1 //===- FusionOnTensors.cpp - Implementation of linalg Fusion --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements linalg fusion on tensors
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Analysis/SliceAnalysis.h"
15 #include "mlir/Dialect/Affine/IR/AffineOps.h"
16 #include "mlir/Dialect/Linalg/IR/Linalg.h"
17 #include "mlir/Dialect/Linalg/Passes.h"
18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/Tensor/IR/Tensor.h"
21 #include "mlir/Dialect/Utils/IndexingUtils.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/Support/LLVM.h"
25 
26 using namespace mlir;
27 using namespace linalg;
28 
29 //===----------------------------------------------------------------------===//
30 // StructuredOp specific helpers.
31 //===----------------------------------------------------------------------===//
32 
33 /// Returns the tiled slice dimensions given the tiled consumer loop dimensions.
34 /// The slice defines a hyper rectangular iteration space and fusing the
35 /// producer is always possible. However, depending on the consumer indexing
36 /// map, not all slice elements may be consumed and the tiles may overlap. In
37 /// these cases, fusion introduces redundant computation.
getTiledSliceDims(OpOperand * consumerOperand,ArrayRef<int64_t> tiledLoopDims)38 static SmallVector<int64_t> getTiledSliceDims(OpOperand *consumerOperand,
39                                               ArrayRef<int64_t> tiledLoopDims) {
40   // Get the consumer operand indexing map.
41   LinalgOp consumerOp = consumerOperand->getOwner();
42   AffineMap indexingMap = consumerOp.getTiedIndexingMap(consumerOperand);
43 
44   // Search the slice dimensions tiled by a tile loop dimension.
45   DenseSet<int64_t> tiledSliceDimIndices;
46   for (const auto &en : enumerate(indexingMap.getResults())) {
47     for (auto tiledLoopDim : tiledLoopDims) {
48       if (en.value().isFunctionOfDim(tiledLoopDim))
49         tiledSliceDimIndices.insert(en.index());
50     }
51   }
52   return {tiledSliceDimIndices.begin(), tiledSliceDimIndices.end()};
53 }
54 
55 /// Given a vector of `tiledSliceDimIndices` that represent the tiled dimensions
56 /// of the producer result slice returns the tiled producer loop dimensions.
57 /// Example:
58 /// ```
59 /// %res = linalg.fill(%cst, %input)
60 /// scf.for %i
61 ///   scf.for %j
62 ///     %slice = tensor.extract_slice %res[%i, %j]
63 /// ```
64 /// getTiledProducerLoops(%res, [0, 1]) returns the loop indices [0, 1].
65 static SmallVector<int64_t>
getTiledProducerLoops(OpResult producerResult,ArrayRef<int64_t> tiledSliceDimIndices)66 getTiledProducerLoops(OpResult producerResult,
67                       ArrayRef<int64_t> tiledSliceDimIndices) {
68   LinalgOp producerOp = producerResult.getOwner();
69 
70   // Get the indexing map of the `producerOp` output operand that matches
71   // ´producerResult´.
72   AffineMap producerIndexingMap = producerOp.getTiedIndexingMap(
73       producerOp.getOutputOperand(producerResult.getResultNumber()));
74 
75   // Keep only the tiled result slice dimensions of `producerIndexingMap`.
76   AffineMap tiledProducerIndexingSubMap =
77       producerIndexingMap.getSubMap(SmallVector<unsigned>(
78           tiledSliceDimIndices.begin(), tiledSliceDimIndices.end()));
79 
80   // Compute the producer loop indices mapped to the tiled result slice
81   // dimensions. As the output indexing map of structured operations are
82   // projected permutations, `tiledProducerIndexingSubMap` has to be a
83   // projected permutation as well. We can thus obtain the producer loop indices
84   // by getting the positions of the result dimensions.
85   // Example:
86   // (d0, d1, d2) -> (d0, d2) has the result positions [0, 2].
87   assert(tiledProducerIndexingSubMap.isProjectedPermutation() &&
88          "expect slice and producer loop dimensions map one-to-one");
89   SmallVector<int64_t> tiledProducerLoopIndices;
90   llvm::transform(
91       llvm::seq<unsigned>(0, tiledProducerIndexingSubMap.getNumResults()),
92       std::back_inserter(tiledProducerLoopIndices), [&](unsigned idx) {
93         return tiledProducerIndexingSubMap.getDimPosition(idx);
94       });
95 
96   return tiledProducerLoopIndices;
97 }
98 
99 /// Returns the producer fused in place of `sliceOp`. Tile the producer operands
100 /// along the `tiledSliceDimIndices` and clone the producer. Consider the case
101 /// of fusion of an output tensor:
102 /// ```
103 /// %1 = producer ins(...) outs(%0)
104 /// %2 = consumer ins(...) outs(%1)
105 /// ```
106 /// When consumer is tiled, %1 appears in the loop iter_args:
107 /// ```
108 /// %1 = producer ins(...) outs(%0)
109 /// %2 = scf.for ... iter_args(%1) .. (%bbarg) {
110 ///   %t1 = tensor.extract_slice %bbarg[..]
111 ///   %t2 = consumer ins(...) outs(%t1)
112 ///   %r = tensor.insert_slice %t2, %bbarg[...]
113 /// }
114 /// ```
115 /// Fusing %1 into the loop requires updating iter_args(%1) to iter_args(%0):
116 /// ```
117 /// %2 = scf.for ... iter_args(%0) .. (%bbarg) {
118 ///   %t0 = tensor.extract_slice %bbarg[..]
119 ///   %t1 = producer ins(...) outs(%t0)
120 ///   %t2 = consumer ins(...) outs(%t1)
121 ///   %r = tensor.insert_slice %t2, %bbarg[...]
122 /// }
123 /// ```
124 /// This transformation is only valid if %bbarg is exclusively used by the
125 /// output ExtractSliceOp / InsertSliceOp pair, which is checked by the
126 /// `fuseProducer` method.
127 /// TODO: instead of check and failure, insert new iter_args each time a
128 /// producer is fused into a consumer and fold away unused iter_args.
getTiledProducer(OpBuilder & b,OpResult producerResult,tensor::ExtractSliceOp sliceOp,ArrayRef<int64_t> tiledSliceDimIndices,ArrayRef<int64_t> tiledProducerLoopIndices,OpOperand * iterArg)129 static LinalgOp getTiledProducer(OpBuilder &b, OpResult producerResult,
130                                  tensor::ExtractSliceOp sliceOp,
131                                  ArrayRef<int64_t> tiledSliceDimIndices,
132                                  ArrayRef<int64_t> tiledProducerLoopIndices,
133                                  OpOperand *iterArg) {
134   // Clone the producer after `sliceOp` since the slice may be reused to pass in
135   // the producer result.
136   OpBuilder::InsertionGuard guard(b);
137   b.setInsertionPointAfter(sliceOp);
138 
139   // Get the producer.
140   LinalgOp producerOp = producerResult.getOwner();
141   Location loc = producerOp.getLoc();
142 
143   // Obtain the `producerOp` loop bounds and the `sliceOp` ranges.
144   SmallVector<Value> producerLoopBounds;
145   llvm::transform(producerOp.createLoopRanges(b, loc),
146                   std::back_inserter(producerLoopBounds),
147                   [](Range range) { return range.size; });
148   SmallVector<Range> sliceOpRanges = sliceOp.getOrCreateRanges(b, loc);
149 
150   // Tile the producer operands given the `sliceOp` ranges. Iterate the
151   // `tiledSliceDimIndices` and store the tile offset and size for the tiled
152   // slice dimension.
153   auto zero = b.create<arith::ConstantIndexOp>(loc, 0);
154   SmallVector<Value> tileIvs(producerOp.getNumLoops(), nullptr);
155   SmallVector<Value> tileSizes(producerOp.getNumLoops(), zero);
156   SmallVector<Value> allIvs(producerOp.getNumLoops(), nullptr);
157   for (auto it : zip(tiledSliceDimIndices, tiledProducerLoopIndices)) {
158     int64_t tiledSliceDim = std::get<0>(it);
159     int64_t tiledProducerLoop = std::get<1>(it);
160     tileIvs[tiledProducerLoop] = sliceOpRanges[tiledSliceDim].offset;
161     tileSizes[tiledProducerLoop] = sliceOpRanges[tiledSliceDim].size;
162     allIvs[tiledProducerLoop] = tileIvs[tiledProducerLoop];
163   }
164   erase_value(tileIvs, nullptr);
165   SmallVector<Value> tiledOperands = producerOp.getInputAndOutputOperands();
166   tiledOperands = makeTiledShapes(b, loc, producerOp, tiledOperands, tileIvs,
167                                   tileSizes, producerLoopBounds,
168                                   /**omitPartialTileCheck=*/false);
169 
170   // Output fusion has to update the iteration arguments of the tile loop nest.
171   // In particular, the iteration argument of the outermost tile loop needs to
172   // be set to the producer output instead of the producer result and `clonedOp`
173   // shall use the existing `sliceOp` result instead of the tiled producer
174   // output operand.
175   if (iterArg) {
176     OpOperand *outputOperand =
177         producerOp.getOutputOperand(producerResult.getResultNumber());
178     iterArg->set(outputOperand->get());
179     tiledOperands[outputOperand->getOperandNumber()] = sliceOp.getResult();
180   }
181 
182   // Clone the producer using the tiled producer operands.
183   TypeRange resultTypes = ValueRange(tiledOperands)
184                               .take_back(producerOp.getNumOutputs())
185                               .getTypes();
186   LinalgOp clonedOp = producerOp.clone(b, loc, resultTypes, tiledOperands);
187 
188   // Shift all IndexOp results by the tile offset.
189   offsetIndices(b, clonedOp, allIvs);
190 
191   return clonedOp;
192 }
193 
194 //===----------------------------------------------------------------------===//
195 // TileLoopNest specific helpers.
196 //===----------------------------------------------------------------------===//
197 
isEmpty()198 bool TileLoopNest::isEmpty() { return tileLoopOps.empty(); }
199 
isValid()200 bool TileLoopNest::isValid() {
201   // Check if `rootOp` has been tiled at least once.
202   if (isEmpty() || tiledRootAndFusedOpsLoops.count(rootOp) == 0)
203     return false;
204 
205   // Check if the number of loop operations and dimensions match.
206   if (tileLoopOps.size() != tiledRootAndFusedOpsLoops[rootOp].size())
207     return false;
208 
209   // Check if the innermost tile loop is the parent of `tiledOp`.
210   if (rootOp->getParentOp() != tileLoopOps.back())
211     return false;
212 
213   // Check if the tile loops are directly nested.
214   return std::adjacent_find(tileLoopOps.begin(), tileLoopOps.end(),
215                             [](Operation *op1, Operation *op2) {
216                               return op1 != op2->getParentOp();
217                             }) == tileLoopOps.end();
218 }
219 
getTiedBBArgs(BlockArgument bbArg)220 SmallVector<BlockArgument> TileLoopNest::getTiedBBArgs(BlockArgument bbArg) {
221   assert(bbArg && "expect the block argument to be non-zero");
222   SmallVector<BlockArgument> bbArgs;
223 
224   // Search all tile loop block arguments from inner to outer.
225   for (auto tileLoop : reverse(tileLoopOps)) {
226     if (bbArg.getOwner()->getParentOp() != tileLoop)
227       return {};
228     bbArgs.push_back(bbArg);
229     OpOperand *iterArg = &tileLoop.getOpOperandForRegionIterArg(bbArg);
230     bbArg = iterArg->get().dyn_cast<BlockArgument>();
231   }
232 
233   // Reverse the block arguments to order them from outer to inner.
234   return {bbArgs.rbegin(), bbArgs.rend()};
235 }
236 
getTiedIterArg(BlockArgument bbArg)237 OpOperand *TileLoopNest::getTiedIterArg(BlockArgument bbArg) {
238   // Search all block arguments and return the matching iteration argument.
239   SmallVector<BlockArgument> bbArgs = getTiedBBArgs(bbArg);
240   if (bbArgs.size() != tileLoopOps.size())
241     return nullptr;
242   return &tileLoopOps.front().getOpOperandForRegionIterArg(bbArgs.front());
243 }
244 
hasOtherUses(BlockArgument bbArg,tensor::ExtractSliceOp sliceOp)245 bool TileLoopNest::hasOtherUses(BlockArgument bbArg,
246                                 tensor::ExtractSliceOp sliceOp) {
247   // Check the innermost block argument is either used by the ExtractSliceOp
248   // `sliceOp`, the matching InsertSliceOp, or by a DimOp. Handle other uses
249   // conservatively.
250   for (Operation *op : bbArg.getUsers()) {
251     if (!isa<tensor::DimOp, tensor::InsertSliceOp, tensor::ExtractSliceOp>(op))
252       return false;
253     if (auto extractSliceOp = dyn_cast<tensor::ExtractSliceOp>(op)) {
254       if (extractSliceOp != sliceOp)
255         return false;
256     }
257     if (auto insertSliceOp = dyn_cast<tensor::InsertSliceOp>(op)) {
258       SetVector<Operation *> backwardSlice;
259       getBackwardSlice(insertSliceOp.getSource(), &backwardSlice,
260                        [](Operation *op) {
261                          return isa<LinalgOp, tensor::InsertSliceOp>(op);
262                        });
263       if (backwardSlice.empty() || backwardSlice.front() != sliceOp)
264         return false;
265     }
266   }
267 
268   // Check the block arguments, except for the innermost one, have one use.
269   SmallVector<BlockArgument> bbArgs = getTiedBBArgs(bbArg);
270   return !all_of(bbArgs, [&](BlockArgument bbArg) {
271     return bbArg.hasOneUse() || bbArg == bbArgs.back();
272   });
273 }
274 
tileRootOp(OpBuilder & b,ArrayRef<int64_t> tileSizes,ArrayRef<int64_t> tileInterchange,Optional<LinalgLoopDistributionOptions> tileDistribution)275 LogicalResult TileLoopNest::tileRootOp(
276     OpBuilder &b, ArrayRef<int64_t> tileSizes,
277     ArrayRef<int64_t> tileInterchange,
278     Optional<LinalgLoopDistributionOptions> tileDistribution) {
279   // Exit if all tile sizes are zero.
280   if (tileSizes.size() == static_cast<size_t>(count(tileSizes, 0)))
281     return success();
282 
283   // Tile the root operation.
284   LinalgTilingOptions tilingOptions;
285   tilingOptions = tilingOptions
286                       .setInterchange(SmallVector<unsigned>(
287                           tileInterchange.begin(), tileInterchange.end()))
288                       .setTileSizes(tileSizes)
289                       .setLoopType(LinalgTilingLoopType::Loops);
290   if (tileDistribution)
291     tilingOptions = tilingOptions.setDistributionOptions(*tileDistribution);
292 
293   // TODO: Propagate RewriterBase everywhere.
294   IRRewriter rewriter(b);
295   FailureOr<TiledLinalgOp> tiledRootOp =
296       tileLinalgOp(rewriter, rootOp, tilingOptions);
297 
298   // Exit if tiling the root operation fails.
299   if (failed(tiledRootOp))
300     return failure();
301 
302   // Replace all uses of the root operation if it has been tiled before. All
303   // uses of the original untiled root operation are updated by the calling pass
304   // or pattern.
305   if (!isEmpty())
306     rootOp->replaceAllUsesWith(tiledRootOp->tensorResults);
307 
308   // Transfer the stored `rootOp` loop dimensions if it has been tiled before.
309   if (tiledRootAndFusedOpsLoops.count(rootOp) != 0) {
310     tiledRootAndFusedOpsLoops[tiledRootOp->op] =
311         tiledRootAndFusedOpsLoops[rootOp];
312   }
313 
314   // Update the root operation and append the loops and tile loop dimensions.
315   rootOp = tiledRootOp->op;
316   tileLoopOps.append(tiledRootOp->loops.begin(), tiledRootOp->loops.end());
317   for (const auto &en : enumerate(tileSizes)) {
318     // Copy only the tiled loop dimensions with non-zero tile size.
319     if (en.value() == 0)
320       continue;
321     tiledRootAndFusedOpsLoops[rootOp].push_back(tileInterchange[en.index()]);
322   }
323   assert(isValid() && "expect tile loop nest to be valid after tiling");
324   return success();
325 }
326 
fuseProducer(OpBuilder & b,OpOperand * consumerOpOperand)327 FailureOr<LinalgOp> TileLoopNest::fuseProducer(OpBuilder &b,
328                                                OpOperand *consumerOpOperand) {
329   // Check if the consumer has been tiled before. For example, it may not have
330   // been tiled if the outermost tile loop is a reduction loop.
331   if (tiledRootAndFusedOpsLoops.count(consumerOpOperand->getOwner()) == 0)
332     return failure();
333 
334   assert(this->isValid() &&
335          "expect the tile loop nest to satisfy all invariants");
336 
337   // Check the tile loop nest is non-empty.
338   if (isEmpty())
339     return failure();
340 
341   // Check `consumerOpOperand` is defined by an ExtractSliceOp.
342   auto sliceOp =
343       consumerOpOperand->get().getDefiningOp<tensor::ExtractSliceOp>();
344   if (!sliceOp)
345     return failure();
346 
347   // Check `sliceOp` and `consumerOp` are in the same block.
348   LinalgOp consumerOp = consumerOpOperand->getOwner();
349   if (sliceOp->getBlock() != rootOp->getBlock() ||
350       consumerOp->getBlock() != rootOp->getBlock())
351     return failure();
352 
353   // Check `consumerOpOperand` is not shape-only to avoid fusion if the data is
354   // not used by the `consumerOp` computation.
355   BlockArgument bbArg = consumerOp.getTiedBlockArgument(consumerOpOperand);
356   if (bbArg.getUses().empty())
357     return failure();
358 
359   // Check if the producer is a LinalgOp possibly passed by iteration argument.
360   OpOperand *iterArg = nullptr;
361   auto producerResult = sliceOp.getSource().dyn_cast<OpResult>();
362   if (auto bbArg = sliceOp.getSource().dyn_cast<BlockArgument>()) {
363     iterArg = getTiedIterArg(bbArg);
364     // Check the iteration argument may be used to pass in the producer output.
365     if (!iterArg || hasOtherUses(bbArg, sliceOp))
366       return failure();
367     producerResult = iterArg->get().dyn_cast<OpResult>();
368   }
369   if (!producerResult || !isa<LinalgOp>(producerResult.getOwner()))
370     return failure();
371 
372   // Compute the tiled producer slice dimensions given the tiled consumer loops.
373   SmallVector<int64_t> tiledSliceDimIndices = getTiledSliceDims(
374       consumerOpOperand, tiledRootAndFusedOpsLoops[consumerOp]);
375   if (tiledSliceDimIndices.empty())
376     return failure();
377 
378   // Compute the tiled producer loop indices.
379   SmallVector<int64_t> tiledProducerLoopIndices =
380       getTiledProducerLoops(producerResult, tiledSliceDimIndices);
381 
382   // Tile the producer operands and clone the producer in place of `sliceOp`.
383   LinalgOp clonedOp =
384       getTiledProducer(b, producerResult, sliceOp, tiledSliceDimIndices,
385                        tiledProducerLoopIndices, iterArg);
386   tiledRootAndFusedOpsLoops[clonedOp] = tiledProducerLoopIndices;
387 
388   // Cast the `clonedOp` result to gap type mismatches before canonicalization.
389   Type consumerOperandType = consumerOpOperand->get().getType();
390   Value newResult = clonedOp->getResult(producerResult.getResultNumber());
391   if (newResult.getType() != consumerOperandType) {
392     OpBuilder::InsertionGuard guard(b);
393     b.setInsertionPointAfter(clonedOp);
394     newResult = b.create<tensor::CastOp>(producerResult.getLoc(),
395                                          consumerOperandType, newResult);
396   }
397 
398   // Replace the `sliceOp` uses except for the `clonedOp` output uses.
399   sliceOp.getResult().replaceAllUsesExcept(newResult, clonedOp);
400   return clonedOp;
401 }
402 
getRootOpReplacementResults()403 ValueRange TileLoopNest::getRootOpReplacementResults() {
404   assert(!isEmpty() && "expect tile loop nest to be non-empty");
405   return tileLoopOps.front()->getOpResults();
406 }
407 
getAllTiledAndFusedOps()408 SmallVector<LinalgOp> TileLoopNest::getAllTiledAndFusedOps() {
409   SmallVector<LinalgOp> result;
410   for (const auto &kvp : tiledRootAndFusedOpsLoops) {
411     auto linalgOp = dyn_cast<LinalgOp>(kvp.getFirst());
412     assert(linalgOp &&
413            "expect all tiled and fused operations are linalg operations");
414     result.push_back(linalgOp);
415   }
416   return result;
417 }
418 
419 //===----------------------------------------------------------------------===//
420 // Tile and fuse entry-points.
421 //===----------------------------------------------------------------------===//
422 
tileConsumerAndFuseProducers(OpBuilder & b,LinalgOp consumerOp,ArrayRef<int64_t> tileSizes,ArrayRef<int64_t> tileInterchange,const Optional<LinalgLoopDistributionOptions> & tileDistribution)423 FailureOr<TileLoopNest> mlir::linalg::tileConsumerAndFuseProducers(
424     OpBuilder &b, LinalgOp consumerOp, ArrayRef<int64_t> tileSizes,
425     ArrayRef<int64_t> tileInterchange,
426     const Optional<LinalgLoopDistributionOptions> &tileDistribution) {
427   assert(tileSizes.size() == tileInterchange.size() &&
428          "expect the number of tile sizes and interchange dims to match");
429   assert(isPermutation(tileInterchange) &&
430          "expect tile interchange is a permutation");
431 
432   // Create an empty tile loop nest.
433   TileLoopNest tileLoopNest(consumerOp);
434 
435   // Search the number of outer parallel loops to separate them from possible
436   // inner reduction dimensions.
437   SmallVector<StringAttr> iterTypes =
438       llvm::to_vector<6>(consumerOp.iterator_types().getAsRange<StringAttr>());
439   applyPermutationToVector(iterTypes, tileInterchange);
440   auto *it = find_if(iterTypes, [&](StringAttr iterType) {
441     return !isParallelIterator(iterType);
442   });
443   int64_t split = std::distance(iterTypes.begin(), it);
444 
445   // Helper to fuse the producers greedily using a queue of fusion candidates.
446   auto fuseProducersGreedily = [&](ArrayRef<OpOperand *> operands) {
447     SmallVector<OpOperand *> candidates(operands.begin(), operands.end());
448     while (!candidates.empty()) {
449       FailureOr<LinalgOp> fusedProducer =
450           tileLoopNest.fuseProducer(b, candidates.pop_back_val());
451       if (failed(fusedProducer))
452         continue;
453       candidates.append(fusedProducer->getInputAndOutputOperands());
454     }
455   };
456 
457   // Perform tiling and fusion in two steps. We need to respect the loop
458   // interchange here; filter parellel dimensions based on their order *after*
459   // permutation but pass in the original configuration *before* permuation,
460   // given the tiling and interchange happen together.
461   SmallVector<int64_t> outerTileSizes(tileSizes.size(), 0);
462   SmallVector<int64_t> innerTileSizes(tileSizes.size(), 0);
463   for (int64_t i : tileInterchange.take_front(split))
464     outerTileSizes[i] = tileSizes[i];
465   for (int64_t i : tileInterchange.drop_front(split))
466     innerTileSizes[i] = tileSizes[i];
467 
468   // Tile the outer parallel loops and fuse the output operands.
469   if (failed(tileLoopNest.tileRootOp(b, outerTileSizes, tileInterchange,
470                                      tileDistribution)))
471     return failure();
472   fuseProducersGreedily(tileLoopNest.getRootOp().getOutputOperands());
473 
474   // Tile the remaining loops and fuse the input operands.
475   if (failed(tileLoopNest.tileRootOp(b, innerTileSizes, tileInterchange,
476                                      tileDistribution)))
477     return failure();
478   fuseProducersGreedily(tileLoopNest.getRootOp().getInputOperands());
479 
480   // Exit if the tile loop nest is empty since all tile sizes are zero.
481   if (tileLoopNest.isEmpty())
482     return failure();
483 
484   return tileLoopNest;
485 }
486