.getRank())); 652 rewriter.replaceOp(copyOp, writeValue->getResults()); 653 return success(); 654 } 655 656 //----------------------------------------------------------------------------// 657 // Misc. vectorization patterns. 658 //----------------------------------------------------------------------------// 659 660 /// Helper function that retrieves the value of an IntegerAttr. 661 static int64_t getIntFromAttr(Attribute attr) { 662 return attr.cast<IntegerAttr>().getInt(); 663 } 664 665 /// Given an ArrayRef of OpFoldResults, return a vector of Values. 666 /// IntegerAttrs are converted to ConstantIndexOps. Other attribute types are 667 /// not supported. 668 static SmallVector<Value> ofrToIndexValues(OpBuilder &builder, Location loc, 669 ArrayRef<OpFoldResult> ofrs) { 670 SmallVector<Value> result; 671 llvm::for_each(ofrs, [&](auto o) { 672 if (auto val = o.template dyn_cast<Value>()) { 673 result.push_back(val); 674 } else { 675 result.push_back(builder.create<arith::ConstantIndexOp>( 676 loc, getIntFromAttr(o.template get<Attribute>()))); 677 } 678 }); 679 return result; 680 } 681 682 /// Rewrite a tensor::PadOp into a sequence of InitTensorOp, FillOp and 683 /// InsertSliceOp. For now, only constant padding values are supported. 684 /// If there is enough static type information, TransferReadOps and 685 /// TransferWriteOps may be generated instead of InsertSliceOps. 686 struct GenericPadOpVectorizationPattern : public GeneralizePadOpPattern { 687 GenericPadOpVectorizationPattern(MLIRContext *context, 688 PatternBenefit benefit = 1) 689 : GeneralizePadOpPattern(context, tryVectorizeCopy, benefit) {} 690 /// Vectorize the copying of a tensor::PadOp's source. This is possible if 691 /// each dimension size is statically know in the source type or the result 692 /// type (or both). 693 static LogicalResult tryVectorizeCopy(PatternRewriter &rewriter, 694 tensor::PadOp padOp, Value dest) { 695 auto sourceType = padOp.getSourceType(); 696 auto resultType = padOp.getResultType(); 697 698 // Copy cannot be vectorized if pad value is non-constant and source shape 699 // is dynamic. In case of a dynamic source shape, padding must be appended 700 // by TransferReadOp, but TransferReadOp supports only constant padding. 701 auto padValue = padOp.getConstantPaddingValue(); 702 if (!padValue) { 703 if (!sourceType.hasStaticShape()) 704 return failure(); 705 // Create dummy padding value. 706 auto elemType = sourceType.getElementType(); 707 padValue = rewriter.create<arith::ConstantOp>( 708 padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType)); 709 } 710 711 SmallVector<int64_t> vecShape; 712 SmallVector<bool> readInBounds; 713 SmallVector<bool> writeInBounds; 714 for (unsigned i = 0; i < sourceType.getRank(); ++i) { 715 if (!sourceType.isDynamicDim(i)) { 716 vecShape.push_back(sourceType.getDimSize(i)); 717 // Source shape is statically known: Neither read nor write are 718 // out-of- bounds. 719 readInBounds.push_back(true); 720 writeInBounds.push_back(true); 721 } else if (!resultType.isDynamicDim(i)) { 722 // Source shape is not statically known, but result shape is. 723 // Vectorize with size of result shape. This may be larger than the 724 // source size. 725 vecShape.push_back(resultType.getDimSize(i)); 726 // Read may be out-of-bounds because the result size could be larger 727 // than the source size. 728 readInBounds.push_back(false); 729 // Write is out-of-bounds if low padding > 0. 730 writeInBounds.push_back( 731 getConstantIntValue(padOp.getMixedLowPad()[i]) == 732 static_cast<int64_t>(0)); 733 } else { 734 // Neither source nor result dim of padOp is static. Cannot vectorize 735 // the copy. 736 return failure(); 737 } 738 } 739 auto vecType = VectorType::get(vecShape, sourceType.getElementType()); 740 741 // Generate TransferReadOp. 742 SmallVector<Value> readIndices( 743 vecType.getRank(), 744 rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0)); 745 auto read = rewriter.create<vector::TransferReadOp>( 746 padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue, 747 ArrayRef<bool>{readInBounds}); 748 749 // If `dest` is a FillOp and the TransferWriteOp would overwrite the 750 // entire tensor, write directly to the FillOp's operand. 751 if (llvm::equal(vecShape, resultType.getShape()) && 752 llvm::all_of(writeInBounds, [](bool b) { return b; })) 753 if (auto fill = dest.getDefiningOp<FillOp>()) 754 dest = fill.output(); 755 756 // Generate TransferWriteOp. 757 auto writeIndices = 758 ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad()); 759 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 760 padOp, read, dest, writeIndices, ArrayRef<bool>{writeInBounds}); 761 762 return success(); 763 } 764 }; 765 766 /// Base pattern for rewriting tensor::PadOps whose result is consumed by a 767 /// given operation type OpTy. 768 template <typename OpTy> 769 struct VectorizePadOpUserPattern : public OpRewritePattern<tensor::PadOp> { 770 using OpRewritePattern<tensor::PadOp>::OpRewritePattern; 771 772 LogicalResult matchAndRewrite(tensor::PadOp padOp, 773 PatternRewriter &rewriter) const final { 774 bool changed = false; 775 // Insert users in vector, because some users may be replaced/removed. 776 for (auto *user : llvm::to_vector<4>(padOp->getUsers())) 777 if (auto op = dyn_cast<OpTy>(user)) 778 changed |= rewriteUser(rewriter, padOp, op).succeeded(); 779 return success(changed); 780 } 781 782 protected: 783 virtual LogicalResult rewriteUser(PatternRewriter &rewriter, 784 tensor::PadOp padOp, OpTy op) const = 0; 785 }; 786 787 /// Rewrite use of tensor::PadOp result in TransferReadOp. E.g.: 788 /// ``` 789 /// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32> 790 /// %r = vector.transfer_read %0[%c0, %c0], %cst 791 /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> 792 /// ``` 793 /// is rewritten to: 794 /// ``` 795 /// %r = vector.transfer_read %src[%c0, %c0], %padding 796 /// {in_bounds = [true, true]} 797 /// : tensor<?x?xf32>, vector<17x5xf32> 798 /// ``` 799 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be 800 /// sure that the original padding value %cst was never used. 801 /// 802 /// This rewrite is possible if: 803 /// - `xferOp` has no out-of-bounds dims or mask. 804 /// - Low padding is static 0. 805 /// - Single, scalar padding value. 806 struct PadOpVectorizationWithTransferReadPattern 807 : public VectorizePadOpUserPattern<vector::TransferReadOp> { 808 using VectorizePadOpUserPattern< 809 vector::TransferReadOp>::VectorizePadOpUserPattern; 810 811 LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, 812 vector::TransferReadOp xferOp) const override { 813 // Low padding must be static 0. 814 if (!padOp.hasZeroLowPad()) 815 return failure(); 816 // Pad value must be a constant. 817 auto padValue = padOp.getConstantPaddingValue(); 818 if (!padValue) 819 return failure(); 820 // Padding value of existing `xferOp` is unused. 821 if (xferOp.hasOutOfBoundsDim() || xferOp.getMask()) 822 return failure(); 823 824 rewriter.updateRootInPlace(xferOp, [&]() { 825 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 826 xferOp->setAttr(xferOp.getInBoundsAttrName(), 827 rewriter.getBoolArrayAttr(inBounds)); 828 xferOp.getSourceMutable().assign(padOp.getSource()); 829 xferOp.getPaddingMutable().assign(padValue); 830 }); 831 832 return success(); 833 } 834 }; 835 836 /// Rewrite use of tensor::PadOp result in TransferWriteOp. 837 /// This pattern rewrites TransferWriteOps that write to a padded tensor 838 /// value, where the same amount of padding is immediately removed again after 839 /// the write. In such cases, the TransferWriteOp can write to the non-padded 840 /// tensor value and apply out-of-bounds masking. E.g.: 841 /// ``` 842 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 843 /// : tensor<...> to tensor<?x?xf32> 844 /// %1 = tensor.pad %0 ... : tensor<?x?xf32> to tensor<17x5xf32> 845 /// %2 = vector.transfer_write %vec, %1[...] 846 /// : vector<17x5xf32>, tensor<17x5xf32> 847 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] 848 /// : tensor<17x5xf32> to tensor<?x?xf32> 849 /// ``` 850 /// is rewritten to: 851 /// ``` 852 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 853 /// : tensor<...> to tensor<?x?xf32> 854 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, 855 /// tensor<?x?xf32> 856 /// ``` 857 /// Note: It is important that the ExtractSliceOp %r resizes the result of the 858 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an 859 /// even smaller size). Otherwise, %r's new (dynamic) dimensions would differ 860 /// from %r's old dimensions. 861 /// 862 /// This rewrite is possible if: 863 /// - Low padding is static 0. 864 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This 865 /// ExtractSliceOp trims the same amount of padding that was added 866 /// beforehand. 867 /// - Single, scalar padding value. 868 struct PadOpVectorizationWithTransferWritePattern 869 : public VectorizePadOpUserPattern<vector::TransferWriteOp> { 870 using VectorizePadOpUserPattern< 871 vector::TransferWriteOp>::VectorizePadOpUserPattern; 872 873 LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, 874 vector::TransferWriteOp xferOp) const override { 875 // TODO: support 0-d corner case. 876 if (xferOp.getTransferRank() == 0) 877 return failure(); 878 879 // Low padding must be static 0. 880 if (!padOp.hasZeroLowPad()) 881 return failure(); 882 // Pad value must be a constant. 883 auto padValue = padOp.getConstantPaddingValue(); 884 if (!padValue) 885 return failure(); 886 // TransferWriteOp result must be directly consumed by an ExtractSliceOp. 887 if (!xferOp->hasOneUse()) 888 return failure(); 889 auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin()); 890 if (!trimPadding) 891 return failure(); 892 // Only static zero offsets supported when trimming padding. 893 if (!trimPadding.hasZeroOffset()) 894 return failure(); 895 // trimPadding must remove the amount of padding that was added earlier. 896 if (!hasSameTensorSize(padOp.getSource(), trimPadding)) 897 return failure(); 898 899 // Insert the new TransferWriteOp at position of the old TransferWriteOp. 900 rewriter.setInsertionPoint(xferOp); 901 902 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 903 auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 904 xferOp, padOp.getSource().getType(), xferOp.getVector(), 905 padOp.getSource(), xferOp.getIndices(), xferOp.getPermutationMapAttr(), 906 xferOp.getMask(), rewriter.getBoolArrayAttr(inBounds)); 907 rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); 908 909 return success(); 910 } 911 912 /// Check if `beforePadding` and `afterTrimming` have the same tensor size, 913 /// i.e., same dimensions. 914 /// 915 /// Dimensions may be static, dynamic or mix of both. In case of dynamic 916 /// dimensions, this function tries to infer the (static) tensor size by 917 /// looking at the defining op and utilizing op-specific knowledge. 918 /// 919 /// This is a conservative analysis. In case equal tensor sizes cannot be 920 /// proven statically, this analysis returns `false` even though the tensor 921 /// sizes may turn out to be equal at runtime. 922 bool hasSameTensorSize(Value beforePadding, 923 tensor::ExtractSliceOp afterTrimming) const { 924 // If the input to tensor::PadOp is a CastOp, try with with both CastOp 925 // result and CastOp operand. 926 if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>()) 927 if (hasSameTensorSize(castOp.getSource(), afterTrimming)) 928 return true; 929 930 auto t1 = beforePadding.getType().dyn_cast<RankedTensorType>(); 931 auto t2 = afterTrimming.getType().dyn_cast<RankedTensorType>(); 932 // Only RankedTensorType supported. 933 if (!t1 || !t2) 934 return false; 935 // Rank of both values must be the same. 936 if (t1.getRank() != t2.getRank()) 937 return false; 938 939 // All static dimensions must be the same. Mixed cases (e.g., dimension 940 // static in `t1` but dynamic in `t2`) are not supported. 941 for (unsigned i = 0; i < t1.getRank(); ++i) { 942 if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) 943 return false; 944 if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) 945 return false; 946 } 947 948 // Nothing more to check if all dimensions are static. 949 if (t1.getNumDynamicDims() == 0) 950 return true; 951 952 // All dynamic sizes must be the same. The only supported case at the 953 // moment is when `beforePadding` is an ExtractSliceOp (or a cast 954 // thereof). 955 956 // Apart from CastOp, only ExtractSliceOp is supported. 957 auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>(); 958 if (!beforeSlice) 959 return false; 960 961 assert(static_cast<size_t>(t1.getRank()) == 962 beforeSlice.getMixedSizes().size()); 963 assert(static_cast<size_t>(t2.getRank()) == 964 afterTrimming.getMixedSizes().size()); 965 966 for (unsigned i = 0; i < t1.getRank(); ++i) { 967 // Skip static dimensions. 968 if (!t1.isDynamicDim(i)) 969 continue; 970 auto size1 = beforeSlice.getMixedSizes()[i]; 971 auto size2 = afterTrimming.getMixedSizes()[i]; 972 973 // Case 1: Same value or same constant int. 974 if (isEqualConstantIntOrValue(size1, size2)) 975 continue; 976 977 // Other cases: Take a deeper look at defining ops of values. 978 auto v1 = size1.dyn_cast<Value>(); 979 auto v2 = size2.dyn_cast<Value>(); 980 if (!v1 || !v2) 981 return false; 982 983 // Case 2: Both values are identical AffineMinOps. (Should not happen if 984 // CSE is run.) 985 auto minOp1 = v1.getDefiningOp<AffineMinOp>(); 986 auto minOp2 = v2.getDefiningOp<AffineMinOp>(); 987 if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() && 988 minOp1.operands() == minOp2.operands()) 989 continue; 990 991 // Add additional cases as needed. 992 } 993 994 // All tests passed. 995 return true; 996 } 997 }; 998 999 /// Rewrite use of tensor::PadOp result in InsertSliceOp. E.g.: 1000 /// ``` 1001 /// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32> 1002 /// %r = tensor.insert_slice %0 1003 /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] 1004 /// : tensor<17x5xf32> into tensor<?x?x17x5xf32> 1005 /// ``` 1006 /// is rewritten to: 1007 /// ``` 1008 /// %0 = vector.transfer_read %src[%c0, %c0], %padding 1009 /// : tensor<?x?xf32>, vector<17x5xf32> 1010 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] 1011 /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32> 1012 /// ``` 1013 /// 1014 /// This rewrite is possible if: 1015 /// - Low padding is static 0. 1016 /// - `padOp` result shape is static. 1017 /// - The entire padded tensor is inserted. 1018 /// (Implies that sizes of `insertOp` are all static.) 1019 /// - Only unit strides in `insertOp`. 1020 /// - Single, scalar padding value. 1021 /// - `padOp` result not used as destination. 1022 struct PadOpVectorizationWithInsertSlicePattern 1023 : public VectorizePadOpUserPattern<tensor::InsertSliceOp> { 1024 using VectorizePadOpUserPattern< 1025 tensor::InsertSliceOp>::VectorizePadOpUserPattern; 1026 1027 LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, 1028 tensor::InsertSliceOp insertOp) const override { 1029 // Low padding must be static 0. 1030 if (!padOp.hasZeroLowPad()) 1031 return failure(); 1032 // Only unit stride supported. 1033 if (!insertOp.hasUnitStride()) 1034 return failure(); 1035 // Pad value must be a constant. 1036 auto padValue = padOp.getConstantPaddingValue(); 1037 if (!padValue) 1038 return failure(); 1039 // Dynamic shapes not supported. 1040 if (!padOp.getResult().getType().cast<ShapedType>().hasStaticShape()) 1041 return failure(); 1042 // Pad result not used as destination. 1043 if (insertOp.getDest() == padOp.getResult()) 1044 return failure(); 1045 1046 auto vecType = VectorType::get(padOp.getType().getShape(), 1047 padOp.getType().getElementType()); 1048 unsigned vecRank = vecType.getRank(); 1049 unsigned tensorRank = insertOp.getType().getRank(); 1050 1051 // Check if sizes match: Insert the entire tensor into most minor dims. 1052 // (No permutations allowed.) 1053 SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1); 1054 expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); 1055 if (!llvm::all_of( 1056 llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { 1057 return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); 1058 })) 1059 return failure(); 1060 1061 // Insert the TransferReadOp and TransferWriteOp at the position of the 1062 // InsertSliceOp. 1063 rewriter.setInsertionPoint(insertOp); 1064 1065 // Generate TransferReadOp: Read entire source tensor and add high 1066 // padding. 1067 SmallVector<Value> readIndices( 1068 vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0)); 1069 auto read = rewriter.create<vector::TransferReadOp>( 1070 padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue); 1071 1072 // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at 1073 // specified offsets. Write is fully in-bounds because a InsertSliceOp's 1074 // source must fit into the destination at the specified offsets. 1075 auto writeIndices = 1076 ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); 1077 SmallVector<bool> inBounds(vecRank, true); 1078 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 1079 insertOp, read, insertOp.getDest(), writeIndices, 1080 ArrayRef<bool>{inBounds}); 1081 1082 return success(); 1083 } 1084 }; 1085 1086 void mlir::linalg::populatePadOpVectorizationPatterns( 1087 RewritePatternSet &patterns, PatternBenefit baseBenefit) { 1088 patterns.add<GenericPadOpVectorizationPattern>(patterns.getContext(), 1089 baseBenefit); 1090 // Try these specialized patterns first before resorting to the generic one. 1091 patterns.add<PadOpVectorizationWithTransferReadPattern, 1092 PadOpVectorizationWithTransferWritePattern, 1093 PadOpVectorizationWithInsertSlicePattern>( 1094 patterns.getContext(), baseBenefit.getBenefit() + 1); 1095 } 1096 1097 //----------------------------------------------------------------------------// 1098 // Forwarding patterns 1099 //----------------------------------------------------------------------------// 1100 1101 /// Check whether there is any interleaved use of any `values` between 1102 /// `firstOp` and `secondOp`. Conservatively return `true` if any op or value 1103 /// is in a different block. 1104 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 1105 ValueRange values) { 1106 if (firstOp->getBlock() != secondOp->getBlock() || 1107 !firstOp->isBeforeInBlock(secondOp)) { 1108 LDBG("interleavedUses precondition failed, firstOp: " 1109 << *firstOp << ", second op: " << *secondOp); 1110 return true; 1111 } 1112 for (auto v : values) { 1113 for (auto &u : v.getUses()) { 1114 Operation *owner = u.getOwner(); 1115 if (owner == firstOp || owner == secondOp) 1116 continue; 1117 // TODO: this is too conservative, use dominance info in the future. 1118 if (owner->getBlock() == firstOp->getBlock() && 1119 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 1120 continue; 1121 LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp 1122 << ", second op: " << *secondOp); 1123 return true; 1124 } 1125 } 1126 return false; 1127 } 1128 1129 /// Return the unique subview use of `v` if it is indeed unique, null 1130 /// otherwise. 1131 static memref::SubViewOp getSubViewUseIfUnique(Value v) { 1132 memref::SubViewOp subViewOp; 1133 for (auto &u : v.getUses()) { 1134 if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { 1135 if (subViewOp) 1136 return memref::SubViewOp(); 1137 subViewOp = newSubViewOp; 1138 } 1139 } 1140 return subViewOp; 1141 } 1142 1143 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1144 /// when available. 1145 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 1146 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 1147 1148 // TODO: support mask. 1149 if (xferOp.getMask()) 1150 return failure(); 1151 1152 // Transfer into `view`. 1153 Value viewOrAlloc = xferOp.getSource(); 1154 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1155 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1156 return failure(); 1157 1158 LDBG(viewOrAlloc); 1159 1160 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1161 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1162 if (!subViewOp) 1163 return failure(); 1164 Value subView = subViewOp.getResult(); 1165 LDBG("with subView " << subView); 1166 1167 // Find the copy into `subView` without interleaved uses. 1168 memref::CopyOp copyOp; 1169 for (auto &u : subView.getUses()) { 1170 if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) { 1171 assert(newCopyOp.target().getType().isa<MemRefType>()); 1172 if (newCopyOp.target() != subView) 1173 continue; 1174 LDBG("copy candidate " << *newCopyOp); 1175 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 1176 continue; 1177 copyOp = newCopyOp; 1178 break; 1179 } 1180 } 1181 if (!copyOp) 1182 return failure(); 1183 LDBG("with copy " << *copyOp); 1184 1185 // Find the fill into `viewOrAlloc` without interleaved uses before the 1186 // copy. 1187 FillOp maybeFillOp; 1188 for (auto &u : viewOrAlloc.getUses()) { 1189 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 1190 assert(newFillOp.output().getType().isa<MemRefType>()); 1191 if (newFillOp.output() != viewOrAlloc) 1192 continue; 1193 LDBG("fill candidate " << *newFillOp); 1194 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 1195 continue; 1196 maybeFillOp = newFillOp; 1197 break; 1198 } 1199 } 1200 // Ensure padding matches. 1201 if (maybeFillOp && xferOp.getPadding() != maybeFillOp.value()) 1202 return failure(); 1203 if (maybeFillOp) 1204 LDBG("with maybeFillOp " << *maybeFillOp); 1205 1206 // `in` is the subview that memref.copy reads. Replace it. 1207 Value in = copyOp.source(); 1208 1209 // memref.copy + linalg.fill can be used to create a padded local buffer. 1210 // The `masked` attribute is only valid on this padded buffer. 1211 // When forwarding to vector.transfer_read, the attribute must be reset 1212 // conservatively. 1213 Value res = rewriter.create<vector::TransferReadOp>( 1214 xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.getIndices(), 1215 xferOp.getPermutationMapAttr(), xferOp.getPadding(), xferOp.getMask(), 1216 // in_bounds is explicitly reset 1217 /*inBoundsAttr=*/ArrayAttr()); 1218 1219 if (maybeFillOp) 1220 rewriter.eraseOp(maybeFillOp); 1221 rewriter.eraseOp(copyOp); 1222 rewriter.replaceOp(xferOp, res); 1223 1224 return success(); 1225 } 1226 1227 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 1228 /// when available. 1229 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 1230 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 1231 // TODO: support mask. 1232 if (xferOp.getMask()) 1233 return failure(); 1234 1235 // Transfer into `viewOrAlloc`. 1236 Value viewOrAlloc = xferOp.getSource(); 1237 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 1238 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 1239 return failure(); 1240 1241 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 1242 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 1243 if (!subViewOp) 1244 return failure(); 1245 Value subView = subViewOp.getResult(); 1246 1247 // Find the copy from `subView` without interleaved uses. 1248 memref::CopyOp copyOp; 1249 for (auto &u : subViewOp.getResult().getUses()) { 1250 if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) { 1251 if (newCopyOp.source() != subView) 1252 continue; 1253 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 1254 continue; 1255 copyOp = newCopyOp; 1256 break; 1257 } 1258 } 1259 if (!copyOp) 1260 return failure(); 1261 1262 // `out` is the subview copied into that we replace. 1263 assert(copyOp.target().getType().isa<MemRefType>()); 1264 Value out = copyOp.target(); 1265 1266 // Forward vector.transfer into copy. 1267 // memref.copy + linalg.fill can be used to create a padded local buffer. 1268 // The `masked` attribute is only valid on this padded buffer. 1269 // When forwarding to vector.transfer_write, the attribute must be reset 1270 // conservatively. 1271 rewriter.create<vector::TransferWriteOp>( 1272 xferOp.getLoc(), xferOp.getVector(), out, xferOp.getIndices(), 1273 xferOp.getPermutationMapAttr(), xferOp.getMask(), 1274 // in_bounds is explicitly reset 1275 /*inBoundsAttr=*/ArrayAttr()); 1276 1277 rewriter.eraseOp(copyOp); 1278 rewriter.eraseOp(xferOp); 1279 1280 return success(); 1281 } 1282 1283 //===----------------------------------------------------------------------===// 1284 // Convolution vectorization patterns 1285 //===----------------------------------------------------------------------===// 1286 1287 template <int N> 1288 static void bindShapeDims(ShapedType shapedType) {} 1289 1290 template <int N, typename IntTy, typename... IntTy2> 1291 static void bindShapeDims(ShapedType shapedType, IntTy &val, IntTy2 &...vals) { 1292 val = shapedType.getShape()[N]; 1293 bindShapeDims<N + 1, IntTy2 &...>(shapedType, vals...); 1294 } 1295 1296 /// Bind a pack of int& to the leading dimensions of shapedType.getShape(). 1297 template <typename... IntTy> 1298 static void bindShapeDims(ShapedType shapedType, IntTy &...vals) { 1299 bindShapeDims<0>(shapedType, vals...); 1300 } 1301 1302 namespace { 1303 /// Generate a vector implementation for either: 1304 /// ``` 1305 /// Op def: ( n, w, c, kw, f ) 1306 /// Iters: ({Par(), Par(), Par(), Red(), Red()}) 1307 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} 1308 /// ``` 1309 /// kw is unrolled, w is unrolled iff dilationW > 1. 1310 /// 1311 /// or 1312 /// 1313 /// ``` 1314 /// Op def: ( n, w, c, kw ) 1315 /// Iters: ({Par(), Par(), Par(), Red()}) 1316 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} 1317 /// ``` 1318 /// kw is unrolled, w is unrolled iff dilationW > 1. 1319 struct Conv1DNwcGenerator : public StructuredGenerator<LinalgOp> { 1320 Conv1DNwcGenerator(OpBuilder &builder, LinalgOp linalgOp, int strideW, 1321 int dilationW) 1322 : StructuredGenerator<LinalgOp>(builder, linalgOp), strideW(strideW), 1323 dilationW(dilationW) { 1324 // Determine whether `linalgOp` can be generated with this generator 1325 if (linalgOp.getNumInputs() != 2 || linalgOp.getNumOutputs() != 1) 1326 return; 1327 lhsShaped = linalgOp.inputs()[0]; 1328 rhsShaped = linalgOp.inputs()[1]; 1329 resShaped = linalgOp.outputs()[0]; 1330 lhsShapedType = lhsShaped.getType().dyn_cast<ShapedType>(); 1331 rhsShapedType = rhsShaped.getType().dyn_cast<ShapedType>(); 1332 resShapedType = resShaped.getType().dyn_cast<ShapedType>(); 1333 if (!lhsShapedType || !rhsShapedType || !resShapedType) 1334 return; 1335 if (lhsShapedType.getRank() != 3 || 1336 (rhsShapedType.getRank() != 2 && rhsShapedType.getRank() != 3) || 1337 resShapedType.getRank() != 3) 1338 return; 1339 1340 // Check for reduction `add` preceded by `mul`. 1341 Operation *reduceOp = matchLinalgReduction(linalgOp.getOutputOperand(0)); 1342 if (!reduceOp) 1343 return; 1344 llvm::Optional<vector::CombiningKind> maybeKind; 1345 maybeKind = getCombinerOpKind(reduceOp); 1346 if (!maybeKind || *maybeKind != vector::CombiningKind::ADD) 1347 return; 1348 // Check for single `mul` predecessor. The `mul` operands must be block 1349 // arguments or extension of block arguments. 1350 Operation *mulOp = nullptr; 1351 for (Value operand : reduceOp->getOperands()) { 1352 if (operand.isa<BlockArgument>()) 1353 continue; 1354 if (mulOp) 1355 return; 1356 mulOp = operand.getDefiningOp(); 1357 if (!mulOp || !isa<arith::MulIOp, arith::MulFOp>(mulOp)) 1358 return; 1359 } 1360 if (!mulOp) 1361 return; 1362 for (Value operand : mulOp->getOperands()) { 1363 if (Operation *def = operand.getDefiningOp()) { 1364 if (!isa<arith::ExtFOp>(def)) 1365 return; 1366 operand = def->getOperand(0); 1367 } 1368 if (!operand.isa<BlockArgument>()) 1369 return; 1370 } 1371 // The op is now known to be valid. 1372 valid = true; 1373 } 1374 1375 /// Generate a vector implementation for: 1376 /// ``` 1377 /// Op def: ( n, w, c, kw, f ) 1378 /// Iters: ({Par(), Par(), Par(), Red(), Red()}) 1379 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} 1380 /// ``` 1381 /// kw is always unrolled. 1382 /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is 1383 /// > 1. 1384 FailureOr<Operation *> conv() { 1385 if (!valid) 1386 return failure(); 1387 1388 int64_t nSize, wSize, cSize, kwSize, fSize; 1389 // kernel{kw, c, f} 1390 bindShapeDims(rhsShapedType, kwSize, cSize, fSize); 1391 // out{n, w, f} 1392 bindShapeDims(resShapedType, nSize, wSize); 1393 1394 vector::TransferWriteOp write; 1395 Value zero = builder.create<arith::ConstantIndexOp>(loc, 0); 1396 1397 // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. 1398 // When strideW == 1, we can batch the contiguous loads and avoid 1399 // unrolling 1400 int64_t wSizeStep = strideW == 1 ? wSize : 1; 1401 1402 Type lhsEltType = lhsShapedType.getElementType(); 1403 Type rhsEltType = rhsShapedType.getElementType(); 1404 Type resEltType = resShapedType.getElementType(); 1405 VectorType lhsType = VectorType::get( 1406 {nSize, 1407 // iw = ow * sw + kw * dw - 1 1408 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) 1409 // Perform the proper inclusive -> exclusive -> inclusive. 1410 ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1, 1411 cSize}, 1412 lhsEltType); 1413 VectorType rhsType = VectorType::get({kwSize, cSize, fSize}, rhsEltType); 1414 VectorType resType = VectorType::get({nSize, wSize, fSize}, resEltType); 1415 1416 // Read lhs slice of size {w * strideW + kw * dilationW, c, f} @ [0, 0, 1417 // 0]. 1418 Value lhs = builder.create<vector::TransferReadOp>( 1419 loc, lhsType, lhsShaped, ValueRange{zero, zero, zero}); 1420 // Read rhs slice of size {kw, c, f} @ [0, 0, 0]. 1421 Value rhs = builder.create<vector::TransferReadOp>( 1422 loc, rhsType, rhsShaped, ValueRange{zero, zero, zero}); 1423 // Read res slice of size {n, w, f} @ [0, 0, 0]. 1424 Value res = builder.create<vector::TransferReadOp>( 1425 loc, resType, resShaped, ValueRange{zero, zero, zero}); 1426 1427 //===------------------------------------------------------------------===// 1428 // Begin vector-only rewrite part 1429 //===------------------------------------------------------------------===// 1430 // Unroll along kw and read slices of lhs and rhs. 1431 SmallVector<Value> lhsVals, rhsVals, resVals; 1432 // Extract lhs slice of size {n, wSizeStep, c} @ [0, sw * w + dw * kw, 0]. 1433 for (int64_t kw = 0; kw < kwSize; ++kw) { 1434 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1435 lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>( 1436 loc, lhs, 1437 /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0}, 1438 /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize}, 1439 /*strides=*/ArrayRef<int64_t>{1, 1, 1})); 1440 } 1441 } 1442 // Extract rhs slice of size {c, f} @ [kw]. 1443 for (int64_t kw = 0; kw < kwSize; ++kw) { 1444 rhsVals.push_back(builder.create<vector::ExtractOp>( 1445 loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw})); 1446 } 1447 // Extract res slice: {n, wSizeStep, f} @ [0, w, 0]. 1448 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1449 resVals.push_back(builder.create<vector::ExtractStridedSliceOp>( 1450 loc, res, 1451 /*offsets=*/ArrayRef<int64_t>{0, w, 0}, 1452 /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, fSize}, 1453 /*strides=*/ArrayRef<int64_t>{1, 1, 1})); 1454 } 1455 1456 auto linearIndex = [&](int64_t kw, int64_t w) { 1457 return kw * (wSize / wSizeStep) + w; 1458 }; 1459 1460 // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f} 1461 for (int64_t kw = 0; kw < kwSize; ++kw) { 1462 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1463 resVals[w] = conv1dSliceAsContraction( 1464 builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]); 1465 } 1466 } 1467 1468 // Write back res slice: {n, wSizeStep, f} @ [0, w, 0]. 1469 // This does not depend on kw. 1470 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1471 res = builder.create<vector::InsertStridedSliceOp>( 1472 loc, resVals[w], res, 1473 /*offsets=*/ArrayRef<int64_t>{0, w, 0}, 1474 /*strides=*/ArrayRef<int64_t>{1, 1, 1}); 1475 } 1476 //===------------------------------------------------------------------===// 1477 // End vector-only rewrite part 1478 //===------------------------------------------------------------------===// 1479 1480 // Write back res slice of size {n, w, f} @ [0, 0, 0]. 1481 return builder 1482 .create<vector::TransferWriteOp>(loc, res, resShaped, 1483 ValueRange{zero, zero, zero}) 1484 .getOperation(); 1485 } 1486 1487 // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f} 1488 Value conv1dSliceAsContraction(OpBuilder &b, Location loc, Value lhs, 1489 Value rhs, Value res) { 1490 StringRef par = Par().strRef, red = Red().strRef; 1491 AffineExpr n, w, f, c; 1492 bindDims(ctx, n, w, f, c); 1493 return builder.create<vector::ContractionOp>( 1494 loc, lhs, rhs, res, 1495 /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}}, 1496 /*iteratorTypes=*/ArrayRef<StringRef>{par, par, par, red}); 1497 } 1498 1499 /// Generate a vector implementation for: 1500 /// ``` 1501 /// Op def: ( n, w, c, kw) 1502 /// Iters: ({Par(), Par(), Par(), Red()}) 1503 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} 1504 /// ``` 1505 /// kw is always unrolled. 1506 /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is 1507 /// > 1. 1508 FailureOr<Operation *> depthwiseConv() { 1509 if (!valid) 1510 return failure(); 1511 1512 int64_t nSize, wSize, cSize, kwSize; 1513 // kernel{kw, c} 1514 bindShapeDims(rhsShapedType, kwSize, cSize); 1515 // out{n, w, c} 1516 bindShapeDims(resShapedType, nSize, wSize); 1517 1518 vector::TransferWriteOp write; 1519 Value zero = builder.create<arith::ConstantIndexOp>(loc, 0); 1520 1521 // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. 1522 // When strideW == 1, we can batch the contiguous loads and avoid 1523 // unrolling 1524 int64_t wSizeStep = strideW == 1 ? wSize : 1; 1525 1526 Type lhsEltType = lhsShapedType.getElementType(); 1527 Type rhsEltType = rhsShapedType.getElementType(); 1528 Type resEltType = resShapedType.getElementType(); 1529 VectorType lhsType = VectorType::get( 1530 {nSize, 1531 // iw = ow * sw + kw * dw - 1 1532 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) 1533 ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1, 1534 cSize}, 1535 lhsEltType); 1536 VectorType rhsType = VectorType::get({kwSize, cSize}, rhsEltType); 1537 VectorType resType = VectorType::get({nSize, wSize, cSize}, resEltType); 1538 1539 // Read lhs slice of size {n, w * strideW + kw * dilationW, c} @ [0, 0, 1540 // 0]. 1541 Value lhs = builder.create<vector::TransferReadOp>( 1542 loc, lhsType, lhsShaped, ValueRange{zero, zero, zero}); 1543 // Read rhs slice of size {kw, c} @ [0, 0]. 1544 Value rhs = builder.create<vector::TransferReadOp>(loc, rhsType, rhsShaped, 1545 ValueRange{zero, zero}); 1546 // Read res slice of size {n, w, c} @ [0, 0, 0]. 1547 Value res = builder.create<vector::TransferReadOp>( 1548 loc, resType, resShaped, ValueRange{zero, zero, zero}); 1549 1550 //===------------------------------------------------------------------===// 1551 // Begin vector-only rewrite part 1552 //===------------------------------------------------------------------===// 1553 // Unroll along kw and read slices of lhs and rhs. 1554 SmallVector<Value> lhsVals, rhsVals, resVals; 1555 // Extract lhs slice of size {n, wSizeStep, c} 1556 // @ [0, sw * w + dw * kw, 0]. 1557 for (int64_t kw = 0; kw < kwSize; ++kw) { 1558 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1559 lhsVals.push_back(builder.create<vector::ExtractStridedSliceOp>( 1560 loc, lhs, 1561 /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0}, 1562 /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize}, 1563 /*strides=*/ArrayRef<int64_t>{1, 1, 1})); 1564 } 1565 } 1566 // Extract rhs slice of size {c} @ [kw]. 1567 for (int64_t kw = 0; kw < kwSize; ++kw) { 1568 rhsVals.push_back(builder.create<vector::ExtractOp>( 1569 loc, rhs, /*offsets=*/ArrayRef<int64_t>{kw})); 1570 } 1571 // Extract res slice: {n, wSizeStep, c} @ [0, w, 0]. 1572 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1573 resVals.push_back(builder.create<vector::ExtractStridedSliceOp>( 1574 loc, res, 1575 /*offsets=*/ArrayRef<int64_t>{0, w, 0}, 1576 /*sizes=*/ArrayRef<int64_t>{nSize, wSizeStep, cSize}, 1577 /*strides=*/ArrayRef<int64_t>{1, 1, 1})); 1578 } 1579 1580 auto linearIndex = [&](int64_t kw, int64_t w) { 1581 return kw * (wSize / wSizeStep) + w; 1582 }; 1583 1584 // Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c} 1585 for (int64_t kw = 0; kw < kwSize; ++kw) { 1586 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1587 resVals[w] = depthwiseConv1dSliceAsFma( 1588 builder, loc, lhsVals[linearIndex(kw, w)], rhsVals[kw], resVals[w]); 1589 } 1590 } 1591 1592 // Write back res slice: {n, wSizeStep, c} @ [0, w, 0]. 1593 // This does not depend on kw. 1594 for (int64_t w = 0; w < wSize; w += wSizeStep) { 1595 res = builder.create<vector::InsertStridedSliceOp>( 1596 loc, resVals[w], res, 1597 /*offsets=*/ArrayRef<int64_t>{0, w, 0}, 1598 /*strides=*/ArrayRef<int64_t>{1, 1, 1}); 1599 } 1600 //===------------------------------------------------------------------===// 1601 // End vector-only rewrite part 1602 //===------------------------------------------------------------------===// 1603 1604 // Write back res slice of size {n, w, c} @ [0, 0, 0]. 1605 return builder 1606 .create<vector::TransferWriteOp>(loc, res, resShaped, 1607 ValueRange{zero, zero, zero}) 1608 .getOperation(); 1609 } 1610 1611 /// Lower lhs{n, w, c} * rhs{c} -> res{n, w, c} to fma. 1612 Value depthwiseConv1dSliceAsFma(OpBuilder &b, Location loc, Value lhs, 1613 Value rhs, Value res) { 1614 Value bcast = builder.create<vector::BroadcastOp>(loc, res.getType(), rhs); 1615 return b.create<vector::FMAOp>(loc, lhs, bcast, res); 1616 } 1617 1618 /// Entry point that transposes into the common form: 1619 /// {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} 1620 FailureOr<Operation *> generateConv() { 1621 AffineExpr n, w, f, kw, c; 1622 bindDims(ctx, n, w, f, kw, c); 1623 if (!iters({Par(), Par(), Par(), Red(), Red()})) 1624 return failure(); 1625 1626 // No transposition needed. 1627 if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, 1628 /*rhsIndex*/ {kw, c, f}, 1629 /*resIndex*/ {n, w, f}})) 1630 return conv(); 1631 return failure(); 1632 } 1633 1634 /// Entry point that transposes into the common form: 1635 /// {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} 1636 FailureOr<Operation *> generateDilatedConv() { 1637 AffineExpr n, w, c, kw; 1638 bindDims(ctx, n, w, c, kw); 1639 if (!iters({Par(), Par(), Par(), Red()})) 1640 return failure(); 1641 1642 // No transposition needed. 1643 if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, 1644 /*rhsIndex*/ {kw, c}, 1645 /*resIndex*/ {n, w, c}})) 1646 return depthwiseConv(); 1647 return failure(); 1648 } 1649 1650 private: 1651 bool valid = false; 1652 int strideW, dilationW; 1653 Value lhsShaped, rhsShaped, resShaped; 1654 ShapedType lhsShapedType, rhsShapedType, resShapedType; 1655 }; 1656 } // namespace 1657 1658 /// Helper function to vectorize a LinalgOp with convolution semantics. 1659 // TODO: extend the generic vectorization to support windows and drop this. 1660 static FailureOr<Operation *> vectorizeConvolution(OpBuilder &b, LinalgOp op) { 1661 // The ConvolutionOpInterface gives us guarantees of existence for 1662 // strides/dilations. However, we do not need to rely on those, we can simply 1663 // use them if present, otherwise use the default and let the generic conv. 1664 // matcher in the ConvGenerator succeed or fail. 1665 auto strides = op->getAttrOfType<DenseIntElementsAttr>("strides"); 1666 auto dilations = op->getAttrOfType<DenseIntElementsAttr>("dilations"); 1667 auto stride = strides ? *strides.getValues<uint64_t>().begin() : 1; 1668 auto dilation = dilations ? *dilations.getValues<uint64_t>().begin() : 1; 1669 Conv1DNwcGenerator e(b, op, stride, dilation); 1670 auto res = e.generateConv(); 1671 if (succeeded(res)) 1672 return res; 1673 return e.generateDilatedConv(); 1674 } 1675 1676 struct VectorizeConvolution : public OpInterfaceRewritePattern<LinalgOp> { 1677 using OpInterfaceRewritePattern::OpInterfaceRewritePattern; 1678 1679 LogicalResult matchAndRewrite(LinalgOp op, 1680 PatternRewriter &rewriter) const override { 1681 FailureOr<Operation *> resultOrFail = vectorizeConvolution(rewriter, op); 1682 if (failed(resultOrFail)) 1683 return failure(); 1684 Operation *newOp = *resultOrFail; 1685 if (newOp->getNumResults() == 0) { 1686 rewriter.eraseOp(op.getOperation()); 1687 return success(); 1688 } 1689 assert(newOp->getNumResults() == 1 && "expected single result"); 1690 rewriter.replaceOp(op.getOperation(), newOp->getResult(0)); 1691 return success(); 1692 } 1693 }; 1694 1695 void mlir::linalg::populateConvolutionVectorizationPatterns( 1696 RewritePatternSet &patterns, PatternBenefit benefit) { 1697 patterns.add<VectorizeConvolution>(patterns.getContext(), benefit); 1698 } 1699