1 //===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the GPU kernel-related dialect and its operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/GPU/GPUDialect.h" 14 15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 16 #include "mlir/Dialect/MemRef/IR/MemRef.h" 17 #include "mlir/IR/Attributes.h" 18 #include "mlir/IR/Builders.h" 19 #include "mlir/IR/BuiltinOps.h" 20 #include "mlir/IR/BuiltinTypes.h" 21 #include "mlir/IR/DialectImplementation.h" 22 #include "mlir/IR/FunctionImplementation.h" 23 #include "mlir/IR/Matchers.h" 24 #include "mlir/IR/OpImplementation.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "mlir/IR/TypeUtilities.h" 27 #include "mlir/Transforms/InliningUtils.h" 28 #include "llvm/ADT/TypeSwitch.h" 29 30 using namespace mlir; 31 using namespace mlir::gpu; 32 33 #include "mlir/Dialect/GPU/GPUOpsDialect.cpp.inc" 34 35 //===----------------------------------------------------------------------===// 36 // MMAMatrixType 37 //===----------------------------------------------------------------------===// 38 39 MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType, 40 StringRef operand) { 41 return Base::get(elementType.getContext(), shape, elementType, operand); 42 } 43 44 MMAMatrixType 45 MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError, 46 ArrayRef<int64_t> shape, Type elementType, 47 StringRef operand) { 48 return Base::getChecked(emitError, elementType.getContext(), shape, 49 elementType, operand); 50 } 51 52 unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; } 53 54 ArrayRef<int64_t> MMAMatrixType::getShape() const { 55 return getImpl()->getShape(); 56 } 57 58 Type MMAMatrixType::getElementType() const { return getImpl()->elementType; } 59 60 StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); } 61 62 bool MMAMatrixType::isValidElementType(Type elementType) { 63 return elementType.isF16() || elementType.isF32(); 64 } 65 66 LogicalResult 67 MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError, 68 ArrayRef<int64_t> shape, Type elementType, 69 StringRef operand) { 70 if (!operand.equals("AOp") && !operand.equals("BOp") && 71 !operand.equals("COp")) 72 return emitError() << "operand expected to be one of AOp, BOp or COp"; 73 74 if (shape.size() != 2) 75 return emitError() << "MMAMatrixType must have exactly two dimensions"; 76 77 if (!MMAMatrixType::isValidElementType(elementType)) 78 return emitError() << "MMAMatrixType elements must be F16 or F32"; 79 80 return success(); 81 } 82 83 //===----------------------------------------------------------------------===// 84 // GPUDialect 85 //===----------------------------------------------------------------------===// 86 87 /// GPU memory space identifiers. 88 enum GPUMemorySpace { 89 /// Generic memory space identifier. 90 kGenericMemorySpace = 0, 91 92 /// Global memory space identifier. 93 kGlobalMemorySpace = 1, 94 95 /// Shared memory space identifier. 96 kSharedMemorySpace = 3 97 }; 98 99 bool GPUDialect::isKernel(Operation *op) { 100 UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName()); 101 return static_cast<bool>(isKernelAttr); 102 } 103 104 namespace { 105 /// This class defines the interface for handling inlining with gpu 106 /// operations. 107 struct GPUInlinerInterface : public DialectInlinerInterface { 108 using DialectInlinerInterface::DialectInlinerInterface; 109 110 /// All gpu dialect ops can be inlined. 111 bool isLegalToInline(Operation *, Region *, bool, 112 BlockAndValueMapping &) const final { 113 return true; 114 } 115 }; 116 } // namespace 117 118 void GPUDialect::initialize() { 119 addTypes<AsyncTokenType>(); 120 addTypes<DeviceAsyncTokenType>(); 121 addTypes<MMAMatrixType>(); 122 addOperations< 123 #define GET_OP_LIST 124 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 125 >(); 126 addAttributes< 127 #define GET_ATTRDEF_LIST 128 #include "mlir/Dialect/GPU/GPUOpsAttributes.cpp.inc" 129 >(); 130 addInterfaces<GPUInlinerInterface>(); 131 } 132 133 Type GPUDialect::parseType(DialectAsmParser &parser) const { 134 // Parse the main keyword for the type. 135 StringRef keyword; 136 if (parser.parseKeyword(&keyword)) 137 return Type(); 138 MLIRContext *context = getContext(); 139 140 // Handle 'async token' types. 141 if (keyword == "async.token") 142 return AsyncTokenType::get(context); 143 // Handle 'device async token' types. 144 if (keyword == "device.async.token") 145 return DeviceAsyncTokenType::get(context); 146 147 if (keyword == "mma_matrix") { 148 SMLoc beginLoc = parser.getNameLoc(); 149 150 // Parse '<'. 151 if (parser.parseLess()) 152 return nullptr; 153 154 // Parse the size and elementType. 155 SmallVector<int64_t> shape; 156 Type elementType; 157 if (parser.parseDimensionList(shape, /*allowDynamic=*/false) || 158 parser.parseType(elementType)) 159 return nullptr; 160 161 // Parse ',' 162 if (parser.parseComma()) 163 return nullptr; 164 165 // Parse operand. 166 std::string operand; 167 if (failed(parser.parseOptionalString(&operand))) 168 return nullptr; 169 170 // Parse '>'. 171 if (parser.parseGreater()) 172 return nullptr; 173 174 return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn( 175 parser.getEncodedSourceLoc(beginLoc)), 176 shape, elementType, operand); 177 } 178 179 parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword); 180 return Type(); 181 } 182 183 void GPUDialect::printType(Type type, DialectAsmPrinter &os) const { 184 TypeSwitch<Type>(type) 185 .Case<AsyncTokenType>([&](Type) { os << "async.token"; }) 186 .Case<DeviceAsyncTokenType>([&](Type) { os << "device.async.token"; }) 187 .Case<MMAMatrixType>([&](MMAMatrixType fragTy) { 188 os << "mma_matrix<"; 189 auto shape = fragTy.getShape(); 190 for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim) 191 os << *dim << 'x'; 192 os << shape.back() << 'x' << fragTy.getElementType(); 193 os << ", \"" << fragTy.getOperand() << "\"" << '>'; 194 }) 195 .Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); }); 196 } 197 198 LogicalResult GPUDialect::verifyOperationAttribute(Operation *op, 199 NamedAttribute attr) { 200 if (!attr.getValue().isa<UnitAttr>() || 201 attr.getName() != getContainerModuleAttrName()) 202 return success(); 203 204 auto module = dyn_cast<ModuleOp>(op); 205 if (!module) 206 return op->emitError("expected '") 207 << getContainerModuleAttrName() << "' attribute to be attached to '" 208 << ModuleOp::getOperationName() << '\''; 209 210 auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult { 211 // Ignore launches that are nested more or less deep than functions in the 212 // module we are currently checking. 213 if (!launchOp->getParentOp() || 214 launchOp->getParentOp()->getParentOp() != module) 215 return success(); 216 217 // Ignore launch ops with missing attributes here. The errors will be 218 // reported by the verifiers of those ops. 219 if (!launchOp->getAttrOfType<SymbolRefAttr>( 220 LaunchFuncOp::getKernelAttrName())) 221 return success(); 222 223 // Check that `launch_func` refers to a well-formed GPU kernel module. 224 StringAttr kernelModuleName = launchOp.getKernelModuleName(); 225 auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName); 226 if (!kernelModule) 227 return launchOp.emitOpError() 228 << "kernel module '" << kernelModuleName.getValue() 229 << "' is undefined"; 230 231 // Check that `launch_func` refers to a well-formed kernel function. 232 Operation *kernelFunc = module.lookupSymbol(launchOp.kernelAttr()); 233 if (!kernelFunc) 234 return launchOp.emitOpError("kernel function '") 235 << launchOp.kernel() << "' is undefined"; 236 auto kernelConvertedFunction = dyn_cast<FunctionOpInterface>(kernelFunc); 237 if (!kernelConvertedFunction) { 238 InFlightDiagnostic diag = launchOp.emitOpError() 239 << "referenced kernel '" << launchOp.kernel() 240 << "' is not a function"; 241 diag.attachNote(kernelFunc->getLoc()) << "see the kernel definition here"; 242 return diag; 243 } 244 245 if (!kernelFunc->getAttrOfType<mlir::UnitAttr>( 246 GPUDialect::getKernelFuncAttrName())) 247 return launchOp.emitOpError("kernel function is missing the '") 248 << GPUDialect::getKernelFuncAttrName() << "' attribute"; 249 250 // TODO: If the kernel isn't a GPU function (which happens during separate 251 // compilation), do not check type correspondence as it would require the 252 // verifier to be aware of the type conversion. 253 auto kernelGPUFunction = dyn_cast<gpu::GPUFuncOp>(kernelFunc); 254 if (!kernelGPUFunction) 255 return success(); 256 257 unsigned actualNumArguments = launchOp.getNumKernelOperands(); 258 unsigned expectedNumArguments = kernelGPUFunction.getNumArguments(); 259 if (expectedNumArguments != actualNumArguments) 260 return launchOp.emitOpError("got ") 261 << actualNumArguments << " kernel operands but expected " 262 << expectedNumArguments; 263 264 auto functionType = kernelGPUFunction.getFunctionType(); 265 for (unsigned i = 0; i < expectedNumArguments; ++i) { 266 if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) { 267 return launchOp.emitOpError("type of function argument ") 268 << i << " does not match"; 269 } 270 } 271 272 return success(); 273 }); 274 275 return walkResult.wasInterrupted() ? failure() : success(); 276 } 277 278 /// Parses an optional list of async operands with an optional leading keyword. 279 /// (`async`)? (`[` ssa-id-list `]`)? 280 /// 281 /// This method is used by the tablegen assembly format for async ops as well. 282 static ParseResult parseAsyncDependencies( 283 OpAsmParser &parser, Type &asyncTokenType, 284 SmallVectorImpl<OpAsmParser::UnresolvedOperand> &asyncDependencies) { 285 auto loc = parser.getCurrentLocation(); 286 if (succeeded(parser.parseOptionalKeyword("async"))) { 287 if (parser.getNumResults() == 0) 288 return parser.emitError(loc, "needs to be named when marked 'async'"); 289 asyncTokenType = parser.getBuilder().getType<AsyncTokenType>(); 290 } 291 return parser.parseOperandList(asyncDependencies, 292 OpAsmParser::Delimiter::OptionalSquare); 293 } 294 295 /// Prints optional async dependencies with its leading keyword. 296 /// (`async`)? (`[` ssa-id-list `]`)? 297 // Used by the tablegen assembly format for several async ops. 298 static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op, 299 Type asyncTokenType, 300 OperandRange asyncDependencies) { 301 if (asyncTokenType) 302 printer << "async"; 303 if (asyncDependencies.empty()) 304 return; 305 if (asyncTokenType) 306 printer << ' '; 307 printer << '['; 308 llvm::interleaveComma(asyncDependencies, printer); 309 printer << ']'; 310 } 311 312 //===----------------------------------------------------------------------===// 313 // AllReduceOp 314 //===----------------------------------------------------------------------===// 315 316 LogicalResult gpu::AllReduceOp::verifyRegions() { 317 if (body().empty() != op().hasValue()) 318 return emitError("expected either an op attribute or a non-empty body"); 319 if (!body().empty()) { 320 if (body().getNumArguments() != 2) 321 return emitError("expected two region arguments"); 322 for (auto argument : body().getArguments()) { 323 if (argument.getType() != getType()) 324 return emitError("incorrect region argument type"); 325 } 326 unsigned yieldCount = 0; 327 for (Block &block : body()) { 328 if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) { 329 if (yield.getNumOperands() != 1) 330 return emitError("expected one gpu.yield operand"); 331 if (yield.getOperand(0).getType() != getType()) 332 return emitError("incorrect gpu.yield type"); 333 ++yieldCount; 334 } 335 } 336 if (yieldCount == 0) 337 return emitError("expected gpu.yield op in region"); 338 } else { 339 gpu::AllReduceOperation opName = *op(); 340 if ((opName == gpu::AllReduceOperation::AND || 341 opName == gpu::AllReduceOperation::OR || 342 opName == gpu::AllReduceOperation::XOR) && 343 !getType().isa<IntegerType>()) { 344 return emitError() 345 << '`' << gpu::stringifyAllReduceOperation(opName) 346 << "` accumulator is only compatible with Integer type"; 347 } 348 } 349 return success(); 350 } 351 352 // TODO: Support optional custom attributes (without dialect prefix). 353 static ParseResult parseAllReduceOperation(AsmParser &parser, 354 AllReduceOperationAttr &attr) { 355 StringRef enumStr; 356 if (!parser.parseOptionalKeyword(&enumStr)) { 357 Optional<AllReduceOperation> op = gpu::symbolizeAllReduceOperation(enumStr); 358 if (!op) 359 return parser.emitError(parser.getCurrentLocation(), "invalid op kind"); 360 attr = AllReduceOperationAttr::get(parser.getContext(), *op); 361 } 362 return success(); 363 } 364 365 static void printAllReduceOperation(AsmPrinter &printer, Operation *op, 366 AllReduceOperationAttr attr) { 367 if (attr) 368 attr.print(printer); 369 } 370 371 //===----------------------------------------------------------------------===// 372 // AsyncOpInterface 373 //===----------------------------------------------------------------------===// 374 375 void gpu::addAsyncDependency(Operation *op, Value token) { 376 op->insertOperands(0, {token}); 377 if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>()) 378 return; 379 auto attrName = 380 OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr(); 381 auto sizeAttr = op->template getAttrOfType<DenseIntElementsAttr>(attrName); 382 383 // Async dependencies is the only variadic operand. 384 if (!sizeAttr) 385 return; 386 387 SmallVector<int32_t, 8> sizes(sizeAttr.getValues<int32_t>()); 388 ++sizes.front(); 389 op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes)); 390 } 391 392 //===----------------------------------------------------------------------===// 393 // LaunchOp 394 //===----------------------------------------------------------------------===// 395 396 void LaunchOp::build(OpBuilder &builder, OperationState &result, 397 Value gridSizeX, Value gridSizeY, Value gridSizeZ, 398 Value blockSizeX, Value blockSizeY, Value blockSizeZ, 399 Value dynamicSharedMemorySize, Type asyncTokenType, 400 ValueRange asyncDependencies) { 401 result.addOperands(asyncDependencies); 402 if (asyncTokenType) 403 result.types.push_back(builder.getType<AsyncTokenType>()); 404 405 // Add grid and block sizes as op operands, followed by the data operands. 406 result.addOperands( 407 {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); 408 if (dynamicSharedMemorySize) 409 result.addOperands(dynamicSharedMemorySize); 410 411 // Create a kernel body region with kNumConfigRegionAttributes + N arguments, 412 // where the first kNumConfigRegionAttributes arguments have `index` type and 413 // the rest have the same types as the data operands. 414 Region *kernelRegion = result.addRegion(); 415 Block *body = new Block(); 416 for (unsigned i = 0; i < kNumConfigRegionAttributes; ++i) 417 body->addArgument(builder.getIndexType(), result.location); 418 kernelRegion->push_back(body); 419 SmallVector<int32_t, 8> segmentSizes(8, 1); 420 segmentSizes.front() = asyncDependencies.size(); 421 segmentSizes.back() = dynamicSharedMemorySize ? 1 : 0; 422 result.addAttribute(getOperandSegmentSizeAttr(), 423 builder.getI32VectorAttr(segmentSizes)); 424 } 425 426 KernelDim3 LaunchOp::getBlockIds() { 427 assert(!body().empty() && "LaunchOp body must not be empty."); 428 auto args = body().getArguments(); 429 return KernelDim3{args[0], args[1], args[2]}; 430 } 431 432 KernelDim3 LaunchOp::getThreadIds() { 433 assert(!body().empty() && "LaunchOp body must not be empty."); 434 auto args = body().getArguments(); 435 return KernelDim3{args[3], args[4], args[5]}; 436 } 437 438 KernelDim3 LaunchOp::getGridSize() { 439 assert(!body().empty() && "LaunchOp body must not be empty."); 440 auto args = body().getArguments(); 441 return KernelDim3{args[6], args[7], args[8]}; 442 } 443 444 KernelDim3 LaunchOp::getBlockSize() { 445 assert(!body().empty() && "LaunchOp body must not be empty."); 446 auto args = body().getArguments(); 447 return KernelDim3{args[9], args[10], args[11]}; 448 } 449 450 KernelDim3 LaunchOp::getGridSizeOperandValues() { 451 auto operands = getOperands().drop_front(asyncDependencies().size()); 452 return KernelDim3{operands[0], operands[1], operands[2]}; 453 } 454 455 KernelDim3 LaunchOp::getBlockSizeOperandValues() { 456 auto operands = getOperands().drop_front(asyncDependencies().size()); 457 return KernelDim3{operands[3], operands[4], operands[5]}; 458 } 459 460 LogicalResult LaunchOp::verifyRegions() { 461 // Kernel launch takes kNumConfigOperands leading operands for grid/block 462 // sizes and transforms them into kNumConfigRegionAttributes region arguments 463 // for block/thread identifiers and grid/block sizes. 464 if (!body().empty()) { 465 if (body().getNumArguments() != 466 LaunchOp::kNumConfigOperands + getNumOperands() - 467 (dynamicSharedMemorySize() ? 1 : 0) - asyncDependencies().size()) 468 return emitOpError("unexpected number of region arguments"); 469 } 470 471 // Block terminators without successors are expected to exit the kernel region 472 // and must be `gpu.terminator`. 473 for (Block &block : body()) { 474 if (block.empty()) 475 continue; 476 if (block.back().getNumSuccessors() != 0) 477 continue; 478 if (!isa<gpu::TerminatorOp>(&block.back())) { 479 return block.back() 480 .emitError() 481 .append("expected '", gpu::TerminatorOp::getOperationName(), 482 "' or a terminator with successors") 483 .attachNote(getLoc()) 484 .append("in '", LaunchOp::getOperationName(), "' body region"); 485 } 486 } 487 488 if (getNumResults() == 0 && asyncToken()) 489 return emitOpError("needs to be named when async keyword is specified"); 490 491 return success(); 492 } 493 494 // Pretty-print the kernel grid/block size assignment as 495 // (%iter-x, %iter-y, %iter-z) in 496 // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use) 497 // where %size-* and %iter-* will correspond to the body region arguments. 498 static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size, 499 KernelDim3 operands, KernelDim3 ids) { 500 p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in ("; 501 p << size.x << " = " << operands.x << ", "; 502 p << size.y << " = " << operands.y << ", "; 503 p << size.z << " = " << operands.z << ')'; 504 } 505 506 void LaunchOp::print(OpAsmPrinter &p) { 507 if (asyncToken()) { 508 p << " async"; 509 if (!asyncDependencies().empty()) 510 p << " [" << asyncDependencies() << ']'; 511 } 512 // Print the launch configuration. 513 p << ' ' << getBlocksKeyword(); 514 printSizeAssignment(p, getGridSize(), getGridSizeOperandValues(), 515 getBlockIds()); 516 p << ' ' << getThreadsKeyword(); 517 printSizeAssignment(p, getBlockSize(), getBlockSizeOperandValues(), 518 getThreadIds()); 519 if (dynamicSharedMemorySize()) 520 p << ' ' << getDynamicSharedMemorySizeKeyword() << ' ' 521 << dynamicSharedMemorySize(); 522 523 p << ' '; 524 p.printRegion(body(), /*printEntryBlockArgs=*/false); 525 p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{ 526 LaunchOp::getOperandSegmentSizeAttr()}); 527 } 528 529 // Parse the size assignment blocks for blocks and threads. These have the form 530 // (%region_arg, %region_arg, %region_arg) in 531 // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand) 532 // where %region_arg are percent-identifiers for the region arguments to be 533 // introduced further (SSA defs), and %operand are percent-identifiers for the 534 // SSA value uses. 535 static ParseResult 536 parseSizeAssignment(OpAsmParser &parser, 537 MutableArrayRef<OpAsmParser::UnresolvedOperand> sizes, 538 MutableArrayRef<OpAsmParser::UnresolvedOperand> regionSizes, 539 MutableArrayRef<OpAsmParser::UnresolvedOperand> indices) { 540 assert(indices.size() == 3 && "space for three indices expected"); 541 SmallVector<OpAsmParser::UnresolvedOperand, 3> args; 542 if (parser.parseOperandList(args, OpAsmParser::Delimiter::Paren, 543 /*allowResultNumber=*/false) || 544 parser.parseKeyword("in") || parser.parseLParen()) 545 return failure(); 546 std::move(args.begin(), args.end(), indices.begin()); 547 548 for (int i = 0; i < 3; ++i) { 549 if (i != 0 && parser.parseComma()) 550 return failure(); 551 if (parser.parseOperand(regionSizes[i], /*allowResultNumber=*/false) || 552 parser.parseEqual() || parser.parseOperand(sizes[i])) 553 return failure(); 554 } 555 556 return parser.parseRParen(); 557 } 558 559 /// Parses a Launch operation. 560 /// operation ::= `gpu.launch` (`async` `[` ssa-id-list `]`)? 561 // `blocks` `(` ssa-id-list `)` `in` ssa-reassignment 562 /// `threads` `(` ssa-id-list `)` `in` ssa-reassignment 563 /// region attr-dict? 564 /// ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)` 565 ParseResult LaunchOp::parse(OpAsmParser &parser, OperationState &result) { 566 // Sizes of the grid and block. 567 SmallVector<OpAsmParser::UnresolvedOperand, LaunchOp::kNumConfigOperands> 568 sizes(LaunchOp::kNumConfigOperands); 569 MutableArrayRef<OpAsmParser::UnresolvedOperand> sizesRef(sizes); 570 571 // Actual (data) operands passed to the kernel. 572 SmallVector<OpAsmParser::UnresolvedOperand, 4> dataOperands; 573 574 // Region arguments to be created. 575 SmallVector<OpAsmParser::UnresolvedOperand, 16> regionArgs( 576 LaunchOp::kNumConfigRegionAttributes); 577 MutableArrayRef<OpAsmParser::UnresolvedOperand> regionArgsRef(regionArgs); 578 579 // Parse optional async dependencies. 580 SmallVector<OpAsmParser::UnresolvedOperand, 4> asyncDependencies; 581 Type asyncTokenType; 582 if (failed( 583 parseAsyncDependencies(parser, asyncTokenType, asyncDependencies)) || 584 parser.resolveOperands(asyncDependencies, asyncTokenType, 585 result.operands)) 586 return failure(); 587 if (parser.getNumResults() > 0) 588 result.types.push_back(asyncTokenType); 589 590 // Parse the size assignment segments: the first segment assigns grid sizes 591 // and defines values for block identifiers; the second segment assigns block 592 // sizes and defines values for thread identifiers. In the region argument 593 // list, identifiers precede sizes, and block-related values precede 594 // thread-related values. 595 if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) || 596 parseSizeAssignment(parser, sizesRef.take_front(3), 597 regionArgsRef.slice(6, 3), 598 regionArgsRef.slice(0, 3)) || 599 parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) || 600 parseSizeAssignment(parser, sizesRef.drop_front(3), 601 regionArgsRef.slice(9, 3), 602 regionArgsRef.slice(3, 3)) || 603 parser.resolveOperands(sizes, parser.getBuilder().getIndexType(), 604 result.operands)) 605 return failure(); 606 607 OpAsmParser::UnresolvedOperand dynamicSharedMemorySize; 608 bool hasDynamicSharedMemorySize = false; 609 if (!parser.parseOptionalKeyword( 610 LaunchOp::getDynamicSharedMemorySizeKeyword())) { 611 hasDynamicSharedMemorySize = true; 612 if (parser.parseOperand(dynamicSharedMemorySize) || 613 parser.resolveOperand(dynamicSharedMemorySize, 614 parser.getBuilder().getI32Type(), 615 result.operands)) 616 return failure(); 617 } 618 619 // Introduce the body region and parse it. The region has 620 // kNumConfigRegionAttributes arguments that correspond to 621 // block/thread identifiers and grid/block sizes, all of the `index` type. 622 Type index = parser.getBuilder().getIndexType(); 623 SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes( 624 LaunchOp::kNumConfigRegionAttributes, index); 625 626 SmallVector<OpAsmParser::Argument> regionArguments; 627 for (auto ssaValueAndType : llvm::zip(regionArgs, dataTypes)) { 628 OpAsmParser::Argument arg; 629 arg.ssaName = std::get<0>(ssaValueAndType); 630 arg.type = std::get<1>(ssaValueAndType); 631 regionArguments.push_back(arg); 632 } 633 634 Region *body = result.addRegion(); 635 if (parser.parseRegion(*body, regionArguments) || 636 parser.parseOptionalAttrDict(result.attributes)) 637 return failure(); 638 639 SmallVector<int32_t, 8> segmentSizes(8, 1); 640 segmentSizes.front() = asyncDependencies.size(); 641 segmentSizes.back() = hasDynamicSharedMemorySize ? 1 : 0; 642 result.addAttribute(LaunchOp::getOperandSegmentSizeAttr(), 643 parser.getBuilder().getI32VectorAttr(segmentSizes)); 644 return success(); 645 } 646 647 /// Simplify the gpu.launch when the range of a thread or block ID is 648 /// trivially known to be one. 649 struct FoldLaunchArguments : public OpRewritePattern<LaunchOp> { 650 using OpRewritePattern<LaunchOp>::OpRewritePattern; 651 LogicalResult matchAndRewrite(LaunchOp op, 652 PatternRewriter &rewriter) const override { 653 // If the range implies a single value for `id`, replace `id`'s uses by 654 // zero. 655 Value zero; 656 bool simplified = false; 657 auto constPropIdUses = [&](Value id, Value size) { 658 // Check if size is trivially one. 659 if (!matchPattern(size, m_One())) 660 return; 661 if (!simplified) { 662 // Create a zero value the first time. 663 OpBuilder::InsertionGuard guard(rewriter); 664 rewriter.setInsertionPointToStart(&op.body().front()); 665 zero = 666 rewriter.create<arith::ConstantIndexOp>(op.getLoc(), /*value=*/0); 667 } 668 id.replaceAllUsesWith(zero); 669 simplified = true; 670 }; 671 constPropIdUses(op.getBlockIds().x, op.gridSizeX()); 672 constPropIdUses(op.getBlockIds().y, op.gridSizeY()); 673 constPropIdUses(op.getBlockIds().z, op.gridSizeZ()); 674 constPropIdUses(op.getThreadIds().x, op.blockSizeX()); 675 constPropIdUses(op.getThreadIds().y, op.blockSizeY()); 676 constPropIdUses(op.getThreadIds().z, op.blockSizeZ()); 677 678 return success(simplified); 679 } 680 }; 681 682 void LaunchOp::getCanonicalizationPatterns(RewritePatternSet &rewrites, 683 MLIRContext *context) { 684 rewrites.add<FoldLaunchArguments>(context); 685 } 686 687 //===----------------------------------------------------------------------===// 688 // LaunchFuncOp 689 //===----------------------------------------------------------------------===// 690 691 void LaunchFuncOp::build(OpBuilder &builder, OperationState &result, 692 GPUFuncOp kernelFunc, KernelDim3 gridSize, 693 KernelDim3 blockSize, Value dynamicSharedMemorySize, 694 ValueRange kernelOperands, Type asyncTokenType, 695 ValueRange asyncDependencies) { 696 result.addOperands(asyncDependencies); 697 if (asyncTokenType) 698 result.types.push_back(builder.getType<AsyncTokenType>()); 699 700 // Add grid and block sizes as op operands, followed by the data operands. 701 result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x, 702 blockSize.y, blockSize.z}); 703 if (dynamicSharedMemorySize) 704 result.addOperands(dynamicSharedMemorySize); 705 result.addOperands(kernelOperands); 706 auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>(); 707 auto kernelSymbol = 708 SymbolRefAttr::get(kernelModule.getNameAttr(), 709 {SymbolRefAttr::get(kernelFunc.getNameAttr())}); 710 result.addAttribute(getKernelAttrName(), kernelSymbol); 711 SmallVector<int32_t, 9> segmentSizes(9, 1); 712 segmentSizes.front() = asyncDependencies.size(); 713 segmentSizes[segmentSizes.size() - 2] = dynamicSharedMemorySize ? 1 : 0; 714 segmentSizes.back() = static_cast<int32_t>(kernelOperands.size()); 715 result.addAttribute(getOperandSegmentSizeAttr(), 716 builder.getI32VectorAttr(segmentSizes)); 717 } 718 719 unsigned LaunchFuncOp::getNumKernelOperands() { 720 return getNumOperands() - asyncDependencies().size() - kNumConfigOperands - 721 (dynamicSharedMemorySize() ? 1 : 0); 722 } 723 724 StringAttr LaunchFuncOp::getKernelModuleName() { 725 return kernel().getRootReference(); 726 } 727 728 StringAttr LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); } 729 730 Value LaunchFuncOp::getKernelOperand(unsigned i) { 731 return getOperand(asyncDependencies().size() + kNumConfigOperands + 732 (dynamicSharedMemorySize() ? 1 : 0) + i); 733 } 734 735 KernelDim3 LaunchFuncOp::getGridSizeOperandValues() { 736 auto operands = getOperands().drop_front(asyncDependencies().size()); 737 return KernelDim3{operands[0], operands[1], operands[2]}; 738 } 739 740 KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() { 741 auto operands = getOperands().drop_front(asyncDependencies().size()); 742 return KernelDim3{operands[3], operands[4], operands[5]}; 743 } 744 745 LogicalResult LaunchFuncOp::verify() { 746 auto module = (*this)->getParentOfType<ModuleOp>(); 747 if (!module) 748 return emitOpError("expected to belong to a module"); 749 750 if (!module->getAttrOfType<UnitAttr>( 751 GPUDialect::getContainerModuleAttrName())) 752 return emitOpError("expected the closest surrounding module to have the '" + 753 GPUDialect::getContainerModuleAttrName() + 754 "' attribute"); 755 756 auto kernelAttr = (*this)->getAttrOfType<SymbolRefAttr>(getKernelAttrName()); 757 if (!kernelAttr) 758 return emitOpError("symbol reference attribute '" + getKernelAttrName() + 759 "' must be specified"); 760 761 return success(); 762 } 763 764 static ParseResult parseLaunchFuncOperands( 765 OpAsmParser &parser, 766 SmallVectorImpl<OpAsmParser::UnresolvedOperand> &argNames, 767 SmallVectorImpl<Type> &argTypes) { 768 if (parser.parseOptionalKeyword("args")) 769 return success(); 770 771 SmallVector<OpAsmParser::Argument> args; 772 if (parser.parseArgumentList(args, OpAsmParser::Delimiter::Paren, 773 /*allowType=*/true)) 774 return failure(); 775 for (auto &arg : args) { 776 argNames.push_back(arg.ssaName); 777 argTypes.push_back(arg.type); 778 } 779 return success(); 780 } 781 782 static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *, 783 OperandRange operands, TypeRange types) { 784 if (operands.empty()) 785 return; 786 printer << "args("; 787 llvm::interleaveComma(llvm::zip(operands, types), printer, 788 [&](const auto &pair) { 789 printer.printOperand(std::get<0>(pair)); 790 printer << " : "; 791 printer.printType(std::get<1>(pair)); 792 }); 793 printer << ")"; 794 } 795 796 //===----------------------------------------------------------------------===// 797 // ShuffleOp 798 //===----------------------------------------------------------------------===// 799 800 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value value, 801 int32_t offset, int32_t width, ShuffleMode mode) { 802 build(builder, result, value, 803 builder.create<arith::ConstantOp>(result.location, 804 builder.getI32IntegerAttr(offset)), 805 builder.create<arith::ConstantOp>(result.location, 806 builder.getI32IntegerAttr(width)), 807 mode); 808 } 809 810 //===----------------------------------------------------------------------===// 811 // GPUFuncOp 812 //===----------------------------------------------------------------------===// 813 814 /// Adds a new block argument that corresponds to buffers located in 815 /// workgroup memory. 816 BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type, Location loc) { 817 auto attrName = getNumWorkgroupAttributionsAttrName(); 818 auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName); 819 (*this)->setAttr(attrName, 820 IntegerAttr::get(attr.getType(), attr.getValue() + 1)); 821 return getBody().insertArgument( 822 getFunctionType().getNumInputs() + attr.getInt(), type, loc); 823 } 824 825 /// Adds a new block argument that corresponds to buffers located in 826 /// private memory. 827 BlockArgument GPUFuncOp::addPrivateAttribution(Type type, Location loc) { 828 // Buffers on the private memory always come after buffers on the workgroup 829 // memory. 830 return getBody().addArgument(type, loc); 831 } 832 833 void GPUFuncOp::build(OpBuilder &builder, OperationState &result, 834 StringRef name, FunctionType type, 835 TypeRange workgroupAttributions, 836 TypeRange privateAttributions, 837 ArrayRef<NamedAttribute> attrs) { 838 result.addAttribute(SymbolTable::getSymbolAttrName(), 839 builder.getStringAttr(name)); 840 result.addAttribute(getTypeAttrName(), TypeAttr::get(type)); 841 result.addAttribute(getNumWorkgroupAttributionsAttrName(), 842 builder.getI64IntegerAttr(workgroupAttributions.size())); 843 result.addAttributes(attrs); 844 Region *body = result.addRegion(); 845 Block *entryBlock = new Block; 846 847 // TODO: Allow passing in proper locations here. 848 for (Type argTy : type.getInputs()) 849 entryBlock->addArgument(argTy, result.location); 850 for (Type argTy : workgroupAttributions) 851 entryBlock->addArgument(argTy, result.location); 852 for (Type argTy : privateAttributions) 853 entryBlock->addArgument(argTy, result.location); 854 855 body->getBlocks().push_back(entryBlock); 856 } 857 858 /// Parses a GPU function memory attribution. 859 /// 860 /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)? 861 /// (`private` `(` ssa-id-and-type-list `)`)? 862 /// 863 /// Note that this function parses only one of the two similar parts, with the 864 /// keyword provided as argument. 865 static ParseResult 866 parseAttributions(OpAsmParser &parser, StringRef keyword, 867 SmallVectorImpl<OpAsmParser::Argument> &args) { 868 // If we could not parse the keyword, just assume empty list and succeed. 869 if (failed(parser.parseOptionalKeyword(keyword))) 870 return success(); 871 872 return parser.parseArgumentList(args, OpAsmParser::Delimiter::Paren, 873 /*allowType=*/true); 874 } 875 876 /// Parses a GPU function. 877 /// 878 /// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)` 879 /// (`->` function-result-list)? memory-attribution `kernel`? 880 /// function-attributes? region 881 ParseResult GPUFuncOp::parse(OpAsmParser &parser, OperationState &result) { 882 SmallVector<OpAsmParser::Argument> entryArgs; 883 SmallVector<DictionaryAttr> resultAttrs; 884 SmallVector<Type> resultTypes; 885 bool isVariadic; 886 887 // Parse the function name. 888 StringAttr nameAttr; 889 if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), 890 result.attributes)) 891 return failure(); 892 893 auto signatureLocation = parser.getCurrentLocation(); 894 if (failed(function_interface_impl::parseFunctionSignature( 895 parser, /*allowVariadic=*/false, entryArgs, isVariadic, resultTypes, 896 resultAttrs))) 897 return failure(); 898 899 if (!entryArgs.empty() && entryArgs[0].ssaName.name.empty()) 900 return parser.emitError(signatureLocation) 901 << "gpu.func requires named arguments"; 902 903 // Construct the function type. More types will be added to the region, but 904 // not to the function type. 905 Builder &builder = parser.getBuilder(); 906 907 SmallVector<Type> argTypes; 908 for (auto &arg : entryArgs) 909 argTypes.push_back(arg.type); 910 auto type = builder.getFunctionType(argTypes, resultTypes); 911 result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type)); 912 913 function_interface_impl::addArgAndResultAttrs(builder, result, entryArgs, 914 resultAttrs); 915 916 // Parse workgroup memory attributions. 917 if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(), 918 entryArgs))) 919 return failure(); 920 921 // Store the number of operands we just parsed as the number of workgroup 922 // memory attributions. 923 unsigned numWorkgroupAttrs = entryArgs.size() - type.getNumInputs(); 924 result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(), 925 builder.getI64IntegerAttr(numWorkgroupAttrs)); 926 927 // Parse private memory attributions. 928 if (failed( 929 parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), entryArgs))) 930 return failure(); 931 932 // Parse the kernel attribute if present. 933 if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword()))) 934 result.addAttribute(GPUDialect::getKernelFuncAttrName(), 935 builder.getUnitAttr()); 936 937 // Parse attributes. 938 if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) 939 return failure(); 940 941 // Parse the region. If no argument names were provided, take all names 942 // (including those of attributions) from the entry block. 943 auto *body = result.addRegion(); 944 return parser.parseRegion(*body, entryArgs); 945 } 946 947 static void printAttributions(OpAsmPrinter &p, StringRef keyword, 948 ArrayRef<BlockArgument> values) { 949 if (values.empty()) 950 return; 951 952 p << ' ' << keyword << '('; 953 llvm::interleaveComma( 954 values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); }); 955 p << ')'; 956 } 957 958 void GPUFuncOp::print(OpAsmPrinter &p) { 959 p << ' '; 960 p.printSymbolName(getName()); 961 962 FunctionType type = getFunctionType(); 963 function_interface_impl::printFunctionSignature(p, *this, type.getInputs(), 964 /*isVariadic=*/false, 965 type.getResults()); 966 967 printAttributions(p, getWorkgroupKeyword(), getWorkgroupAttributions()); 968 printAttributions(p, getPrivateKeyword(), getPrivateAttributions()); 969 if (isKernel()) 970 p << ' ' << getKernelKeyword(); 971 972 function_interface_impl::printFunctionAttributes( 973 p, *this, type.getNumInputs(), type.getNumResults(), 974 {getNumWorkgroupAttributionsAttrName(), 975 GPUDialect::getKernelFuncAttrName()}); 976 p << ' '; 977 p.printRegion(getBody(), /*printEntryBlockArgs=*/false); 978 } 979 980 LogicalResult GPUFuncOp::verifyType() { 981 Type type = getFunctionTypeAttr().getValue(); 982 if (!type.isa<FunctionType>()) 983 return emitOpError("requires '" + getTypeAttrName() + 984 "' attribute of function type"); 985 986 if (isKernel() && getFunctionType().getNumResults() != 0) 987 return emitOpError() << "expected void return type for kernel function"; 988 989 return success(); 990 } 991 992 static LogicalResult verifyAttributions(Operation *op, 993 ArrayRef<BlockArgument> attributions, 994 unsigned memorySpace) { 995 for (Value v : attributions) { 996 auto type = v.getType().dyn_cast<MemRefType>(); 997 if (!type) 998 return op->emitOpError() << "expected memref type in attribution"; 999 1000 if (type.getMemorySpaceAsInt() != memorySpace) { 1001 return op->emitOpError() 1002 << "expected memory space " << memorySpace << " in attribution"; 1003 } 1004 } 1005 return success(); 1006 } 1007 1008 /// Verifies the body of the function. 1009 LogicalResult GPUFuncOp::verifyBody() { 1010 unsigned numFuncArguments = getNumArguments(); 1011 unsigned numWorkgroupAttributions = getNumWorkgroupAttributions(); 1012 unsigned numBlockArguments = front().getNumArguments(); 1013 if (numBlockArguments < numFuncArguments + numWorkgroupAttributions) 1014 return emitOpError() << "expected at least " 1015 << numFuncArguments + numWorkgroupAttributions 1016 << " arguments to body region"; 1017 1018 ArrayRef<Type> funcArgTypes = getFunctionType().getInputs(); 1019 for (unsigned i = 0; i < numFuncArguments; ++i) { 1020 Type blockArgType = front().getArgument(i).getType(); 1021 if (funcArgTypes[i] != blockArgType) 1022 return emitOpError() << "expected body region argument #" << i 1023 << " to be of type " << funcArgTypes[i] << ", got " 1024 << blockArgType; 1025 } 1026 1027 if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(), 1028 GPUDialect::getWorkgroupAddressSpace())) || 1029 failed(verifyAttributions(getOperation(), getPrivateAttributions(), 1030 GPUDialect::getPrivateAddressSpace()))) 1031 return failure(); 1032 1033 return success(); 1034 } 1035 1036 //===----------------------------------------------------------------------===// 1037 // ReturnOp 1038 //===----------------------------------------------------------------------===// 1039 1040 LogicalResult gpu::ReturnOp::verify() { 1041 GPUFuncOp function = (*this)->getParentOfType<GPUFuncOp>(); 1042 1043 FunctionType funType = function.getFunctionType(); 1044 1045 if (funType.getNumResults() != operands().size()) 1046 return emitOpError() 1047 .append("expected ", funType.getNumResults(), " result operands") 1048 .attachNote(function.getLoc()) 1049 .append("return type declared here"); 1050 1051 for (const auto &pair : llvm::enumerate( 1052 llvm::zip(function.getFunctionType().getResults(), operands()))) { 1053 Type type; 1054 Value operand; 1055 std::tie(type, operand) = pair.value(); 1056 if (type != operand.getType()) 1057 return emitOpError() << "unexpected type `" << operand.getType() 1058 << "' for operand #" << pair.index(); 1059 } 1060 return success(); 1061 } 1062 1063 //===----------------------------------------------------------------------===// 1064 // GPUModuleOp 1065 //===----------------------------------------------------------------------===// 1066 1067 void GPUModuleOp::build(OpBuilder &builder, OperationState &result, 1068 StringRef name) { 1069 ensureTerminator(*result.addRegion(), builder, result.location); 1070 result.attributes.push_back(builder.getNamedAttr( 1071 ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); 1072 } 1073 1074 ParseResult GPUModuleOp::parse(OpAsmParser &parser, OperationState &result) { 1075 StringAttr nameAttr; 1076 if (parser.parseSymbolName(nameAttr, mlir::SymbolTable::getSymbolAttrName(), 1077 result.attributes) || 1078 // If module attributes are present, parse them. 1079 parser.parseOptionalAttrDictWithKeyword(result.attributes)) 1080 return failure(); 1081 1082 // Parse the module body. 1083 auto *body = result.addRegion(); 1084 if (parser.parseRegion(*body, {})) 1085 return failure(); 1086 1087 // Ensure that this module has a valid terminator. 1088 GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location); 1089 return success(); 1090 } 1091 1092 void GPUModuleOp::print(OpAsmPrinter &p) { 1093 p << ' '; 1094 p.printSymbolName(getName()); 1095 p.printOptionalAttrDictWithKeyword((*this)->getAttrs(), 1096 {mlir::SymbolTable::getSymbolAttrName()}); 1097 p << ' '; 1098 p.printRegion(getRegion(), /*printEntryBlockArgs=*/false, 1099 /*printBlockTerminators=*/false); 1100 } 1101 1102 //===----------------------------------------------------------------------===// 1103 // GPUMemcpyOp 1104 //===----------------------------------------------------------------------===// 1105 1106 LogicalResult MemcpyOp::verify() { 1107 auto srcType = src().getType(); 1108 auto dstType = dst().getType(); 1109 1110 if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType)) 1111 return emitOpError("arguments have incompatible element type"); 1112 1113 if (failed(verifyCompatibleShape(srcType, dstType))) 1114 return emitOpError("arguments have incompatible shape"); 1115 1116 return success(); 1117 } 1118 1119 //===----------------------------------------------------------------------===// 1120 // GPU_SubgroupMmaLoadMatrixOp 1121 //===----------------------------------------------------------------------===// 1122 1123 /// Return true if the last dimension of the MemRefType has unit stride. Also 1124 /// return true for memrefs with no strides. 1125 static bool isLastMemrefDimUnitStride(MemRefType type) { 1126 int64_t offset; 1127 SmallVector<int64_t> strides; 1128 if (failed(getStridesAndOffset(type, strides, offset))) { 1129 return false; 1130 } 1131 return strides.back() == 1; 1132 } 1133 1134 LogicalResult SubgroupMmaLoadMatrixOp::verify() { 1135 auto srcType = srcMemref().getType(); 1136 auto resType = res().getType(); 1137 auto resMatrixType = resType.cast<gpu::MMAMatrixType>(); 1138 auto operand = resMatrixType.getOperand(); 1139 auto srcMemrefType = srcType.cast<MemRefType>(); 1140 auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt(); 1141 1142 if (!isLastMemrefDimUnitStride(srcMemrefType)) 1143 return emitError( 1144 "expected source memref most minor dim must have unit stride"); 1145 1146 if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace && 1147 srcMemSpace != kGlobalMemorySpace) 1148 return emitError( 1149 "source memorySpace kGenericMemorySpace, kSharedMemorySpace or " 1150 "kGlobalMemorySpace only allowed"); 1151 1152 if (!operand.equals("AOp") && !operand.equals("BOp") && 1153 !operand.equals("COp")) 1154 return emitError("only AOp, BOp and COp can be loaded"); 1155 1156 return success(); 1157 } 1158 1159 //===----------------------------------------------------------------------===// 1160 // GPU_SubgroupMmaStoreMatrixOp 1161 //===----------------------------------------------------------------------===// 1162 1163 LogicalResult SubgroupMmaStoreMatrixOp::verify() { 1164 auto srcType = src().getType(); 1165 auto dstType = dstMemref().getType(); 1166 auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>(); 1167 auto dstMemrefType = dstType.cast<MemRefType>(); 1168 auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt(); 1169 1170 if (!isLastMemrefDimUnitStride(dstMemrefType)) 1171 return emitError( 1172 "expected destination memref most minor dim must have unit stride"); 1173 1174 if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace && 1175 dstMemSpace != kGlobalMemorySpace) 1176 return emitError("destination memorySpace of kGenericMemorySpace, " 1177 "kGlobalMemorySpace or kSharedMemorySpace only allowed"); 1178 1179 if (!srcMatrixType.getOperand().equals("COp")) 1180 return emitError( 1181 "expected the operand matrix being stored to have 'COp' operand type"); 1182 1183 return success(); 1184 } 1185 1186 //===----------------------------------------------------------------------===// 1187 // GPU_SubgroupMmaComputeOp 1188 //===----------------------------------------------------------------------===// 1189 1190 LogicalResult SubgroupMmaComputeOp::verify() { 1191 enum OperandMap { A, B, C }; 1192 SmallVector<MMAMatrixType, 3> opTypes; 1193 opTypes.push_back(opA().getType().cast<MMAMatrixType>()); 1194 opTypes.push_back(opB().getType().cast<MMAMatrixType>()); 1195 opTypes.push_back(opC().getType().cast<MMAMatrixType>()); 1196 1197 if (!opTypes[A].getOperand().equals("AOp") || 1198 !opTypes[B].getOperand().equals("BOp") || 1199 !opTypes[C].getOperand().equals("COp")) 1200 return emitError("operands must be in the order AOp, BOp, COp"); 1201 1202 ArrayRef<int64_t> aShape, bShape, cShape; 1203 aShape = opTypes[A].getShape(); 1204 bShape = opTypes[B].getShape(); 1205 cShape = opTypes[C].getShape(); 1206 1207 if (aShape[1] != bShape[0] || aShape[0] != cShape[0] || 1208 bShape[1] != cShape[1]) 1209 return emitError("operand shapes do not satisfy matmul constraints"); 1210 1211 return success(); 1212 } 1213 1214 /// This is a common class used for patterns of the form 1215 /// "someop(memrefcast) -> someop". It folds the source of any memref.cast 1216 /// into the root operation directly. 1217 static LogicalResult foldMemRefCast(Operation *op) { 1218 bool folded = false; 1219 for (OpOperand &operand : op->getOpOperands()) { 1220 auto cast = operand.get().getDefiningOp<mlir::memref::CastOp>(); 1221 if (cast) { 1222 operand.set(cast.getOperand()); 1223 folded = true; 1224 } 1225 } 1226 return success(folded); 1227 } 1228 1229 LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands, 1230 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1231 return foldMemRefCast(*this); 1232 } 1233 1234 LogicalResult MemsetOp::fold(ArrayRef<Attribute> operands, 1235 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1236 return foldMemRefCast(*this); 1237 } 1238 1239 //===----------------------------------------------------------------------===// 1240 // GPU_WaitOp 1241 //===----------------------------------------------------------------------===// 1242 1243 namespace { 1244 1245 /// Remove gpu.wait op use of gpu.wait op def without async dependencies. 1246 /// %t = gpu.wait async [] // No async dependencies. 1247 /// ... gpu.wait ... [%t, ...] // %t can be removed. 1248 struct EraseRedundantGpuWaitOpPairs : public OpRewritePattern<WaitOp> { 1249 public: 1250 using OpRewritePattern::OpRewritePattern; 1251 1252 LogicalResult matchAndRewrite(WaitOp op, 1253 PatternRewriter &rewriter) const final { 1254 auto predicate = [](Value value) { 1255 auto waitOp = value.getDefiningOp<WaitOp>(); 1256 return waitOp && waitOp->getNumOperands() == 0; 1257 }; 1258 if (llvm::none_of(op.asyncDependencies(), predicate)) 1259 return failure(); 1260 SmallVector<Value> validOperands; 1261 for (Value operand : op->getOperands()) { 1262 if (predicate(operand)) 1263 continue; 1264 validOperands.push_back(operand); 1265 } 1266 op->setOperands(validOperands); 1267 return success(); 1268 } 1269 }; 1270 1271 /// Simplify trivial gpu.wait ops for the following patterns. 1272 /// 1. %t = gpu.wait async ... ops, where %t has no uses (regardless of async 1273 /// dependencies). 1274 /// 2. %t1 = gpu.wait async [%t0], in this case, we can replace uses of %t1 with 1275 /// %t0. 1276 /// 3. gpu.wait [] ops, i.e gpu.wait ops that neither have any async 1277 /// dependencies nor return any token. 1278 struct SimplifyGpuWaitOp : public OpRewritePattern<WaitOp> { 1279 public: 1280 using OpRewritePattern::OpRewritePattern; 1281 1282 LogicalResult matchAndRewrite(WaitOp op, 1283 PatternRewriter &rewriter) const final { 1284 // Erase gpu.wait ops that neither have any async dependencies nor return 1285 // any async token. 1286 if (op.asyncDependencies().empty() && !op.asyncToken()) { 1287 rewriter.eraseOp(op); 1288 return success(); 1289 } 1290 // Replace uses of %t1 = gpu.wait async [%t0] ops with %t0 and erase the op. 1291 if (llvm::hasSingleElement(op.asyncDependencies()) && op.asyncToken()) { 1292 rewriter.replaceOp(op, op.asyncDependencies()); 1293 return success(); 1294 } 1295 // Erase %t = gpu.wait async ... ops, where %t has no uses. 1296 if (op.asyncToken() && op.asyncToken().use_empty()) { 1297 rewriter.eraseOp(op); 1298 return success(); 1299 } 1300 return failure(); 1301 } 1302 }; 1303 1304 } // end anonymous namespace 1305 1306 void WaitOp::getCanonicalizationPatterns(RewritePatternSet &results, 1307 MLIRContext *context) { 1308 results.add<EraseRedundantGpuWaitOpPairs, SimplifyGpuWaitOp>(context); 1309 } 1310 1311 //===----------------------------------------------------------------------===// 1312 // GPU_AllocOp 1313 //===----------------------------------------------------------------------===// 1314 1315 LogicalResult AllocOp::verify() { 1316 auto memRefType = memref().getType().cast<MemRefType>(); 1317 1318 if (static_cast<int64_t>(dynamicSizes().size()) != 1319 memRefType.getNumDynamicDims()) 1320 return emitOpError("dimension operand count does not equal memref " 1321 "dynamic dimension count"); 1322 1323 unsigned numSymbols = 0; 1324 if (!memRefType.getLayout().isIdentity()) 1325 numSymbols = memRefType.getLayout().getAffineMap().getNumSymbols(); 1326 if (symbolOperands().size() != numSymbols) { 1327 return emitOpError( 1328 "symbol operand count does not equal memref symbol count"); 1329 } 1330 1331 return success(); 1332 } 1333 1334 namespace { 1335 1336 /// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to 1337 /// `memref::AllocOp`. 1338 struct SimplifyDimOfAllocOp : public OpRewritePattern<memref::DimOp> { 1339 using OpRewritePattern<memref::DimOp>::OpRewritePattern; 1340 1341 LogicalResult matchAndRewrite(memref::DimOp dimOp, 1342 PatternRewriter &rewriter) const override { 1343 auto index = dimOp.index().getDefiningOp<arith::ConstantIndexOp>(); 1344 if (!index) 1345 return failure(); 1346 1347 auto memrefType = dimOp.source().getType().dyn_cast<MemRefType>(); 1348 if (!memrefType || !memrefType.isDynamicDim(index.value())) 1349 return failure(); 1350 1351 auto alloc = dimOp.source().getDefiningOp<AllocOp>(); 1352 if (!alloc) 1353 return failure(); 1354 1355 Value substituteOp = *(alloc.dynamicSizes().begin() + 1356 memrefType.getDynamicDimIndex(index.value())); 1357 rewriter.replaceOp(dimOp, substituteOp); 1358 return success(); 1359 } 1360 }; 1361 1362 } // namespace 1363 1364 void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results, 1365 MLIRContext *context) { 1366 results.add<SimplifyDimOfAllocOp>(context); 1367 } 1368 1369 //===----------------------------------------------------------------------===// 1370 // GPU_DeviceAsyncCopyOp 1371 //===----------------------------------------------------------------------===// 1372 1373 LogicalResult DeviceAsyncCopyOp::verify() { 1374 auto srcMemref = src().getType().cast<MemRefType>(); 1375 auto dstMemref = dst().getType().cast<MemRefType>(); 1376 unsigned workgroupAddressSpace = GPUDialect::getWorkgroupAddressSpace(); 1377 if (!isLastMemrefDimUnitStride(srcMemref)) 1378 return emitError("source memref most minor dim must have unit stride"); 1379 if (!isLastMemrefDimUnitStride(dstMemref)) 1380 return emitError("destination memref most minor dim must have unit stride"); 1381 if (dstMemref.getMemorySpaceAsInt() != workgroupAddressSpace) 1382 return emitError("destination memref must have memory space ") 1383 << workgroupAddressSpace; 1384 if (dstMemref.getElementType() != srcMemref.getElementType()) 1385 return emitError("source and destination must have the same element type"); 1386 if (size_t(srcMemref.getRank()) != srcIndices().size()) 1387 return emitOpError() << "expected " << srcMemref.getRank() 1388 << " source indices, got " << srcIndices().size(); 1389 if (size_t(dstMemref.getRank()) != dstIndices().size()) 1390 return emitOpError() << "expected " << dstMemref.getRank() 1391 << " destination indices, got " << dstIndices().size(); 1392 return success(); 1393 } 1394 1395 #include "mlir/Dialect/GPU/GPUOpInterfaces.cpp.inc" 1396 #include "mlir/Dialect/GPU/GPUOpsEnums.cpp.inc" 1397 1398 #define GET_ATTRDEF_CLASSES 1399 #include "mlir/Dialect/GPU/GPUOpsAttributes.cpp.inc" 1400 1401 #define GET_OP_CLASSES 1402 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 1403