1 //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Fusion pass.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Affine/IR/AffineOps.h"
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
17 #include "mlir/Dialect/Linalg/IR/Linalg.h"
18 #include "mlir/Dialect/Linalg/Passes.h"
19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
20 #include "mlir/Dialect/Linalg/Utils/Utils.h"
21 #include "mlir/Dialect/MemRef/IR/MemRef.h"
22 #include "mlir/Dialect/Tensor/IR/Tensor.h"
23 #include "mlir/IR/AffineExpr.h"
24 #include "mlir/IR/AffineMap.h"
25 #include "mlir/IR/Dominance.h"
26 #include "mlir/Support/LLVM.h"
27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
28 #include "mlir/Transforms/RegionUtils.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33
34 #include <set>
35
36 #define DEBUG_TYPE "linalg-fusion"
37
38 using namespace mlir;
39 using namespace mlir::linalg;
40
41 /// Implements a simple high-level fusion pass on linalg structured operations.
42 ///
43 /// In each block, linalg ops are processed in reverse textual order.
44 /// Given a linalg op `O`, fusion occurs by:
45 /// 1. inspecting the linalg ops that write into the views read by `O`. There
46 /// are 2 cases:
47 /// a) buffer case: use the SSA value of the views and a simple alias
48 /// analysis on subview ops to determine producer-consumer dependences;
49 /// b) tensor case: use SSA use-def chains on extract_slice ops;
50 /// 2. greedily fuse the linalg ops that produce the subview/extract_slice.
51 /// 3. inspect the fused ops and determine whether they have other remaining
52 /// LinalgOp uses. If not, then erase the original producing linalg op.
53 ///
54 /// More advanced use cases, analyses as well as profitability heuristics are
55 /// left for future work.
56
57 struct ShapeDimension {
58 Value shape;
59 unsigned dimension;
60 };
61
62 // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies
63 // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
64 // guarantees at least one such dimension is found. If multiple candidates exist
65 // they must agree by construction (i.e. have the same size) and we just return
66 // the first one.
67 static ShapeDimension
getShapeDefiningLoopRange(LinalgOp op,unsigned loopDepth,bool fromSubViewOpOnly=false)68 getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth,
69 bool fromSubViewOpOnly = false) {
70 // Iterate over the inputs and outputs in order.
71 // Extract the subranges from the linearized ranges.
72 for (OpOperand *opOperand : op.getInputAndOutputOperands()) {
73 // The method `getRangeFromOperandShape` requires using SubViewOp or
74 // ExtractSliceOps. If the value isn't defined from there continue.
75 // todo: The method should be adapted to get the values from
76 // `ViewInterface`. The interface needs a `getOrCreateRanges` method which
77 // currently returns a `linalg.range`. The fix here is to move this op to
78 // `std` dialect and add the method to `ViewInterface`.
79 if (fromSubViewOpOnly &&
80 !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>(
81 opOperand->get().getDefiningOp()))
82 continue;
83
84 AffineMap map = op.getTiedIndexingMap(opOperand);
85 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: "
86 << opOperand->getOperandNumber() << "\n");
87 LLVM_DEBUG(llvm::dbgs()
88 << "getShapeDefiningLoopRange map: " << map << "\n");
89 SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr);
90 for (const auto &en : llvm::enumerate(map.getResults())) {
91 auto dimExpr = en.value().dyn_cast<AffineDimExpr>();
92 if (!dimExpr)
93 continue;
94 if (loopDepth == en.value().cast<AffineDimExpr>().getPosition()) {
95 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: "
96 << loopDepth << "\n");
97 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: "
98 << opOperand->get() << "\n");
99 return ShapeDimension{opOperand->get(),
100 static_cast<unsigned>(en.index())};
101 }
102 }
103 }
104 llvm_unreachable("Expect to be able to extract a shape defining loop range");
105 }
106
getTiledOperands(LinalgOp producer)107 static SmallVector<Value> getTiledOperands(LinalgOp producer) {
108 return producer.getInputAndOutputOperands();
109 }
110
111 /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges`
112 /// provides the loop range information for the fused loops. The rest are
113 /// obtained from the producer itself, since they are not tiled + fused.
fuse(OpBuilder & b,LinalgOp producer,const DenseMap<unsigned,Range> & fusedLoopsAndRanges)114 static LinalgOp fuse(OpBuilder &b, LinalgOp producer,
115 const DenseMap<unsigned, Range> &fusedLoopsAndRanges) {
116 SmallVector<Value, 8> ivs, tileSizes, sizeBounds;
117 SmallVector<Range, 8> loopRanges;
118 Location loc = producer.getLoc();
119 auto zero = b.create<arith::ConstantIndexOp>(loc, 0);
120 auto one = b.create<arith::ConstantIndexOp>(loc, 1);
121
122 for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) {
123 auto shapeDim = getShapeDefiningLoopRange(producer, i);
124 Value dim = createOrFoldDimOp(b, loc, shapeDim.shape, shapeDim.dimension);
125 sizeBounds.push_back(dim);
126 auto it = fusedLoopsAndRanges.find(i);
127 if (it != fusedLoopsAndRanges.end()) {
128 ivs.push_back(it->second.offset);
129 tileSizes.push_back(it->second.size);
130 loopRanges.push_back(it->second);
131 LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange "
132 << loopRanges.back() << "\n");
133 } else {
134 tileSizes.push_back(zero);
135 loopRanges.push_back(Range{zero, dim, one});
136 LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange "
137 << loopRanges.back() << "\n");
138 }
139 }
140
141 SmallVector<Value, 8> clonedShapes;
142 clonedShapes.reserve(producer.getNumInputsAndOutputs());
143
144 // Compute subranges for all tensor input/output operands.
145 clonedShapes.append(makeTiledShapes(
146 b, loc, producer, getTiledOperands(producer), ivs, tileSizes, sizeBounds,
147 /**omitPartialTileCheck=*/false));
148
149 // Iterate over the results in order.
150 // Extract the subtensor type from the linearized range.
151 // Since we do not enforce any canonicalizations on the fly, this is always
152 // fully dynamic at construction time.
153 SmallVector<Type, 4> resultTypes;
154 resultTypes.reserve(producer->getNumResults());
155 for (RankedTensorType t : producer.getOutputTensorTypes()) {
156 unsigned rank = t.getRank();
157 SmallVector<int64_t, 4> staticOffsetsVector(
158 rank, ShapedType::kDynamicStrideOrOffset);
159 SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize);
160 SmallVector<int64_t, 4> staticStridesVector(
161 rank, ShapedType::kDynamicStrideOrOffset);
162 resultTypes.push_back(tensor::ExtractSliceOp::inferResultType(
163 t.cast<RankedTensorType>(), staticOffsetsVector, staticSizesVector,
164 staticStridesVector));
165 }
166
167 Operation *clonedOp = producer.clone(b, loc, resultTypes, clonedShapes);
168
169 // Shift all IndexOp results by the tile offset.
170 SmallVector<Value> allIvs;
171 llvm::transform(loopRanges, std::back_inserter(allIvs),
172 [](Range range) { return range.offset; });
173 offsetIndices(b, clonedOp, allIvs);
174
175 return clonedOp;
176 }
177
178 /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is
179 /// expected to be defined by a subview op or an extract_slice op.
getRangeFromOperandShape(OpBuilder & b,Location loc,Value shapedOperand,unsigned dim)180 static Range getRangeFromOperandShape(OpBuilder &b, Location loc,
181 Value shapedOperand, unsigned dim) {
182 Operation *shapeProducingOp = shapedOperand.getDefiningOp();
183 if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp))
184 return subViewOp.getOrCreateRanges(b, loc)[dim];
185 if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp))
186 return sliceOp.getOrCreateRanges(b, loc)[dim];
187 llvm_unreachable("SubviewOp or ExtractSliceOp expected");
188 }
189
190 /// Fuses the producer into the loop immediately enclosing the consumer.
191 /// This is achieved by "recomputing" the producer at the time it
192 /// is needed just before the consumer.
fuse(OpBuilder & b,LinalgOp producerOp,AffineMap producerMap,OpOperand & consumerOpOperand)193 static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap,
194 OpOperand &consumerOpOperand) {
195 LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n");
196 DenseMap<unsigned, Range> fusedLoopsAndRanges;
197 Value shapedOperand = consumerOpOperand.get();
198 for (const auto &en : llvm::enumerate(producerMap.getResults())) {
199 unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
200 fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape(
201 b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index());
202 }
203 return fuse(b, producerOp, fusedLoopsAndRanges);
204 }
205
206 // Encode structural fusion safety preconditions.
207 // Some of these will be lifted in the future with better analysis.
isStructurallyFusableProducer(LinalgOp producer,Value consumedView,LinalgOp consumer)208 static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
209 LinalgOp consumer) {
210 assert(producer.hasBufferSemantics() &&
211 "expected linalg op with buffer semantics");
212 assert(consumer.hasBufferSemantics() &&
213 "expected linalg op with buffer semantics");
214 if (producer.getNumOutputs() != 1) {
215 LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)");
216 return false;
217 }
218 // Only fuse when the producer block dominates.
219 DominanceInfo dom(producer.getOperation());
220 if (!dom.dominates(producer->getBlock(), consumer->getBlock())) {
221 LLVM_DEBUG(
222 llvm::dbgs()
223 << "\nNot structurally fusable (producer block does not dominate)");
224 return false;
225 }
226 return true;
227 }
228
isProducerLastWriteOfView(const LinalgDependenceGraph & graph,LinalgOp consumer,Value consumedView,LinalgOp producer)229 bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
230 LinalgOp consumer,
231 Value consumedView,
232 LinalgOp producer) {
233 assert(producer.hasBufferSemantics() &&
234 "expected linalg op with buffer semantics");
235 assert(consumer.hasBufferSemantics() &&
236 "expected linalg op with buffer semantics");
237 // Make some simple structural checks that alleviate the need for more
238 // complex analyses.
239 if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
240 LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t"
241 << *producer.getOperation());
242 return false;
243 }
244 // Check for any interleaved write to consumedView.
245 if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
246 LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t"
247 << *producer.getOperation());
248 return false;
249 }
250 return true;
251 }
252
isFusableInto(const LinalgDependenceGraph & graph,LinalgOp consumer,Value consumedView,LinalgOp producer)253 bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
254 LinalgOp consumer, Value consumedView,
255 LinalgOp producer) {
256 assert(producer.hasBufferSemantics() &&
257 "expected linalg op with buffer semantics");
258 assert(consumer.hasBufferSemantics() &&
259 "expected linalg op with buffer semantics");
260 if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
261 return false;
262 // Check for any fusion-preventing dependence to any shape read/written that
263 // would violate dependences.
264 if (!graph.findCoveringDependences(producer, consumer).empty()) {
265 LLVM_DEBUG(llvm::dbgs()
266 << "\n***Not fusable due to an interleaved dependence:\t"
267 << *producer.getOperation());
268 return false;
269 }
270 return true;
271 }
272
273 /// For `consumer` with buffer semantics, find the Linalg operation on buffers
274 /// that is the last writer of `consumerOpOperand`. For now the fusable
275 /// dependence is returned as an instance of the `dependenceGraph`.
276 static FailureOr<LinalgDependenceGraph::LinalgDependenceGraphElem>
findFusableProducer(OpOperand & consumerOpOperand,const LinalgDependenceGraph & dependenceGraph)277 findFusableProducer(OpOperand &consumerOpOperand,
278 const LinalgDependenceGraph &dependenceGraph) {
279 LLVM_DEBUG(llvm::dbgs() << "findFusableProducer for: "
280 << consumerOpOperand.get() << " @"
281 << consumerOpOperand.getOperandNumber() << " in "
282 << *consumerOpOperand.getOwner() << "\n");
283 LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
284 if (!consumerOp)
285 return failure();
286
287 // Only consider RAW and WAW atm.
288 for (auto depType : {
289 LinalgDependenceGraph::DependenceType::RAW,
290 LinalgDependenceGraph::DependenceType::WAW,
291 }) {
292 LLVM_DEBUG(llvm::dbgs()
293 << "Dependencies into: " << *consumerOp.getOperation() << "\n");
294 for (auto dependence : llvm::make_filter_range(
295 dependenceGraph.getDependencesInto(consumerOp, depType),
296 [&](LinalgDependenceGraph::LinalgDependenceGraphElem elem) {
297 LLVM_DEBUG(llvm::dbgs() << "Inspect dependence btw: "
298 << elem.getIndexingValue() << " and "
299 << elem.getDependentValue() << "\n");
300 Value v = elem.getIndexingValue();
301 Optional<unsigned> operandNum =
302 elem.getIndexingOpViewOperandNum();
303 return isa<LinalgOp>(elem.getDependentOp()) &&
304 v == consumerOpOperand.get() && operandNum &&
305 *operandNum == consumerOpOperand.getOperandNumber();
306 })) {
307 // Consumer consumes this view, `isStructurallyFusableProducer` also
308 // checks whether it is a strict subview of the producer view.
309 auto producer = cast<LinalgOp>(dependence.getDependentOp());
310 LLVM_DEBUG(llvm::dbgs()
311 << "\n"
312 << LinalgDependenceGraph::getDependenceTypeStr(depType)
313 << "producer: " << *dependence.getDependentOp()
314 << " view: " << dependence.getDependentValue() << "\n");
315
316 // If the producer and consumer have tensor semantics, the only dependence
317 // between them is through a RAW dependence and they are fusable by
318 // construction. For buffer semantics need additional checks.
319 if (producer.hasBufferSemantics() && consumerOp.hasBufferSemantics() &&
320 isFusableInto(dependenceGraph, consumerOp, consumerOpOperand.get(),
321 producer))
322 return dependence;
323 if (producer.hasTensorSemantics() && consumerOp.hasTensorSemantics()) {
324 assert(dependence.dependenceType ==
325 LinalgDependenceGraph::DependenceType::RAW);
326 return dependence;
327 }
328 }
329 }
330 return failure();
331 }
332
333 FailureOr<FusionInfo>
fuseProducerOfBuffer(OpBuilder & b,OpOperand & consumerOpOperand,const LinalgDependenceGraph & graph)334 mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, OpOperand &consumerOpOperand,
335 const LinalgDependenceGraph &graph) {
336 Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence =
337 findFusableProducer(consumerOpOperand, graph);
338 if (!fusableDependence)
339 return failure();
340
341 LinalgOp producerOp = dyn_cast<LinalgOp>(fusableDependence->getDependentOp());
342 if (!producerOp)
343 return failure();
344
345 // If producer is already in the same block as consumer, we are done.
346 if (consumerOpOperand.get().getParentBlock() ==
347 fusableDependence->getDependentValue().getParentBlock())
348 return failure();
349
350 Optional<AffineMap> producerMap =
351 fusableDependence->getDependentOpViewIndexingMap();
352 if (!producerMap)
353 return failure();
354
355 // Must be a subview or an extract_slice to guarantee there are loops we can
356 // fuse into.
357 auto subView = consumerOpOperand.get().getDefiningOp<memref::SubViewOp>();
358 if (!subView) {
359 LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview)");
360 return failure();
361 }
362
363 // Fuse `producer` just before `consumer`.
364 OpBuilder::InsertionGuard g(b);
365 b.setInsertionPoint(consumerOpOperand.getOwner());
366 LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: "
367 << *consumerOpOperand.getOwner() << "\n");
368
369 auto fusedProducer = fuse(b, producerOp, *producerMap, consumerOpOperand);
370 return FusionInfo{producerOp, fusedProducer};
371 }
372
373 /// Walk back use-def chain through scf::For yields.
374 /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp
375
376 // TODO(ravishankarm, ntv): This can be moved into the dependence graphs
377 // dependence tracking since the dependence tracking is similar to what is done
378 // w.r.t to buffers.
getProducerOfTensor(Value tensor,OpResult & opResult)379 static void getProducerOfTensor(Value tensor, OpResult &opResult) {
380 if (!tensor.getType().isa<RankedTensorType>())
381 return;
382
383 while (true) {
384 LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor);
385 if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) {
386 opResult = tensor.cast<OpResult>();
387 return;
388 }
389 if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) {
390 tensor = sliceOp.getSource();
391 continue;
392 }
393 if (auto blockArg = tensor.dyn_cast<BlockArgument>()) {
394 if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) {
395 tensor = *(forOp.getIterOperands().begin() + blockArg.getArgNumber());
396 continue;
397 }
398 }
399 return;
400 }
401 }
402
403 FailureOr<FusionInfo>
fuseProducerOfTensor(OpBuilder & b,OpOperand & consumerOpOperand)404 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) {
405 Value inputTensor = consumerOpOperand.get();
406 OpResult producerOpResult;
407 getProducerOfTensor(inputTensor, producerOpResult);
408 if (!producerOpResult) {
409 LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer");
410 return failure();
411 }
412 return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand);
413 }
414
415 FailureOr<FusionInfo>
fuseProducerOfTensor(OpBuilder & b,OpResult producerOpResult,OpOperand & consumerOpOperand)416 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult,
417 OpOperand &consumerOpOperand) {
418 auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner());
419 if (!producerOp)
420 return failure();
421
422 LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
423 if (!consumerOp)
424 return failure();
425
426 Value inputTensor = consumerOpOperand.get();
427
428 // Must be an extract_slice op to guarantee there are loops we can fuse into.
429 auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>();
430 if (!sliceOp) {
431 LLVM_DEBUG(llvm::dbgs()
432 << "\nNot fusable, not an extract_slice op: " << inputTensor);
433 return failure();
434 }
435
436 // If producer is already in the same block as consumer, we are done.
437 if (consumerOpOperand.get().getParentBlock() ==
438 producerOpResult.getParentBlock())
439 return failure();
440
441 // Insert fused `producer` just before `consumer`.
442 OpBuilder::InsertionGuard g(b);
443 b.setInsertionPoint(consumerOp);
444 LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n");
445 OpOperand *opOperand =
446 producerOp.getOutputOperand(producerOpResult.getResultNumber());
447 LinalgOp fusedProducer =
448 fuse(b, producerOp, producerOp.getTiedIndexingMap(opOperand),
449 consumerOpOperand);
450
451 // Replace use.
452 // Canonicalizations are not guaranteed to have happened before constructing
453 // `fusedProducer`. In the tensor case this can result in temporary type
454 // mismatches. Insert a `tensor.cast` op to propagate the transformation
455 // invariant that types are compatible.
456 Value def = fusedProducer->getResult(producerOpResult.getResultNumber());
457 Type consumerType = consumerOpOperand.get().getType();
458 if (consumerType != def.getType())
459 def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def);
460 consumerOpOperand.set(def);
461 return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer};
462 }
463