1 //===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the GPU kernel-related dialect and its operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/GPU/GPUDialect.h" 14 15 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 16 #include "mlir/Dialect/MemRef/IR/MemRef.h" 17 #include "mlir/Dialect/StandardOps/IR/Ops.h" 18 #include "mlir/IR/Attributes.h" 19 #include "mlir/IR/Builders.h" 20 #include "mlir/IR/BuiltinOps.h" 21 #include "mlir/IR/BuiltinTypes.h" 22 #include "mlir/IR/DialectImplementation.h" 23 #include "mlir/IR/FunctionImplementation.h" 24 #include "mlir/IR/OpImplementation.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "mlir/IR/TypeUtilities.h" 27 #include "llvm/ADT/TypeSwitch.h" 28 29 using namespace mlir; 30 using namespace mlir::gpu; 31 32 #include "mlir/Dialect/GPU/GPUOpsDialect.cpp.inc" 33 34 //===----------------------------------------------------------------------===// 35 // MMAMatrixType 36 //===----------------------------------------------------------------------===// 37 38 MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType, 39 StringRef operand) { 40 return Base::get(elementType.getContext(), shape, elementType, operand); 41 } 42 43 MMAMatrixType 44 MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError, 45 ArrayRef<int64_t> shape, Type elementType, 46 StringRef operand) { 47 return Base::getChecked(emitError, elementType.getContext(), shape, 48 elementType, operand); 49 } 50 51 unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; } 52 53 ArrayRef<int64_t> MMAMatrixType::getShape() const { 54 return getImpl()->getShape(); 55 } 56 57 Type MMAMatrixType::getElementType() const { return getImpl()->elementType; } 58 59 StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); } 60 61 bool MMAMatrixType::isValidElementType(Type elementType) { 62 return elementType.isF16() || elementType.isF32(); 63 } 64 65 LogicalResult 66 MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError, 67 ArrayRef<int64_t> shape, Type elementType, 68 StringRef operand) { 69 if (!operand.equals("AOp") && !operand.equals("BOp") && 70 !operand.equals("COp")) 71 return emitError() << "operand expected to be one of AOp, BOp or COp"; 72 73 if (shape.size() != 2) 74 return emitError() << "MMAMatrixType must have exactly two dimensions"; 75 76 if (!MMAMatrixType::isValidElementType(elementType)) 77 return emitError() << "MMAMatrixType elements must be F16 or F32"; 78 79 return success(); 80 } 81 82 //===----------------------------------------------------------------------===// 83 // GPUDialect 84 //===----------------------------------------------------------------------===// 85 86 /// GPU memory space identifiers. 87 enum GPUMemorySpace { 88 /// Generic memory space identifier. 89 kGenericMemorySpace = 0, 90 91 /// Global memory space identifier. 92 kGlobalMemorySpace = 1, 93 94 /// Shared memory space identifier. 95 kSharedMemorySpace = 3 96 }; 97 98 bool GPUDialect::isKernel(Operation *op) { 99 UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName()); 100 return static_cast<bool>(isKernelAttr); 101 } 102 103 void GPUDialect::initialize() { 104 addTypes<AsyncTokenType>(); 105 addTypes<MMAMatrixType>(); 106 addOperations< 107 #define GET_OP_LIST 108 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 109 >(); 110 } 111 112 Type GPUDialect::parseType(DialectAsmParser &parser) const { 113 // Parse the main keyword for the type. 114 StringRef keyword; 115 if (parser.parseKeyword(&keyword)) 116 return Type(); 117 MLIRContext *context = getContext(); 118 119 // Handle 'async token' types. 120 if (keyword == "async.token") 121 return AsyncTokenType::get(context); 122 123 if (keyword == "mma_matrix") { 124 llvm::SMLoc beginLoc = parser.getNameLoc(); 125 126 // Parse '<'. 127 if (parser.parseLess()) 128 return nullptr; 129 130 // Parse the size and elementType. 131 SmallVector<int64_t> shape; 132 Type elementType; 133 if (parser.parseDimensionList(shape, /*allowDynamic=*/false) || 134 parser.parseType(elementType)) 135 return nullptr; 136 137 // Parse ',' 138 if (parser.parseComma()) 139 return nullptr; 140 141 // Parse operand. 142 std::string operand; 143 if (failed(parser.parseOptionalString(&operand))) 144 return nullptr; 145 146 // Parse '>'. 147 if (parser.parseGreater()) 148 return nullptr; 149 150 return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn( 151 parser.getEncodedSourceLoc(beginLoc)), 152 shape, elementType, operand); 153 } 154 155 parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword); 156 return Type(); 157 } 158 159 void GPUDialect::printType(Type type, DialectAsmPrinter &os) const { 160 TypeSwitch<Type>(type) 161 .Case<AsyncTokenType>([&](Type) { os << "async.token"; }) 162 .Case<MMAMatrixType>([&](MMAMatrixType fragTy) { 163 os << "mma_matrix<"; 164 auto shape = fragTy.getShape(); 165 for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim) 166 os << *dim << 'x'; 167 os << shape.back() << 'x' << fragTy.getElementType(); 168 os << ", \"" << fragTy.getOperand() << "\"" << '>'; 169 }) 170 .Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); }); 171 } 172 173 LogicalResult GPUDialect::verifyOperationAttribute(Operation *op, 174 NamedAttribute attr) { 175 if (!attr.second.isa<UnitAttr>() || 176 attr.first != getContainerModuleAttrName()) 177 return success(); 178 179 auto module = dyn_cast<ModuleOp>(op); 180 if (!module) 181 return op->emitError("expected '") 182 << getContainerModuleAttrName() << "' attribute to be attached to '" 183 << ModuleOp::getOperationName() << '\''; 184 185 auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult { 186 // Ignore launches that are nested more or less deep than functions in the 187 // module we are currently checking. 188 if (!launchOp->getParentOp() || 189 launchOp->getParentOp()->getParentOp() != module) 190 return success(); 191 192 // Ignore launch ops with missing attributes here. The errors will be 193 // reported by the verifiers of those ops. 194 if (!launchOp->getAttrOfType<SymbolRefAttr>( 195 LaunchFuncOp::getKernelAttrName())) 196 return success(); 197 198 // Check that `launch_func` refers to a well-formed GPU kernel module. 199 StringAttr kernelModuleName = launchOp.getKernelModuleName(); 200 auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName); 201 if (!kernelModule) 202 return launchOp.emitOpError() 203 << "kernel module '" << kernelModuleName.getValue() 204 << "' is undefined"; 205 206 // Check that `launch_func` refers to a well-formed kernel function. 207 Operation *kernelFunc = module.lookupSymbol(launchOp.kernelAttr()); 208 auto kernelGPUFunction = dyn_cast_or_null<gpu::GPUFuncOp>(kernelFunc); 209 auto kernelLLVMFunction = dyn_cast_or_null<LLVM::LLVMFuncOp>(kernelFunc); 210 if (!kernelGPUFunction && !kernelLLVMFunction) 211 return launchOp.emitOpError("kernel function '") 212 << launchOp.kernel() << "' is undefined"; 213 if (!kernelFunc->getAttrOfType<mlir::UnitAttr>( 214 GPUDialect::getKernelFuncAttrName())) 215 return launchOp.emitOpError("kernel function is missing the '") 216 << GPUDialect::getKernelFuncAttrName() << "' attribute"; 217 218 // TODO: if the kernel function has been converted to 219 // the LLVM dialect but the caller hasn't (which happens during the 220 // separate compilation), do not check type correspondence as it would 221 // require the verifier to be aware of the LLVM type conversion. 222 if (kernelLLVMFunction) 223 return success(); 224 225 unsigned actualNumArguments = launchOp.getNumKernelOperands(); 226 unsigned expectedNumArguments = kernelGPUFunction.getNumArguments(); 227 if (expectedNumArguments != actualNumArguments) 228 return launchOp.emitOpError("got ") 229 << actualNumArguments << " kernel operands but expected " 230 << expectedNumArguments; 231 232 auto functionType = kernelGPUFunction.getType(); 233 for (unsigned i = 0; i < expectedNumArguments; ++i) { 234 if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) { 235 return launchOp.emitOpError("type of function argument ") 236 << i << " does not match"; 237 } 238 } 239 240 return success(); 241 }); 242 243 return walkResult.wasInterrupted() ? failure() : success(); 244 } 245 246 template <typename T> 247 static LogicalResult verifyIndexOp(T op) { 248 auto dimension = op.dimension(); 249 if (dimension != "x" && dimension != "y" && dimension != "z") 250 return op.emitError("dimension \"") << dimension << "\" is invalid"; 251 return success(); 252 } 253 254 static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) { 255 if (allReduce.body().empty() != allReduce.op().hasValue()) 256 return allReduce.emitError( 257 "expected either an op attribute or a non-empty body"); 258 if (!allReduce.body().empty()) { 259 if (allReduce.body().getNumArguments() != 2) 260 return allReduce.emitError("expected two region arguments"); 261 for (auto argument : allReduce.body().getArguments()) { 262 if (argument.getType() != allReduce.getType()) 263 return allReduce.emitError("incorrect region argument type"); 264 } 265 unsigned yieldCount = 0; 266 for (Block &block : allReduce.body()) { 267 if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) { 268 if (yield.getNumOperands() != 1) 269 return allReduce.emitError("expected one gpu.yield operand"); 270 if (yield.getOperand(0).getType() != allReduce.getType()) 271 return allReduce.emitError("incorrect gpu.yield type"); 272 ++yieldCount; 273 } 274 } 275 if (yieldCount == 0) 276 return allReduce.emitError("expected gpu.yield op in region"); 277 } else { 278 StringRef opName = *allReduce.op(); 279 if ((opName == "and" || opName == "or" || opName == "xor") && 280 !allReduce.getType().isa<IntegerType>()) { 281 return allReduce.emitError() 282 << '`' << opName << '`' 283 << " accumulator is only compatible with Integer type"; 284 } 285 } 286 return success(); 287 } 288 289 static LogicalResult verifyShuffleOp(gpu::ShuffleOp shuffleOp) { 290 auto type = shuffleOp.value().getType(); 291 if (shuffleOp.result().getType() != type) { 292 return shuffleOp.emitOpError() 293 << "requires the same type for value operand and result"; 294 } 295 if (!type.isSignlessIntOrFloat() || type.getIntOrFloatBitWidth() != 32) { 296 return shuffleOp.emitOpError() 297 << "requires value operand type to be f32 or i32"; 298 } 299 return success(); 300 } 301 302 static void printShuffleOp(OpAsmPrinter &p, ShuffleOp op) { 303 p << ' ' << op.getOperands() << ' ' << op.mode() << " : " 304 << op.value().getType(); 305 } 306 307 static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &state) { 308 SmallVector<OpAsmParser::OperandType, 3> operandInfo; 309 if (parser.parseOperandList(operandInfo, 3)) 310 return failure(); 311 312 StringRef mode; 313 if (parser.parseKeyword(&mode)) 314 return failure(); 315 state.addAttribute("mode", parser.getBuilder().getStringAttr(mode)); 316 317 Type valueType; 318 Type int32Type = parser.getBuilder().getIntegerType(32); 319 Type int1Type = parser.getBuilder().getI1Type(); 320 if (parser.parseColonType(valueType) || 321 parser.resolveOperands(operandInfo, {valueType, int32Type, int32Type}, 322 parser.getCurrentLocation(), state.operands) || 323 parser.addTypesToList({valueType, int1Type}, state.types)) 324 return failure(); 325 return success(); 326 } 327 328 //===----------------------------------------------------------------------===// 329 // AsyncOpInterface 330 //===----------------------------------------------------------------------===// 331 332 void gpu::addAsyncDependency(Operation *op, Value token) { 333 op->insertOperands(0, {token}); 334 if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>()) 335 return; 336 auto attrName = 337 OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr(); 338 auto sizeAttr = op->template getAttrOfType<DenseIntElementsAttr>(attrName); 339 if (!sizeAttr) 340 return; // Async dependencies is the only variadic operand. 341 SmallVector<int32_t, 8> sizes; 342 for (auto size : sizeAttr.getIntValues()) 343 sizes.push_back(size.getSExtValue()); 344 ++sizes.front(); 345 op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes)); 346 } 347 348 //===----------------------------------------------------------------------===// 349 // LaunchOp 350 //===----------------------------------------------------------------------===// 351 352 void LaunchOp::build(OpBuilder &builder, OperationState &result, 353 Value gridSizeX, Value gridSizeY, Value gridSizeZ, 354 Value blockSizeX, Value blockSizeY, Value blockSizeZ) { 355 // Add grid and block sizes as op operands, followed by the data operands. 356 result.addOperands( 357 {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); 358 359 // Create a kernel body region with kNumConfigRegionAttributes + N arguments, 360 // where the first kNumConfigRegionAttributes arguments have `index` type and 361 // the rest have the same types as the data operands. 362 Region *kernelRegion = result.addRegion(); 363 Block *body = new Block(); 364 body->addArguments( 365 std::vector<Type>(kNumConfigRegionAttributes, builder.getIndexType())); 366 kernelRegion->push_back(body); 367 } 368 369 KernelDim3 LaunchOp::getBlockIds() { 370 assert(!body().empty() && "LaunchOp body must not be empty."); 371 auto args = body().getArguments(); 372 return KernelDim3{args[0], args[1], args[2]}; 373 } 374 375 KernelDim3 LaunchOp::getThreadIds() { 376 assert(!body().empty() && "LaunchOp body must not be empty."); 377 auto args = body().getArguments(); 378 return KernelDim3{args[3], args[4], args[5]}; 379 } 380 381 KernelDim3 LaunchOp::getGridSize() { 382 assert(!body().empty() && "LaunchOp body must not be empty."); 383 auto args = body().getArguments(); 384 return KernelDim3{args[6], args[7], args[8]}; 385 } 386 387 KernelDim3 LaunchOp::getBlockSize() { 388 assert(!body().empty() && "LaunchOp body must not be empty."); 389 auto args = body().getArguments(); 390 return KernelDim3{args[9], args[10], args[11]}; 391 } 392 393 KernelDim3 LaunchOp::getGridSizeOperandValues() { 394 return KernelDim3{getOperand(0), getOperand(1), getOperand(2)}; 395 } 396 397 KernelDim3 LaunchOp::getBlockSizeOperandValues() { 398 return KernelDim3{getOperand(3), getOperand(4), getOperand(5)}; 399 } 400 401 static LogicalResult verify(LaunchOp op) { 402 // Kernel launch takes kNumConfigOperands leading operands for grid/block 403 // sizes and transforms them into kNumConfigRegionAttributes region arguments 404 // for block/thread identifiers and grid/block sizes. 405 if (!op.body().empty()) { 406 if (op.body().getNumArguments() != 407 LaunchOp::kNumConfigOperands + op.getNumOperands()) 408 return op.emitOpError("unexpected number of region arguments"); 409 } 410 411 // Block terminators without successors are expected to exit the kernel region 412 // and must be `gpu.terminator`. 413 for (Block &block : op.body()) { 414 if (block.empty()) 415 continue; 416 if (block.back().getNumSuccessors() != 0) 417 continue; 418 if (!isa<gpu::TerminatorOp>(&block.back())) { 419 return block.back() 420 .emitError() 421 .append("expected '", gpu::TerminatorOp::getOperationName(), 422 "' or a terminator with successors") 423 .attachNote(op.getLoc()) 424 .append("in '", LaunchOp::getOperationName(), "' body region"); 425 } 426 } 427 428 return success(); 429 } 430 431 // Pretty-print the kernel grid/block size assignment as 432 // (%iter-x, %iter-y, %iter-z) in 433 // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use) 434 // where %size-* and %iter-* will correspond to the body region arguments. 435 static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size, 436 KernelDim3 operands, KernelDim3 ids) { 437 p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in ("; 438 p << size.x << " = " << operands.x << ", "; 439 p << size.y << " = " << operands.y << ", "; 440 p << size.z << " = " << operands.z << ')'; 441 } 442 443 static void printLaunchOp(OpAsmPrinter &p, LaunchOp op) { 444 // Print the launch configuration. 445 p << ' ' << op.getBlocksKeyword(); 446 printSizeAssignment(p, op.getGridSize(), op.getGridSizeOperandValues(), 447 op.getBlockIds()); 448 p << ' ' << op.getThreadsKeyword(); 449 printSizeAssignment(p, op.getBlockSize(), op.getBlockSizeOperandValues(), 450 op.getThreadIds()); 451 452 p.printRegion(op.body(), /*printEntryBlockArgs=*/false); 453 p.printOptionalAttrDict(op->getAttrs()); 454 } 455 456 // Parse the size assignment blocks for blocks and threads. These have the form 457 // (%region_arg, %region_arg, %region_arg) in 458 // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand) 459 // where %region_arg are percent-identifiers for the region arguments to be 460 // introduced further (SSA defs), and %operand are percent-identifiers for the 461 // SSA value uses. 462 static ParseResult 463 parseSizeAssignment(OpAsmParser &parser, 464 MutableArrayRef<OpAsmParser::OperandType> sizes, 465 MutableArrayRef<OpAsmParser::OperandType> regionSizes, 466 MutableArrayRef<OpAsmParser::OperandType> indices) { 467 assert(indices.size() == 3 && "space for three indices expected"); 468 SmallVector<OpAsmParser::OperandType, 3> args; 469 if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3, 470 OpAsmParser::Delimiter::Paren) || 471 parser.parseKeyword("in") || parser.parseLParen()) 472 return failure(); 473 std::move(args.begin(), args.end(), indices.begin()); 474 475 for (int i = 0; i < 3; ++i) { 476 if (i != 0 && parser.parseComma()) 477 return failure(); 478 if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() || 479 parser.parseOperand(sizes[i])) 480 return failure(); 481 } 482 483 return parser.parseRParen(); 484 } 485 486 // Parses a Launch operation. 487 // operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment 488 // `threads` `(` ssa-id-list `)` `in` ssa-reassignment 489 // region attr-dict? 490 // ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)` 491 static ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) { 492 // Sizes of the grid and block. 493 SmallVector<OpAsmParser::OperandType, LaunchOp::kNumConfigOperands> sizes( 494 LaunchOp::kNumConfigOperands); 495 MutableArrayRef<OpAsmParser::OperandType> sizesRef(sizes); 496 497 // Actual (data) operands passed to the kernel. 498 SmallVector<OpAsmParser::OperandType, 4> dataOperands; 499 500 // Region arguments to be created. 501 SmallVector<OpAsmParser::OperandType, 16> regionArgs( 502 LaunchOp::kNumConfigRegionAttributes); 503 MutableArrayRef<OpAsmParser::OperandType> regionArgsRef(regionArgs); 504 505 // Parse the size assignment segments: the first segment assigns grid sizes 506 // and defines values for block identifiers; the second segment assigns block 507 // sizes and defines values for thread identifiers. In the region argument 508 // list, identifiers precede sizes, and block-related values precede 509 // thread-related values. 510 if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) || 511 parseSizeAssignment(parser, sizesRef.take_front(3), 512 regionArgsRef.slice(6, 3), 513 regionArgsRef.slice(0, 3)) || 514 parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) || 515 parseSizeAssignment(parser, sizesRef.drop_front(3), 516 regionArgsRef.slice(9, 3), 517 regionArgsRef.slice(3, 3)) || 518 parser.resolveOperands(sizes, parser.getBuilder().getIndexType(), 519 result.operands)) 520 return failure(); 521 522 // Introduce the body region and parse it. The region has 523 // kNumConfigRegionAttributes arguments that correspond to 524 // block/thread identifiers and grid/block sizes, all of the `index` type. 525 Type index = parser.getBuilder().getIndexType(); 526 SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes( 527 LaunchOp::kNumConfigRegionAttributes, index); 528 Region *body = result.addRegion(); 529 return failure(parser.parseRegion(*body, regionArgs, dataTypes) || 530 parser.parseOptionalAttrDict(result.attributes)); 531 } 532 533 //===----------------------------------------------------------------------===// 534 // LaunchFuncOp 535 //===----------------------------------------------------------------------===// 536 537 void LaunchFuncOp::build(OpBuilder &builder, OperationState &result, 538 GPUFuncOp kernelFunc, KernelDim3 gridSize, 539 KernelDim3 blockSize, ValueRange kernelOperands) { 540 // Add grid and block sizes as op operands, followed by the data operands. 541 result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x, 542 blockSize.y, blockSize.z}); 543 result.addOperands(kernelOperands); 544 auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>(); 545 auto kernelSymbol = 546 SymbolRefAttr::get(kernelModule.getNameAttr(), 547 {SymbolRefAttr::get(kernelFunc.getNameAttr())}); 548 result.addAttribute(getKernelAttrName(), kernelSymbol); 549 SmallVector<int32_t, 8> segmentSizes(8, 1); 550 segmentSizes.front() = 0; // Initially no async dependencies. 551 segmentSizes.back() = static_cast<int32_t>(kernelOperands.size()); 552 result.addAttribute(getOperandSegmentSizeAttr(), 553 builder.getI32VectorAttr(segmentSizes)); 554 } 555 556 unsigned LaunchFuncOp::getNumKernelOperands() { 557 return getNumOperands() - asyncDependencies().size() - kNumConfigOperands; 558 } 559 560 StringAttr LaunchFuncOp::getKernelModuleName() { 561 return kernel().getRootReference(); 562 } 563 564 StringAttr LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); } 565 566 Value LaunchFuncOp::getKernelOperand(unsigned i) { 567 return getOperand(asyncDependencies().size() + kNumConfigOperands + i); 568 } 569 570 KernelDim3 LaunchFuncOp::getGridSizeOperandValues() { 571 auto operands = getOperands().drop_front(asyncDependencies().size()); 572 return KernelDim3{operands[0], operands[1], operands[2]}; 573 } 574 575 KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() { 576 auto operands = getOperands().drop_front(asyncDependencies().size()); 577 return KernelDim3{operands[3], operands[4], operands[5]}; 578 } 579 580 static LogicalResult verify(LaunchFuncOp op) { 581 auto module = op->getParentOfType<ModuleOp>(); 582 if (!module) 583 return op.emitOpError("expected to belong to a module"); 584 585 if (!module->getAttrOfType<UnitAttr>( 586 GPUDialect::getContainerModuleAttrName())) 587 return op.emitOpError( 588 "expected the closest surrounding module to have the '" + 589 GPUDialect::getContainerModuleAttrName() + "' attribute"); 590 591 auto kernelAttr = op->getAttrOfType<SymbolRefAttr>(op.getKernelAttrName()); 592 if (!kernelAttr) 593 return op.emitOpError("symbol reference attribute '" + 594 op.getKernelAttrName() + "' must be specified"); 595 596 return success(); 597 } 598 599 static ParseResult 600 parseLaunchFuncOperands(OpAsmParser &parser, 601 SmallVectorImpl<OpAsmParser::OperandType> &argNames, 602 SmallVectorImpl<Type> &argTypes) { 603 if (parser.parseOptionalKeyword("args")) 604 return success(); 605 SmallVector<NamedAttrList, 4> argAttrs; 606 bool isVariadic = false; 607 return function_like_impl::parseFunctionArgumentList( 608 parser, /*allowAttributes=*/false, 609 /*allowVariadic=*/false, argNames, argTypes, argAttrs, isVariadic); 610 } 611 612 static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *, 613 OperandRange operands, TypeRange types) { 614 if (operands.empty()) 615 return; 616 printer << "args("; 617 llvm::interleaveComma(llvm::zip(operands, types), printer, 618 [&](const auto &pair) { 619 printer.printOperand(std::get<0>(pair)); 620 printer << " : "; 621 printer.printType(std::get<1>(pair)); 622 }); 623 printer << ")"; 624 } 625 626 //===----------------------------------------------------------------------===// 627 // GPUFuncOp 628 //===----------------------------------------------------------------------===// 629 630 /// Adds a new block argument that corresponds to buffers located in 631 /// workgroup memory. 632 BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type) { 633 auto attrName = getNumWorkgroupAttributionsAttrName(); 634 auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName); 635 (*this)->setAttr(attrName, 636 IntegerAttr::get(attr.getType(), attr.getValue() + 1)); 637 return getBody().insertArgument(getType().getNumInputs() + attr.getInt(), 638 type); 639 } 640 641 /// Adds a new block argument that corresponds to buffers located in 642 /// private memory. 643 BlockArgument GPUFuncOp::addPrivateAttribution(Type type) { 644 // Buffers on the private memory always come after buffers on the workgroup 645 // memory. 646 return getBody().addArgument(type); 647 } 648 649 void GPUFuncOp::build(OpBuilder &builder, OperationState &result, 650 StringRef name, FunctionType type, 651 TypeRange workgroupAttributions, 652 TypeRange privateAttributions, 653 ArrayRef<NamedAttribute> attrs) { 654 result.addAttribute(SymbolTable::getSymbolAttrName(), 655 builder.getStringAttr(name)); 656 result.addAttribute(getTypeAttrName(), TypeAttr::get(type)); 657 result.addAttribute(getNumWorkgroupAttributionsAttrName(), 658 builder.getI64IntegerAttr(workgroupAttributions.size())); 659 result.addAttributes(attrs); 660 Region *body = result.addRegion(); 661 Block *entryBlock = new Block; 662 entryBlock->addArguments(type.getInputs()); 663 entryBlock->addArguments(workgroupAttributions); 664 entryBlock->addArguments(privateAttributions); 665 666 body->getBlocks().push_back(entryBlock); 667 } 668 669 /// Parses a GPU function memory attribution. 670 /// 671 /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)? 672 /// (`private` `(` ssa-id-and-type-list `)`)? 673 /// 674 /// Note that this function parses only one of the two similar parts, with the 675 /// keyword provided as argument. 676 static ParseResult 677 parseAttributions(OpAsmParser &parser, StringRef keyword, 678 SmallVectorImpl<OpAsmParser::OperandType> &args, 679 SmallVectorImpl<Type> &argTypes) { 680 // If we could not parse the keyword, just assume empty list and succeed. 681 if (failed(parser.parseOptionalKeyword(keyword))) 682 return success(); 683 684 if (failed(parser.parseLParen())) 685 return failure(); 686 687 // Early exit for an empty list. 688 if (succeeded(parser.parseOptionalRParen())) 689 return success(); 690 691 do { 692 OpAsmParser::OperandType arg; 693 Type type; 694 695 if (parser.parseRegionArgument(arg) || parser.parseColonType(type)) 696 return failure(); 697 698 args.push_back(arg); 699 argTypes.push_back(type); 700 } while (succeeded(parser.parseOptionalComma())); 701 702 return parser.parseRParen(); 703 } 704 705 /// Parses a GPU function. 706 /// 707 /// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)` 708 /// (`->` function-result-list)? memory-attribution `kernel`? 709 /// function-attributes? region 710 static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) { 711 SmallVector<OpAsmParser::OperandType, 8> entryArgs; 712 SmallVector<NamedAttrList, 1> argAttrs; 713 SmallVector<NamedAttrList, 1> resultAttrs; 714 SmallVector<Type, 8> argTypes; 715 SmallVector<Type, 4> resultTypes; 716 bool isVariadic; 717 718 // Parse the function name. 719 StringAttr nameAttr; 720 if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), 721 result.attributes)) 722 return failure(); 723 724 auto signatureLocation = parser.getCurrentLocation(); 725 if (failed(function_like_impl::parseFunctionSignature( 726 parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs, 727 isVariadic, resultTypes, resultAttrs))) 728 return failure(); 729 730 if (entryArgs.empty() && !argTypes.empty()) 731 return parser.emitError(signatureLocation) 732 << "gpu.func requires named arguments"; 733 734 // Construct the function type. More types will be added to the region, but 735 // not to the function type. 736 Builder &builder = parser.getBuilder(); 737 auto type = builder.getFunctionType(argTypes, resultTypes); 738 result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type)); 739 740 // Parse workgroup memory attributions. 741 if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(), 742 entryArgs, argTypes))) 743 return failure(); 744 745 // Store the number of operands we just parsed as the number of workgroup 746 // memory attributions. 747 unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs(); 748 result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(), 749 builder.getI64IntegerAttr(numWorkgroupAttrs)); 750 751 // Parse private memory attributions. 752 if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), 753 entryArgs, argTypes))) 754 return failure(); 755 756 // Parse the kernel attribute if present. 757 if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword()))) 758 result.addAttribute(GPUDialect::getKernelFuncAttrName(), 759 builder.getUnitAttr()); 760 761 // Parse attributes. 762 if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) 763 return failure(); 764 function_like_impl::addArgAndResultAttrs(builder, result, argAttrs, 765 resultAttrs); 766 767 // Parse the region. If no argument names were provided, take all names 768 // (including those of attributions) from the entry block. 769 auto *body = result.addRegion(); 770 return parser.parseRegion(*body, entryArgs, argTypes); 771 } 772 773 static void printAttributions(OpAsmPrinter &p, StringRef keyword, 774 ArrayRef<BlockArgument> values) { 775 if (values.empty()) 776 return; 777 778 p << ' ' << keyword << '('; 779 llvm::interleaveComma( 780 values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); }); 781 p << ')'; 782 } 783 784 /// Prints a GPU Func op. 785 static void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) { 786 p << ' '; 787 p.printSymbolName(op.getName()); 788 789 FunctionType type = op.getType(); 790 function_like_impl::printFunctionSignature( 791 p, op.getOperation(), type.getInputs(), 792 /*isVariadic=*/false, type.getResults()); 793 794 printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions()); 795 printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions()); 796 if (op.isKernel()) 797 p << ' ' << op.getKernelKeyword(); 798 799 function_like_impl::printFunctionAttributes( 800 p, op.getOperation(), type.getNumInputs(), type.getNumResults(), 801 {op.getNumWorkgroupAttributionsAttrName(), 802 GPUDialect::getKernelFuncAttrName()}); 803 p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false); 804 } 805 806 /// Hook for FunctionLike verifier. 807 LogicalResult GPUFuncOp::verifyType() { 808 Type type = getTypeAttr().getValue(); 809 if (!type.isa<FunctionType>()) 810 return emitOpError("requires '" + getTypeAttrName() + 811 "' attribute of function type"); 812 813 if (isKernel() && getType().getNumResults() != 0) 814 return emitOpError() << "expected void return type for kernel function"; 815 816 return success(); 817 } 818 819 static LogicalResult verifyAttributions(Operation *op, 820 ArrayRef<BlockArgument> attributions, 821 unsigned memorySpace) { 822 for (Value v : attributions) { 823 auto type = v.getType().dyn_cast<MemRefType>(); 824 if (!type) 825 return op->emitOpError() << "expected memref type in attribution"; 826 827 if (type.getMemorySpaceAsInt() != memorySpace) { 828 return op->emitOpError() 829 << "expected memory space " << memorySpace << " in attribution"; 830 } 831 } 832 return success(); 833 } 834 835 /// Verifies the body of the function. 836 LogicalResult GPUFuncOp::verifyBody() { 837 unsigned numFuncArguments = getNumArguments(); 838 unsigned numWorkgroupAttributions = getNumWorkgroupAttributions(); 839 unsigned numBlockArguments = front().getNumArguments(); 840 if (numBlockArguments < numFuncArguments + numWorkgroupAttributions) 841 return emitOpError() << "expected at least " 842 << numFuncArguments + numWorkgroupAttributions 843 << " arguments to body region"; 844 845 ArrayRef<Type> funcArgTypes = getType().getInputs(); 846 for (unsigned i = 0; i < numFuncArguments; ++i) { 847 Type blockArgType = front().getArgument(i).getType(); 848 if (funcArgTypes[i] != blockArgType) 849 return emitOpError() << "expected body region argument #" << i 850 << " to be of type " << funcArgTypes[i] << ", got " 851 << blockArgType; 852 } 853 854 if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(), 855 GPUDialect::getWorkgroupAddressSpace())) || 856 failed(verifyAttributions(getOperation(), getPrivateAttributions(), 857 GPUDialect::getPrivateAddressSpace()))) 858 return failure(); 859 860 return success(); 861 } 862 863 //===----------------------------------------------------------------------===// 864 // ReturnOp 865 //===----------------------------------------------------------------------===// 866 867 static LogicalResult verify(gpu::ReturnOp returnOp) { 868 GPUFuncOp function = returnOp->getParentOfType<GPUFuncOp>(); 869 870 FunctionType funType = function.getType(); 871 872 if (funType.getNumResults() != returnOp.operands().size()) 873 return returnOp.emitOpError() 874 .append("expected ", funType.getNumResults(), " result operands") 875 .attachNote(function.getLoc()) 876 .append("return type declared here"); 877 878 for (auto pair : llvm::enumerate( 879 llvm::zip(function.getType().getResults(), returnOp.operands()))) { 880 Type type; 881 Value operand; 882 std::tie(type, operand) = pair.value(); 883 if (type != operand.getType()) 884 return returnOp.emitOpError() << "unexpected type `" << operand.getType() 885 << "' for operand #" << pair.index(); 886 } 887 return success(); 888 } 889 890 //===----------------------------------------------------------------------===// 891 // GPUModuleOp 892 //===----------------------------------------------------------------------===// 893 894 void GPUModuleOp::build(OpBuilder &builder, OperationState &result, 895 StringRef name) { 896 ensureTerminator(*result.addRegion(), builder, result.location); 897 result.attributes.push_back(builder.getNamedAttr( 898 ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); 899 } 900 901 static ParseResult parseGPUModuleOp(OpAsmParser &parser, 902 OperationState &result) { 903 StringAttr nameAttr; 904 if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(), 905 result.attributes)) 906 return failure(); 907 908 // If module attributes are present, parse them. 909 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 910 return failure(); 911 912 // Parse the module body. 913 auto *body = result.addRegion(); 914 if (parser.parseRegion(*body, None, None)) 915 return failure(); 916 917 // Ensure that this module has a valid terminator. 918 GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location); 919 return success(); 920 } 921 922 static void print(OpAsmPrinter &p, GPUModuleOp op) { 923 p << ' '; 924 p.printSymbolName(op.getName()); 925 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 926 {SymbolTable::getSymbolAttrName()}); 927 p.printRegion(op->getRegion(0), /*printEntryBlockArgs=*/false, 928 /*printBlockTerminators=*/false); 929 } 930 931 //===----------------------------------------------------------------------===// 932 // GPUMemcpyOp 933 //===----------------------------------------------------------------------===// 934 935 static LogicalResult verify(MemcpyOp op) { 936 auto srcType = op.src().getType(); 937 auto dstType = op.dst().getType(); 938 939 if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType)) 940 return op.emitOpError("arguments have incompatible element type"); 941 942 if (failed(verifyCompatibleShape(srcType, dstType))) 943 return op.emitOpError("arguments have incompatible shape"); 944 945 return success(); 946 } 947 948 static ParseResult parseAsyncDependencies( 949 OpAsmParser &parser, Type &asyncTokenType, 950 SmallVectorImpl<OpAsmParser::OperandType> &asyncDependencies) { 951 auto loc = parser.getCurrentLocation(); 952 if (succeeded(parser.parseOptionalKeyword("async"))) { 953 if (parser.getNumResults() == 0) 954 return parser.emitError(loc, "needs to be named when marked 'async'"); 955 asyncTokenType = parser.getBuilder().getType<AsyncTokenType>(); 956 } 957 return parser.parseOperandList(asyncDependencies, 958 OpAsmParser::Delimiter::OptionalSquare); 959 } 960 961 static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op, 962 Type asyncTokenType, 963 OperandRange asyncDependencies) { 964 if (asyncTokenType) 965 printer << "async "; 966 if (asyncDependencies.empty()) 967 return; 968 printer << "["; 969 llvm::interleaveComma(asyncDependencies, printer); 970 printer << "]"; 971 } 972 973 //===----------------------------------------------------------------------===// 974 // GPU_SubgroupMmaLoadMatrixOp 975 //===----------------------------------------------------------------------===// 976 977 static LogicalResult verify(SubgroupMmaLoadMatrixOp op) { 978 auto srcType = op.srcMemref().getType(); 979 auto resType = op.res().getType(); 980 auto resMatrixType = resType.cast<gpu::MMAMatrixType>(); 981 auto operand = resMatrixType.getOperand(); 982 auto srcMemrefType = srcType.cast<MemRefType>(); 983 auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt(); 984 985 if (!srcMemrefType.getAffineMaps().empty() && 986 !srcMemrefType.getAffineMaps().front().isIdentity()) 987 return op.emitError("expected identity layout map for source memref"); 988 989 if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace && 990 srcMemSpace != kGlobalMemorySpace) 991 return op.emitError( 992 "source memorySpace kGenericMemorySpace, kSharedMemorySpace or " 993 "kGlobalMemorySpace only allowed"); 994 995 if (!operand.equals("AOp") && !operand.equals("BOp") && 996 !operand.equals("COp")) 997 return op.emitError("only AOp, BOp and COp can be loaded"); 998 999 return success(); 1000 } 1001 1002 //===----------------------------------------------------------------------===// 1003 // GPU_SubgroupMmaStoreMatrixOp 1004 //===----------------------------------------------------------------------===// 1005 1006 static LogicalResult verify(SubgroupMmaStoreMatrixOp op) { 1007 auto srcType = op.src().getType(); 1008 auto dstType = op.dstMemref().getType(); 1009 auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>(); 1010 auto dstMemrefType = dstType.cast<MemRefType>(); 1011 auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt(); 1012 1013 if (!dstMemrefType.getAffineMaps().empty() && 1014 !dstMemrefType.getAffineMaps().front().isIdentity()) 1015 return op.emitError("expected identity layout map for destination memref"); 1016 1017 if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace && 1018 dstMemSpace != kGlobalMemorySpace) 1019 return op.emitError( 1020 "destination memorySpace of kGenericMemorySpace, " 1021 "kGlobalMemorySpace or kSharedMemorySpace only allowed"); 1022 1023 if (!srcMatrixType.getOperand().equals("COp")) 1024 return op.emitError( 1025 "expected the operand matrix being stored to have 'COp' operand type"); 1026 1027 return success(); 1028 } 1029 1030 //===----------------------------------------------------------------------===// 1031 // GPU_SubgroupMmaComputeOp 1032 //===----------------------------------------------------------------------===// 1033 1034 static LogicalResult verify(SubgroupMmaComputeOp op) { 1035 enum OperandMap { A, B, C }; 1036 SmallVector<MMAMatrixType, 3> opTypes; 1037 1038 auto populateOpInfo = [&opTypes, &op]() { 1039 opTypes.push_back(op.opA().getType().cast<MMAMatrixType>()); 1040 opTypes.push_back(op.opB().getType().cast<MMAMatrixType>()); 1041 opTypes.push_back(op.opC().getType().cast<MMAMatrixType>()); 1042 }; 1043 populateOpInfo(); 1044 1045 if (!opTypes[A].getOperand().equals("AOp") || 1046 !opTypes[B].getOperand().equals("BOp") || 1047 !opTypes[C].getOperand().equals("COp")) 1048 return op.emitError("operands must be in the order AOp, BOp, COp"); 1049 1050 ArrayRef<int64_t> aShape, bShape, cShape; 1051 aShape = opTypes[A].getShape(); 1052 bShape = opTypes[B].getShape(); 1053 cShape = opTypes[C].getShape(); 1054 1055 if (aShape[1] != bShape[0] || aShape[0] != cShape[0] || 1056 bShape[1] != cShape[1]) 1057 return op.emitError("operand shapes do not satisfy matmul constraints"); 1058 1059 return success(); 1060 } 1061 1062 /// This is a common class used for patterns of the form 1063 /// "someop(memrefcast) -> someop". It folds the source of any memref.cast 1064 /// into the root operation directly. 1065 static LogicalResult foldMemRefCast(Operation *op) { 1066 bool folded = false; 1067 for (OpOperand &operand : op->getOpOperands()) { 1068 auto cast = operand.get().getDefiningOp<mlir::memref::CastOp>(); 1069 if (cast) { 1070 operand.set(cast.getOperand()); 1071 folded = true; 1072 } 1073 } 1074 return success(folded); 1075 } 1076 1077 LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands, 1078 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1079 return foldMemRefCast(*this); 1080 } 1081 1082 //===----------------------------------------------------------------------===// 1083 // GPU_AllocOp 1084 //===----------------------------------------------------------------------===// 1085 namespace { 1086 1087 /// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to 1088 /// `memref::AllocOp`. 1089 struct SimplifyDimOfAllocOp : public OpRewritePattern<memref::DimOp> { 1090 using OpRewritePattern<memref::DimOp>::OpRewritePattern; 1091 1092 LogicalResult matchAndRewrite(memref::DimOp dimOp, 1093 PatternRewriter &rewriter) const override { 1094 auto index = dimOp.index().getDefiningOp<ConstantIndexOp>(); 1095 if (!index) 1096 return failure(); 1097 1098 auto memrefType = dimOp.source().getType().dyn_cast<MemRefType>(); 1099 if (!memrefType || !memrefType.isDynamicDim(index.getValue())) 1100 return failure(); 1101 1102 auto alloc = dimOp.source().getDefiningOp<AllocOp>(); 1103 if (!alloc) 1104 return failure(); 1105 1106 Value substituteOp = *(alloc.dynamicSizes().begin() + 1107 memrefType.getDynamicDimIndex(index.getValue())); 1108 rewriter.replaceOp(dimOp, substituteOp); 1109 return success(); 1110 } 1111 }; 1112 1113 } // end anonymous namespace. 1114 1115 void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results, 1116 MLIRContext *context) { 1117 results.add<SimplifyDimOfAllocOp>(context); 1118 } 1119 1120 #include "mlir/Dialect/GPU/GPUOpInterfaces.cpp.inc" 1121 1122 #define GET_OP_CLASSES 1123 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 1124