1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Vectorization transformations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Analysis/SliceAnalysis.h"
14 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
15 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
16 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
17 #include "mlir/Dialect/Linalg/Utils/Utils.h"
18 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
19 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
20 #include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
21 #include "mlir/Dialect/Vector/VectorOps.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/Matchers.h"
24 #include "mlir/IR/PatternMatch.h"
25 #include "mlir/Pass/Pass.h"
26 #include "mlir/Support/LLVM.h"
27 #include "mlir/Transforms/RegionUtils.h"
28 #include "llvm/ADT/ScopeExit.h"
29 #include "llvm/ADT/TypeSwitch.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <type_traits>
33 
34 using namespace mlir;
35 using namespace mlir::edsc;
36 using namespace mlir::edsc::intrinsics;
37 using namespace mlir::linalg;
38 
39 using llvm::dbgs;
40 
41 #define DEBUG_TYPE "linalg-vectorization"
42 
43 /// Return the unique instance of OpType in `block` if it is indeed unique.
44 /// Return null if none or more than 1 instances exist.
45 template <typename OpType>
46 static OpType getSingleOpOfType(Block &block) {
47   OpType res;
48   block.walk([&](OpType op) {
49     if (res) {
50       res = nullptr;
51       return WalkResult::interrupt();
52     }
53     res = op;
54     return WalkResult::advance();
55   });
56   return res;
57 }
58 
59 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a
60 /// projectedPermutation, compress the unused dimensions to serve as a
61 /// permutation_map for a vector transfer operation.
62 /// For example, given a linalg op such as:
63 ///
64 /// ```
65 ///   %0 = linalg.generic {
66 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>,
67 ///        indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)>
68 ///      }
69 ///     ins(%0 : tensor<2x3x4xf32>)
70 ///    outs(%1 : tensor<5x6xf32>)
71 /// ```
72 ///
73 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine
74 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second
75 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`.
76 static AffineMap reindexIndexingMap(AffineMap map) {
77   assert(map.isProjectedPermutation() && "expected projected permutation");
78   auto res = compressUnusedDims(map);
79   assert(res.getNumDims() == res.getNumResults() &&
80          "expected reindexed map with same number of dims and results");
81   return res;
82 }
83 
84 /// Helper data structure to represent the result of vectorization.
85 /// In certain specific cases, like terminators, we do not want to propagate/
86 enum VectorizationStatus {
87   /// Op failed to vectorize.
88   Failure = 0,
89   /// Op vectorized and custom function took care of replacement logic
90   NoReplace,
91   /// Op vectorized into a new Op whose results will replace original Op's
92   /// results.
93   NewOp
94   // TODO: support values if Op vectorized to Many-Ops whose results we need to
95   // aggregate for replacement.
96 };
97 struct VectorizationResult {
98   /// Return status from vectorizing the current op.
99   enum VectorizationStatus status = VectorizationStatus::Failure;
100   /// New vectorized operation to replace the current op.
101   /// Replacement behavior is specified by `status`.
102   Operation *newOp;
103 };
104 
105 /// Return a vector type of the same shape and element type as the (assumed)
106 /// ShapedType of `v`.
107 static VectorType extractVectorTypeFromShapedValue(Value v) {
108   auto st = v.getType().cast<ShapedType>();
109   if (st.isa<MemRefType>() && st.getShape().empty())
110     return VectorType();
111   return VectorType::get(st.getShape(), st.getElementType());
112 }
113 
114 /// Given an `outputOperand` of a LinalgOp, compute the intersection of the
115 /// forward slice starting from `outputOperand` and the backward slice
116 /// starting from the corresponding linalg.yield operand.
117 /// This intersection is assumed to have a single binary operation that is
118 /// the reduction operation. Multiple reduction operations would impose an
119 /// ordering between reduction dimensions and is currently unsupported in
120 /// Linalg. This limitation is motivated by the fact that e.g.
121 /// min(max(X)) != max(min(X))
122 // TODO: use in LinalgOp verification, there is a circular dependency atm.
123 static Operation *getSingleBinaryOpAssumedReduction(OpOperand &outputOperand) {
124   auto linalgOp = cast<LinalgOp>(outputOperand.getOwner());
125   auto yieldOp = cast<YieldOp>(linalgOp->getRegion(0).front().getTerminator());
126   unsigned yieldNum =
127       outputOperand.getOperandNumber() - linalgOp.getNumInputs();
128   llvm::SetVector<Operation *> backwardSlice, forwardSlice;
129   BlockArgument bbArg = linalgOp->getRegion(0).front().getArgument(
130       outputOperand.getOperandNumber());
131   Value yieldVal = yieldOp->getOperand(yieldNum);
132   getBackwardSlice(yieldVal, &backwardSlice, [&](Operation *op) {
133     return op->getParentOp() == linalgOp;
134   });
135   backwardSlice.insert(yieldVal.getDefiningOp());
136   getForwardSlice(bbArg, &forwardSlice,
137                   [&](Operation *op) { return op->getParentOp() == linalgOp; });
138   // Search for the (assumed unique) elementwiseMappable op at the intersection
139   // of forward and backward slices.
140   Operation *reductionOp = nullptr;
141   for (Operation *op : llvm::reverse(backwardSlice)) {
142     if (!forwardSlice.contains(op))
143       continue;
144     if (OpTrait::hasElementwiseMappableTraits(op)) {
145       if (reductionOp) {
146         // Reduction detection fails: found more than 1 elementwise-mappable op.
147         return nullptr;
148       }
149       reductionOp = op;
150     }
151   }
152   // TODO: also assert no other subsequent ops break the reduction.
153   return reductionOp;
154 }
155 
156 /// If `value` of assumed VectorType has a shape different than `shape`, try to
157 /// build and return a new vector.broadcast to `shape`.
158 /// Otherwise, just return `value`.
159 // TODO: this is best effort atm and there is currently no guarantee of
160 // correctness for the broadcast semantics.
161 static Value broadcastIfNeeded(OpBuilder &builder, Value value,
162                                ArrayRef<int64_t> shape) {
163   unsigned numDimsGtOne = std::count_if(shape.begin(), shape.end(),
164                                         [](int64_t val) { return val > 1; });
165   auto vecType = value.getType().dyn_cast<VectorType>();
166   if (shape.empty() ||
167       (vecType != nullptr &&
168        (vecType.getShape() == shape || vecType.getRank() > numDimsGtOne)))
169     return value;
170   auto newVecType = VectorType::get(shape, vecType ? vecType.getElementType()
171                                                    : value.getType());
172   return builder.create<vector::BroadcastOp>(
173       builder.getInsertionPoint()->getLoc(), newVecType, value);
174 }
175 
176 static llvm::Optional<vector::CombiningKind>
177 getKindForOp(Operation *reductionOp) {
178   if (!reductionOp)
179     return llvm::None;
180   return llvm::TypeSwitch<Operation *, llvm::Optional<vector::CombiningKind>>(
181              reductionOp)
182       .Case<AddIOp, AddFOp>([&](auto op) {
183         return llvm::Optional<vector::CombiningKind>{
184             vector::CombiningKind::ADD};
185       })
186       .Default([&](auto op) { return llvm::None; });
187 }
188 
189 /// If value of assumed VectorType has a shape different than `shape`, build and
190 /// return a new vector.broadcast to `shape`.
191 /// Otherwise, just return value.
192 static Value reduceIfNeeded(OpBuilder &builder, VectorType targetVectorType,
193                             Value value, OpOperand &outputOperand) {
194   assert(targetVectorType.getShape() ==
195          outputOperand.get().getType().cast<ShapedType>().getShape());
196   auto vecType = value.getType().dyn_cast<VectorType>();
197   if (!vecType || vecType.getShape() == targetVectorType.getShape())
198     return value;
199   // At this point, we know we need to reduce. Detect the reduction operator.
200   // TODO: Use the generic reduction detection util.
201   Operation *reductionOp = getSingleBinaryOpAssumedReduction(outputOperand);
202   auto linalgOp = cast<LinalgOp>(outputOperand.getOwner());
203   unsigned pos = 0;
204   MLIRContext *ctx = builder.getContext();
205   SmallVector<AffineExpr> exprs;
206   for (auto s : linalgOp.iterator_types())
207     if (isParallelIterator(s))
208       exprs.push_back(getAffineDimExpr(pos++, ctx));
209   auto loc = value.getLoc();
210   // TODO: reuse common CombiningKing logic and support more than add.
211   auto maybeKind = getKindForOp(reductionOp);
212   assert(maybeKind && "Failed precondition: could not get reduction kind");
213   unsigned idx = 0;
214   SmallVector<bool> reductionMask(linalgOp.iterator_types().size(), false);
215   for (auto attr : linalgOp.iterator_types()) {
216     if (isReductionIteratorType(attr))
217       reductionMask[idx] = true;
218     ++idx;
219   }
220   return builder.create<vector::MultiDimReductionOp>(loc, value, reductionMask,
221                                                      *maybeKind);
222 }
223 
224 /// Build a vector.transfer_read from `source` at indices set to all `0`.
225 /// If source has rank zero, build an memref.load.
226 /// Return the produced value.
227 static Value buildVectorRead(OpBuilder &builder, Value source,
228                              VectorType vectorType, AffineMap map) {
229   edsc::ScopedContext scope(builder);
230   auto shapedType = source.getType().cast<ShapedType>();
231   SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0));
232   return vector_transfer_read(vectorType, source, indices, map);
233 }
234 
235 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set
236 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp
237 /// currently being vectorized. If `dest` has null rank, build an memref.store.
238 /// Return the produced value or null if no value is produced.
239 static Value buildVectorWrite(OpBuilder &builder, Value value,
240                               OpOperand &outputOperand) {
241   edsc::ScopedContext scope(builder);
242   Operation *write;
243   auto shapedType = outputOperand.get().getType().cast<ShapedType>();
244   if (VectorType vectorType =
245           extractVectorTypeFromShapedValue(outputOperand.get())) {
246     auto linalgOp = cast<LinalgOp>(outputOperand.getOwner());
247     AffineMap map = reindexIndexingMap(
248         linalgOp.getIndexingMap(outputOperand.getOperandNumber()));
249     SmallVector<Value> indices(shapedType.getRank(), std_constant_index(0));
250     value = broadcastIfNeeded(builder, value, vectorType.getShape());
251     value = reduceIfNeeded(builder, vectorType, value, outputOperand);
252     write = vector_transfer_write(value, outputOperand.get(), indices, map);
253   } else {
254     write = memref_store(value, outputOperand.get());
255   }
256   LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorized op: " << *write);
257   if (!write->getResults().empty())
258     return write->getResult(0);
259   return Value();
260 }
261 
262 // Custom vectorization function type. Produce a vector form of Operation*
263 // assuming all its vectorized operands are already in the BlockAndValueMapping.
264 // Return nullptr if the Operation cannot be vectorized.
265 using CustomVectorizationHook = std::function<VectorizationResult(
266     Operation *, const BlockAndValueMapping &)>;
267 
268 /// Helper function to vectorize the terminator of a `linalgOp`. New result
269 /// vector values are appended to `newResults`. Return
270 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it
271 /// should not try to map produced operations and instead return the results
272 /// using the `newResults` vector making them available to the
273 /// vectorization algorithm for RAUW. This function is meant to be used as a
274 /// CustomVectorizationHook.
275 static VectorizationResult
276 vectorizeLinalgYield(OpBuilder &builder, Operation *op,
277                      const BlockAndValueMapping &bvm, LinalgOp linalgOp,
278                      SmallVectorImpl<Value> &newResults) {
279   auto yieldOp = dyn_cast<linalg::YieldOp>(op);
280   if (!yieldOp)
281     return VectorizationResult{VectorizationStatus::Failure, nullptr};
282   for (auto outputs : llvm::enumerate(yieldOp.values())) {
283     // TODO: Scan for an opportunity for reuse.
284     // TODO: use a map.
285     Value vectorValue = bvm.lookup(outputs.value());
286     Value newResult = buildVectorWrite(
287         builder, vectorValue, linalgOp.getOutputOpOperands()[outputs.index()]);
288     if (newResult)
289       newResults.push_back(newResult);
290   }
291   return VectorizationResult{VectorizationStatus::NoReplace, nullptr};
292 }
293 
294 /// Helper function to vectorize the index operations of a `linalgOp`. Return
295 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it
296 /// should map the produced operations. This function is meant to be used as a
297 /// CustomVectorizationHook.
298 static VectorizationResult
299 vectorizeLinalgIndex(OpBuilder &builder, Operation *op, LinalgOp linalgOp) {
300   IndexOp indexOp = dyn_cast<linalg::IndexOp>(op);
301   if (!indexOp)
302     return VectorizationResult{VectorizationStatus::Failure, nullptr};
303   auto loc = indexOp.getLoc();
304   // Compute the static loop sizes of the index op.
305   auto targetShape = linalgOp.computeStaticLoopSizes();
306   // Compute a one-dimensional index vector for the index op dimension.
307   SmallVector<int64_t> constantSeq(
308       llvm::seq<int64_t>(0, targetShape[indexOp.dim()]));
309   ConstantOp constantOp =
310       builder.create<ConstantOp>(loc, builder.getIndexVectorAttr(constantSeq));
311   // Return the one-dimensional index vector if it lives in the trailing
312   // dimension of the iteration space since the vectorization algorithm in this
313   // case can handle the broadcast.
314   if (indexOp.dim() == targetShape.size() - 1)
315     return VectorizationResult{VectorizationStatus::NewOp, constantOp};
316   // Otherwise permute the targetShape to move the index dimension last,
317   // broadcast the one-dimensional index vector to the permuted shape, and
318   // finally transpose the broadcasted index vector to undo the permutation.
319   std::swap(targetShape[indexOp.dim()], targetShape.back());
320   auto broadCastOp = builder.create<vector::BroadcastOp>(
321       loc, VectorType::get(targetShape, builder.getIndexType()), constantOp);
322   SmallVector<int64_t> transposition(
323       llvm::seq<int64_t>(0, linalgOp.getNumLoops()));
324   std::swap(transposition.back(), transposition[indexOp.dim()]);
325   auto transposeOp =
326       builder.create<vector::TransposeOp>(loc, broadCastOp, transposition);
327   return VectorizationResult{VectorizationStatus::NewOp, transposeOp};
328 }
329 
330 /// Generic vectorization for a single operation `op`, given already vectorized
331 /// operands carried by `bvm`. Vectorization occurs as follows:
332 ///   1. Try to apply any of the `customVectorizationHooks` and return its
333 ///   result on success.
334 ///   2. Clone any constant in the current scope without vectorization: each
335 ///   consumer of the constant will later determine the shape to which the
336 ///   constant needs to be broadcast to.
337 ///   3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose
338 ///   of the `customVectorizationHooks` to cover such cases.
339 ///   4. Clone `op` in vector form to a vector of shape prescribed by the first
340 ///   operand of maximal rank. Other operands have smaller rank and are
341 ///   broadcast accordingly. It is assumed this broadcast is always legal,
342 ///   otherwise, it means one of the `customVectorizationHooks` is incorrect.
343 ///
344 /// This function assumes all operands of `op` have been vectorized and are in
345 /// the `bvm` mapping. As a consequence, this function is meant to be called on
346 /// a topologically-sorted list of ops.
347 /// This function does not update `bvm` but returns a VectorizationStatus that
348 /// instructs the caller what `bvm` update needs to occur.
349 static VectorizationResult
350 vectorizeOneOp(OpBuilder &builder, Operation *op,
351                const BlockAndValueMapping &bvm,
352                ArrayRef<CustomVectorizationHook> customVectorizationHooks) {
353   LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: vectorize op " << *op);
354 
355   // 1. Try to apply any CustomVectorizationHook.
356   if (!customVectorizationHooks.empty()) {
357     for (auto &customFunc : customVectorizationHooks) {
358       VectorizationResult result = customFunc(op, bvm);
359       if (result.status == VectorizationStatus::Failure)
360         continue;
361       return result;
362     }
363   }
364 
365   // 2. Constant ops don't get vectorized but rather broadcasted at their users.
366   // Clone so that the constant is not confined to the linalgOp block .
367   if (isa<ConstantOp>(op))
368     return VectorizationResult{VectorizationStatus::NewOp, builder.clone(*op)};
369 
370   // 3. Only ElementwiseMappable are allowed in the generic vectorization.
371   if (!OpTrait::hasElementwiseMappableTraits(op))
372     return VectorizationResult{VectorizationStatus::Failure, nullptr};
373 
374   // 4. Generic vectorization path for ElementwiseMappable ops.
375   //   a. first get the first max ranked shape.
376   SmallVector<int64_t, 4> firstMaxRankedShape;
377   for (Value operand : op->getOperands()) {
378     auto vt = bvm.lookup(operand).getType().dyn_cast<VectorType>();
379     if (vt && firstMaxRankedShape.size() < vt.getShape().size())
380       firstMaxRankedShape.assign(vt.getShape().begin(), vt.getShape().end());
381   }
382   //   b. broadcast each op if needed.
383   auto vectorizedOperands = llvm::map_range(op->getOperands(), [&](Value v) {
384     return firstMaxRankedShape.empty()
385                ? bvm.lookup(v)
386                : broadcastIfNeeded(builder, bvm.lookup(v), firstMaxRankedShape);
387   });
388   //   c. for elementwise, the result is the vector with the firstMaxRankedShape
389   auto returnTypes = llvm::map_range(op->getResultTypes(), [&](Type t) {
390     return firstMaxRankedShape.empty()
391                ? t
392                : VectorType::get(firstMaxRankedShape, t);
393   });
394 
395   // Build and return the new op.
396   OperationState state(op->getLoc(), op->getName());
397   state.addAttributes(op->getAttrs());
398   state.addOperands(llvm::to_vector<4>(vectorizedOperands));
399   state.addTypes(llvm::to_vector<4>(returnTypes));
400   return VectorizationResult{VectorizationStatus::NewOp,
401                              builder.createOperation(state)};
402 }
403 
404 /// Detect whether `r` has only ConstantOp, ElementwiseMappable and YieldOp.
405 static bool hasOnlyScalarElementwiseOp(Region &r) {
406   if (!llvm::hasSingleElement(r))
407     return false;
408   for (Operation &op : r.front()) {
409     if (!(isa<ConstantOp, linalg::YieldOp, linalg::IndexOp>(op) ||
410           OpTrait::hasElementwiseMappableTraits(&op)) ||
411         llvm::any_of(op.getResultTypes(),
412                      [](Type type) { return !type.isIntOrIndexOrFloat(); }))
413       return false;
414   }
415   return true;
416 }
417 
418 // Return true if the op is an element-wise linalg op.
419 static bool isElementwise(Operation *op) {
420   auto linalgOp = dyn_cast<linalg::LinalgOp>(op);
421   if (!linalgOp)
422     return false;
423   if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops())
424     return false;
425   // TODO: relax the restrictions on indexing map.
426   for (unsigned i = 0, e = linalgOp.getNumOutputs(); i < e; i++) {
427     if (!linalgOp.getOutputIndexingMap(i).isIdentity())
428       return false;
429   }
430   if (linalgOp->getNumRegions() != 1)
431     return false;
432   return hasOnlyScalarElementwiseOp(linalgOp->getRegion(0));
433 }
434 
435 /// Generic vectorization function that rewrites the body of a `linalgOp` into
436 /// vector form. Generic vectorization proceeds as follows:
437 ///   1. Verify the `linalgOp` has one non-empty region.
438 ///   2. Values defined above the region are mapped to themselves and will be
439 ///   broadcasted on a per-need basis by their consumers.
440 ///   3. Each region argument is vectorized into a vector.transfer_read (or 0-d
441 ///   load).
442 ///   TODO: Reuse opportunities for RAR dependencies.
443 ///   4a. Register CustomVectorizationHook for YieldOp to capture the results.
444 ///   4b. Register CustomVectorizationHook for IndexOp to access the iteration
445 ///   indices.
446 ///   5. Iteratively call vectorizeOneOp on the region operations.
447 ///
448 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is
449 /// performed to the maximal common vector size implied by the `linalgOp`
450 /// iteration space. This eager broadcasting is introduced in the
451 /// permutation_map of the vector.transfer_read operations. The eager
452 /// broadcasting makes it trivial to detrmine where broadcast, transposes and
453 /// reductions should occur, without any bookkeeping. The tradeoff is that, in
454 /// the absence of good canonicalizations, the amount of work increases.
455 /// This is not deemed a problem as we expect canonicalizations and foldings to
456 /// aggressively clean up the useless work.
457 LogicalResult vectorizeAsLinalgGeneric(
458     OpBuilder &builder, LinalgOp linalgOp, SmallVectorImpl<Value> &newResults,
459     bool broadcastToMaximalCommonShape = false,
460     ArrayRef<CustomVectorizationHook> customVectorizationHooks = {}) {
461   // 1. Fail to vectorize if the operation does not have one non-empty region.
462   if (linalgOp->getNumRegions() != 1 || linalgOp->getRegion(0).empty())
463     return failure();
464   auto &block = linalgOp->getRegion(0).front();
465 
466   // 2. Values defined above the region can only be broadcast for now. Make them
467   // map to themselves.
468   BlockAndValueMapping bvm;
469   SetVector<Value> valuesSet;
470   mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet);
471   bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef());
472 
473   if (linalgOp.getNumOutputs() == 0)
474     return failure();
475 
476   // TODO: the common vector shape is equal to the static loop sizes only when
477   // all indexing maps are projected permutations. For convs and stencils the
478   // logic will need to evolve.
479   SmallVector<int64_t> commonVectorShape = linalgOp.computeStaticLoopSizes();
480 
481   // 3. Turn all BBArgs into vector.transfer_read / load.
482   SmallVector<AffineMap> indexings;
483   for (auto bbarg : block.getArguments()) {
484     Value shapedArg = linalgOp.getShapedOperand(bbarg.getArgNumber());
485     ShapedType shapedType = shapedArg.getType().cast<ShapedType>();
486     // TODO: 0-d vectors.
487     if (shapedType.getShape().empty()) {
488       Value loaded =
489           builder.create<memref::LoadOp>(linalgOp.getLoc(), shapedArg);
490       LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg("
491                         << bbarg.getArgNumber() << "): " << loaded);
492       bvm.map(bbarg, loaded);
493       bvm.map(shapedArg, loaded);
494       continue;
495     }
496     AffineMap map;
497     VectorType vectorType;
498     if (broadcastToMaximalCommonShape) {
499       map = inverseAndBroadcastProjectedPermuation(
500           linalgOp.getIndexingMap(bbarg.getArgNumber()));
501       vectorType =
502           VectorType::get(commonVectorShape, shapedType.getElementType());
503     } else {
504       map = inversePermutation(
505           reindexIndexingMap(linalgOp.getIndexingMap(bbarg.getArgNumber())));
506       vectorType = VectorType::get(map.compose(shapedType.getShape()),
507                                    shapedType.getElementType());
508     }
509     Value vectorRead = buildVectorRead(builder, shapedArg, vectorType, map);
510     LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vectorized bbarg("
511                       << bbarg.getArgNumber() << "): " << vectorRead);
512     bvm.map(bbarg, vectorRead);
513     bvm.map(shapedArg, vectorRead);
514   }
515 
516   auto hooks = llvm::to_vector<4>(customVectorizationHooks);
517   // 4a. Register CustomVectorizationHook for yieldOp.
518   CustomVectorizationHook vectorizeYield =
519       [&](Operation *op,
520           const BlockAndValueMapping &bvm) -> VectorizationResult {
521     return vectorizeLinalgYield(builder, op, bvm, linalgOp, newResults);
522   };
523   hooks.push_back(vectorizeYield);
524 
525   // 4b. Register CustomVectorizationHook for indexOp.
526   CustomVectorizationHook vectorizeIndex =
527       [&](Operation *op,
528           const BlockAndValueMapping &bvm) -> VectorizationResult {
529     return vectorizeLinalgIndex(builder, op, linalgOp);
530   };
531   hooks.push_back(vectorizeIndex);
532 
533   // 5. Iteratively call `vectorizeOneOp` to each op in the slice.
534   for (Operation &op : block.getOperations()) {
535     VectorizationResult result = vectorizeOneOp(builder, &op, bvm, hooks);
536     if (result.status == VectorizationStatus::Failure) {
537       LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: failed to vectorize: " << op);
538       return failure();
539     }
540     if (result.status == VectorizationStatus::NewOp) {
541       LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: new vector op: "
542                         << *result.newOp;);
543       bvm.map(op.getResults(), result.newOp->getResults());
544     }
545   }
546 
547   return success();
548 }
549 
550 static LogicalResult vectorizeContraction(OpBuilder &builder, LinalgOp linalgOp,
551                                           SmallVectorImpl<Value> &newResults) {
552   assert(isaContractionOpInterface(linalgOp) &&
553          "expected vectorizeContraction preconditions to be met");
554   Location loc = linalgOp.getLoc();
555   // Vectorize other ops as vector contraction.
556   // TODO: interface.
557   LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: "
558                     << "Rewrite linalg op as vector.contract: ";
559              linalgOp.dump());
560   // Special function that describes how to vectorize the multiplication op in a
561   // linalg contraction.
562   CustomVectorizationHook vectorizeContraction =
563       [&](Operation *op,
564           const BlockAndValueMapping &bvm) -> VectorizationResult {
565     if (!isa<MulIOp, MulFOp>(op))
566       return VectorizationResult{VectorizationStatus::Failure, nullptr};
567     auto outShape = linalgOp.getOutputShapedType(0).getShape();
568     auto vType = outShape.empty()
569                      ? op->getResult(0).getType()
570                      : VectorType::get(outShape, op->getResult(0).getType());
571     auto zero =
572         builder.create<ConstantOp>(loc, vType, builder.getZeroAttr(vType));
573     // Indexing maps at the time of vector.transfer_read are adjusted to order
574     // vector dimensions in the same order as the canonical linalg op iteration
575     // space order.
576     // The indexings for the contraction therefore need to be adjusted.
577     // TODO: consider dropping contraction special casing altogether, this will
578     // require more advanced canonicalizations involving vector.multi_reduction
579     // that are not yet available.
580     SmallVector<AffineMap> indexingMaps{
581         inversePermutation(reindexIndexingMap(linalgOp.getIndexingMap(0)))
582             .compose(linalgOp.getIndexingMap(0)),
583         inversePermutation(reindexIndexingMap(linalgOp.getIndexingMap(1)))
584             .compose(linalgOp.getIndexingMap(1)),
585         inversePermutation(reindexIndexingMap(linalgOp.getIndexingMap(2)))
586             .compose(linalgOp.getIndexingMap(2))};
587     Operation *contract = builder.create<vector::ContractionOp>(
588         loc, bvm.lookup(op->getOperand(0)), bvm.lookup(op->getOperand(1)), zero,
589         builder.getAffineMapArrayAttr(indexingMaps), linalgOp.iterator_types());
590     return VectorizationResult{VectorizationStatus::NewOp, contract};
591   };
592   return vectorizeAsLinalgGeneric(builder, linalgOp, newResults,
593                                   /*broadcastToMaximalCommonShape=*/false,
594                                   {vectorizeContraction});
595 }
596 
597 static bool allIndexingsAreProjectedPermutation(LinalgOp op) {
598   return llvm::all_of(op.getIndexingMaps(),
599                       [](AffineMap m) { return m.isProjectedPermutation(); });
600 }
601 
602 // TODO: probably need some extra checks for reduction followed by consumer
603 // ops that may not commute (e.g. linear reduction + non-linear instructions).
604 static LogicalResult reductionPreconditions(LinalgOp op) {
605   if (llvm::none_of(op.iterator_types(), isReductionIteratorType))
606     return failure();
607   for (auto &operand : op.getOutputOpOperands()) {
608     Operation *reductionOp = getSingleBinaryOpAssumedReduction(operand);
609     if (!getKindForOp(reductionOp))
610       return failure();
611   }
612   return success();
613 }
614 
615 LogicalResult mlir::linalg::vectorizeLinalgOpPrecondition(Operation *op) {
616   auto linalgOp = cast<linalg::LinalgOp>(op);
617   // All types must be static shape to go to vector.
618   for (Value operand : linalgOp.getShapedOperands())
619     if (!operand.getType().cast<ShapedType>().hasStaticShape())
620       return failure();
621   for (Type outputTensorType : linalgOp.getOutputTensorTypes())
622     if (!outputTensorType.cast<ShapedType>().hasStaticShape())
623       return failure();
624   if (isElementwise(op))
625     return success();
626   if (isaContractionOpInterface(linalgOp))
627     return success();
628   // TODO: the common vector shape is equal to the static loop sizes only when
629   // all indexing maps are projected permutations. For convs and stencils the
630   // logic will need to evolve.
631   if (allIndexingsAreProjectedPermutation(linalgOp) &&
632       succeeded(reductionPreconditions(linalgOp)))
633     return success();
634   return failure();
635 }
636 
637 LogicalResult
638 mlir::linalg::vectorizeLinalgOp(OpBuilder &builder, Operation *op,
639                                 SmallVectorImpl<Value> &newResults) {
640   if (failed(vectorizeLinalgOpPrecondition(op)))
641     return failure();
642 
643   edsc::ScopedContext scope(builder, op->getLoc());
644   auto linalgOp = cast<LinalgOp>(op);
645 
646   if (isaContractionOpInterface(linalgOp))
647     return vectorizeContraction(builder, linalgOp, newResults);
648 
649   LLVM_DEBUG(dbgs() << "\n[" DEBUG_TYPE "]: "
650                     << "Vectorize linalg op as a generic by broadcasting to "
651                        "maximal common shape: "
652                     << *op);
653   return vectorizeAsLinalgGeneric(builder, linalgOp, newResults,
654                                   /*broadcastToMaximalCommonShape=*/true);
655 }
656 
657 //----------------------------------------------------------------------------//
658 // Misc. vectorization patterns.
659 //----------------------------------------------------------------------------//
660 
661 /// Rewrite a PadTensorOp into a sequence of InitTensorOp, TransferReadOp and
662 /// TransferWriteOp. For now, this only applies when all low and high paddings
663 /// are determined to be zero.
664 LogicalResult PadTensorOpVectorizationPattern::matchAndRewrite(
665     linalg::PadTensorOp padOp, PatternRewriter &rewriter) const {
666   // Helper function to determine whether an OpFoldResult is not a zero Index.
667   auto isNotZeroIndex = [](OpFoldResult ofr) {
668     if (Attribute attr = ofr.dyn_cast<Attribute>())
669       return attr.cast<IntegerAttr>().getInt() != 0;
670     Value v = ofr.get<Value>();
671     if (auto constOp = v.getDefiningOp<ConstantOp>())
672       if (auto intAttr = constOp.getValue().dyn_cast<IntegerAttr>())
673         return intAttr.getValue().getSExtValue() != 0;
674     return true;
675   };
676 
677   auto resultShapedType = padOp.result().getType().cast<ShapedType>();
678   // Bail on non-static shapes.
679   if (!resultShapedType.hasStaticShape())
680     return failure();
681 
682   // If any pad_low is not a static 0, needs a mask. Bail for now.
683   if (llvm::any_of(padOp.getMixedLowPad(), isNotZeroIndex))
684     return failure();
685   VectorType vectorType = extractVectorTypeFromShapedValue(padOp.result());
686   if (!vectorType)
687     return failure();
688 
689   // Only support padding with a constant for now, i.e. either:
690   //   1. A BBarg from a different block.
691   //   2. A value defined outside of the current block.
692   Block &block = padOp.region().front();
693   auto yieldOp = cast<YieldOp>(block.getTerminator());
694   assert(yieldOp.getNumOperands() == 1 && "expected single operand yield");
695   Value padValue = yieldOp.values().front();
696   Operation *definingOp = padValue.getDefiningOp();
697   if (definingOp && definingOp->getBlock() == &block)
698     return failure();
699   if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block)
700     return failure();
701 
702   // TODO: if any pad_high is not a static 0, needs a mask. For now, just bail.
703   if (llvm::any_of(padOp.getMixedHighPad(),
704                    [&](OpFoldResult ofr) { return isNotZeroIndex(ofr); }))
705     return failure();
706 
707   // Now we can rewrite as InitTensorOp + TransferReadOp@[0..0] +
708   // TransferWriteOp@[0..0].
709   SmallVector<Value> indices(
710       resultShapedType.getRank(),
711       rewriter.create<ConstantIndexOp>(padOp.getLoc(), 0));
712   Value read = rewriter.create<vector::TransferReadOp>(
713       padOp.getLoc(), vectorType, padOp.source(), indices, padValue);
714   Value init =
715       rewriter.create<InitTensorOp>(padOp.getLoc(), resultShapedType.getShape(),
716                                     resultShapedType.getElementType());
717   rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(padOp, read, init,
718                                                        indices);
719 
720   return success();
721 }
722 
723 // TODO: cleanup all the convolution vectorization patterns.
724 template <class ConvOp, int N>
725 LogicalResult ConvOpVectorization<ConvOp, N>::matchAndRewrite(
726     ConvOp op, PatternRewriter &rewriter) const {
727   Location loc = op.getLoc();
728   MLIRContext *context = op.getContext();
729   edsc::ScopedContext scope(rewriter, loc);
730 
731   ShapedType inShapeType = op.getInputShapedType(0);
732   ShapedType kShapeType = op.getInputShapedType(1);
733 
734   ArrayRef<int64_t> inShape = inShapeType.getShape();
735   ArrayRef<int64_t> kShape = kShapeType.getShape();
736 
737   if (!inShapeType.hasStaticShape() || !kShapeType.hasStaticShape())
738     return failure();
739 
740   SmallVector<AffineExpr, 4> mapping;
741   SmallVector<int64_t, 4> vectorDims;
742   // Fail to apply when the size of not vectorized dimension is not 1.
743   for (unsigned i = 0; i < N; i++) {
744     if (!mask[i] && (inShape[i] != 1 || kShape[i] != 1))
745       return failure();
746 
747     if (mask[i] && inShape[i] != kShape[i])
748       return failure();
749 
750     if (mask[i]) {
751       mapping.push_back(getAffineDimExpr(i, context));
752       vectorDims.push_back(inShape[i]);
753     }
754   }
755 
756   Value input = op.getInput(0);
757   Value kernel = op.getInput(1);
758   Value output = op.getOutputBuffer(0);
759 
760   unsigned rank = inShapeType.getRank();
761   unsigned numDims = mapping.size();
762   Type elemType = inShapeType.getElementType();
763 
764   auto map = AffineMap::get(rank, 0, mapping, context);
765   SmallVector<Value, 4> zeros(rank, std_constant_index(0));
766   auto vecType = VectorType::get(vectorDims, elemType);
767 
768   auto inputVec = vector_transfer_read(vecType, input, zeros, map);
769   auto kernelVec = vector_transfer_read(vecType, kernel, zeros, map);
770 
771   auto acc = std_constant(elemType, rewriter.getZeroAttr(elemType));
772 
773   std::array<AffineMap, 3> indexingMaps{
774       AffineMap::getMultiDimIdentityMap(numDims, context),
775       AffineMap::getMultiDimIdentityMap(numDims, context),
776       AffineMap::get(numDims, 0, {}, context)};
777 
778   std::vector<StringRef> iteratorTypes(numDims, "reduction");
779 
780   auto result = rewriter.create<vector::ContractionOp>(
781       loc, inputVec, kernelVec, acc,
782       rewriter.getAffineMapArrayAttr(indexingMaps),
783       rewriter.getStrArrayAttr(iteratorTypes));
784 
785   rewriter.create<memref::StoreOp>(loc, result, output, ValueRange(zeros));
786   rewriter.eraseOp(op);
787   return success();
788 }
789 
790 using ConvOpConst = ConvOpVectorization<ConvWOp, 1>;
791 
792 /// Inserts tiling, promotion and vectorization pattern for ConvOp
793 /// conversion into corresponding pattern lists.
794 template <typename ConvOp, unsigned N>
795 static void populateVectorizationPatterns(
796     RewritePatternSet &tilingPatterns, RewritePatternSet &promotionPatterns,
797     RewritePatternSet &vectorizationPatterns, ArrayRef<int64_t> tileSizes) {
798   auto *context = tilingPatterns.getContext();
799   if (tileSizes.size() < N)
800     return;
801 
802   constexpr static StringRef kTiledMarker = "TILED";
803   constexpr static StringRef kPromotedMarker = "PROMOTED";
804   tilingPatterns.add<LinalgTilingPattern<ConvOp>>(
805       context, LinalgTilingOptions().setTileSizes(tileSizes),
806       LinalgTransformationFilter(ArrayRef<Identifier>{},
807                                  Identifier::get(kTiledMarker, context)));
808 
809   promotionPatterns.add<LinalgPromotionPattern<ConvOp>>(
810       context, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
811       LinalgTransformationFilter(Identifier::get(kTiledMarker, context),
812                                  Identifier::get(kPromotedMarker, context)));
813 
814   SmallVector<bool, 4> mask(N);
815   int offset = tileSizes.size() - N;
816   std::transform(tileSizes.begin() + offset, tileSizes.end(), mask.begin(),
817                  [](int64_t i) -> bool { return i > 1; });
818 
819   vectorizationPatterns.add<ConvOpVectorization<ConvOp, N>>(context, mask);
820 }
821 
822 void mlir::linalg::populateConvVectorizationPatterns(
823     MLIRContext *context, SmallVectorImpl<RewritePatternSet> &patterns,
824     ArrayRef<int64_t> tileSizes) {
825   RewritePatternSet tiling(context);
826   RewritePatternSet promotion(context);
827   RewritePatternSet vectorization(context);
828   populateVectorizationPatterns<ConvWOp, 1>(tiling, promotion, vectorization,
829                                             tileSizes);
830 
831   populateVectorizationPatterns<ConvNWCOp, 3>(tiling, promotion, vectorization,
832                                               tileSizes);
833   populateVectorizationPatterns<ConvInputNWCFilterWCFOp, 3>(
834       tiling, promotion, vectorization, tileSizes);
835 
836   populateVectorizationPatterns<ConvNCWOp, 3>(tiling, promotion, vectorization,
837                                               tileSizes);
838   populateVectorizationPatterns<ConvInputNCWFilterWCFOp, 3>(
839       tiling, promotion, vectorization, tileSizes);
840 
841   populateVectorizationPatterns<ConvHWOp, 2>(tiling, promotion, vectorization,
842                                              tileSizes);
843 
844   populateVectorizationPatterns<ConvNHWCOp, 4>(tiling, promotion, vectorization,
845                                                tileSizes);
846   populateVectorizationPatterns<ConvInputNHWCFilterHWCFOp, 4>(
847       tiling, promotion, vectorization, tileSizes);
848 
849   populateVectorizationPatterns<ConvNCHWOp, 4>(tiling, promotion, vectorization,
850                                                tileSizes);
851   populateVectorizationPatterns<ConvInputNCHWFilterHWCFOp, 4>(
852       tiling, promotion, vectorization, tileSizes);
853 
854   populateVectorizationPatterns<ConvDHWOp, 3>(tiling, promotion, vectorization,
855                                               tileSizes);
856 
857   populateVectorizationPatterns<ConvNDHWCOp, 5>(tiling, promotion,
858                                                 vectorization, tileSizes);
859   populateVectorizationPatterns<ConvInputNDHWCFilterDHWCFOp, 5>(
860       tiling, promotion, vectorization, tileSizes);
861 
862   populateVectorizationPatterns<ConvNCDHWOp, 5>(tiling, promotion,
863                                                 vectorization, tileSizes);
864   populateVectorizationPatterns<ConvInputNCDHWFilterDHWCFOp, 5>(
865       tiling, promotion, vectorization, tileSizes);
866 
867   patterns.push_back(std::move(tiling));
868   patterns.push_back(std::move(promotion));
869   patterns.push_back(std::move(vectorization));
870 }
871 
872 //----------------------------------------------------------------------------//
873 // Forwarding patterns
874 //----------------------------------------------------------------------------//
875 
876 /// Check whether there is any interleaved use of any `values` between `firstOp`
877 /// and `secondOp`. Conservatively return `true` if any op or value is in a
878 /// different block.
879 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp,
880                                     ValueRange values) {
881   if (firstOp->getBlock() != secondOp->getBlock() ||
882       !firstOp->isBeforeInBlock(secondOp)) {
883     LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
884                             << "interleavedUses precondition failed, firstOp: "
885                             << *firstOp << ", second op: " << *secondOp);
886     return true;
887   }
888   for (auto v : values) {
889     for (auto &u : v.getUses()) {
890       Operation *owner = u.getOwner();
891       if (owner == firstOp || owner == secondOp)
892         continue;
893       // TODO: this is too conservative, use dominance info in the future.
894       if (owner->getBlock() == firstOp->getBlock() &&
895           (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner)))
896         continue;
897       LLVM_DEBUG(llvm::dbgs()
898                  << "\n[" DEBUG_TYPE "]: "
899                  << " found interleaved op " << *owner
900                  << ", firstOp: " << *firstOp << ", second op: " << *secondOp);
901       return true;
902     }
903   }
904   return false;
905 }
906 
907 /// Return the unique subview use of `v` if it is indeed unique, null otherwise.
908 static memref::SubViewOp getSubViewUseIfUnique(Value v) {
909   memref::SubViewOp subViewOp;
910   for (auto &u : v.getUses()) {
911     if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) {
912       if (subViewOp)
913         return memref::SubViewOp();
914       subViewOp = newSubViewOp;
915     }
916   }
917   return subViewOp;
918 }
919 
920 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
921 /// when available.
922 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite(
923     vector::TransferReadOp xferOp, PatternRewriter &rewriter) const {
924 
925   // Transfer into `view`.
926   Value viewOrAlloc = xferOp.source();
927   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
928       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
929     return failure();
930 
931   LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: " << viewOrAlloc);
932 
933   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
934   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
935   if (!subViewOp)
936     return failure();
937   Value subView = subViewOp.getResult();
938   LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
939                           << "with subView " << subView);
940 
941   // Find the copy into `subView` without interleaved uses.
942   CopyOp copyOp;
943   for (auto &u : subView.getUses()) {
944     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
945       if (newCopyOp.getOutputBuffer(0) != subView)
946         continue;
947       LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
948                               << "copy candidate " << *newCopyOp);
949       if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView}))
950         continue;
951       copyOp = newCopyOp;
952       break;
953     }
954   }
955   if (!copyOp)
956     return failure();
957   LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
958                           << "with copy " << *copyOp);
959 
960   // Find the fill into `viewOrAlloc` without interleaved uses before the copy.
961   FillOp maybeFillOp;
962   for (auto &u : viewOrAlloc.getUses()) {
963     if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) {
964       if (newFillOp.getOutputBuffer(0) != viewOrAlloc)
965         continue;
966       LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
967                               << "fill candidate " << *newFillOp);
968       if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView}))
969         continue;
970       maybeFillOp = newFillOp;
971       break;
972     }
973   }
974   // Ensure padding matches.
975   if (maybeFillOp && xferOp.padding() != maybeFillOp.value())
976     return failure();
977   if (maybeFillOp)
978     LLVM_DEBUG(llvm::dbgs() << "\n[" DEBUG_TYPE "]: "
979                             << "with maybeFillOp " << *maybeFillOp);
980 
981   // `in` is the subview that linalg.copy reads. Replace it.
982   Value in = copyOp.getInput(0);
983 
984   // linalg.copy + linalg.fill can be used to create a padded local buffer.
985   // The `masked` attribute is only valid on this padded buffer.
986   // When forwarding to vector.transfer_read, the attribute must be reset
987   // conservatively.
988   Value res = rewriter.create<vector::TransferReadOp>(
989       xferOp.getLoc(), xferOp.getVectorType(), in, xferOp.indices(),
990       xferOp.permutation_map(), xferOp.padding(), ArrayAttr());
991 
992   if (maybeFillOp)
993     rewriter.eraseOp(maybeFillOp);
994   rewriter.eraseOp(copyOp);
995   rewriter.replaceOp(xferOp, res);
996 
997   return success();
998 }
999 
1000 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate,
1001 /// when available.
1002 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite(
1003     vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const {
1004   // Transfer into `viewOrAlloc`.
1005   Value viewOrAlloc = xferOp.source();
1006   if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() &&
1007       !viewOrAlloc.getDefiningOp<memref::AllocOp>())
1008     return failure();
1009 
1010   // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`.
1011   memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc);
1012   if (!subViewOp)
1013     return failure();
1014   Value subView = subViewOp.getResult();
1015 
1016   // Find the copy from `subView` without interleaved uses.
1017   CopyOp copyOp;
1018   for (auto &u : subViewOp.getResult().getUses()) {
1019     if (auto newCopyOp = dyn_cast<CopyOp>(u.getOwner())) {
1020       if (newCopyOp.getInput(0) != subView)
1021         continue;
1022       if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView}))
1023         continue;
1024       copyOp = newCopyOp;
1025       break;
1026     }
1027   }
1028   if (!copyOp)
1029     return failure();
1030 
1031   // `out` is the subview copied into that we replace.
1032   Value out = copyOp.getOutputBuffer(0);
1033 
1034   // Forward vector.transfer into copy.
1035   // linalg.copy + linalg.fill can be used to create a padded local buffer.
1036   // The `masked` attribute is only valid on this padded buffer.
1037   // When forwarding to vector.transfer_write, the attribute must be reset
1038   // conservatively.
1039   rewriter.create<vector::TransferWriteOp>(
1040       xferOp.getLoc(), xferOp.vector(), out, xferOp.indices(),
1041       xferOp.permutation_map(), ArrayAttr());
1042 
1043   rewriter.eraseOp(copyOp);
1044   rewriter.eraseOp(xferOp);
1045 
1046   return success();
1047 }
1048