1 //===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the GPU kernel-related dialect and its operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/GPU/GPUDialect.h" 14 15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 16 #include "mlir/Dialect/MemRef/IR/MemRef.h" 17 #include "mlir/IR/Attributes.h" 18 #include "mlir/IR/Builders.h" 19 #include "mlir/IR/BuiltinOps.h" 20 #include "mlir/IR/BuiltinTypes.h" 21 #include "mlir/IR/DialectImplementation.h" 22 #include "mlir/IR/FunctionImplementation.h" 23 #include "mlir/IR/Matchers.h" 24 #include "mlir/IR/OpImplementation.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "mlir/IR/TypeUtilities.h" 27 #include "mlir/Transforms/InliningUtils.h" 28 #include "llvm/ADT/TypeSwitch.h" 29 30 using namespace mlir; 31 using namespace mlir::gpu; 32 33 #include "mlir/Dialect/GPU/GPUOpsDialect.cpp.inc" 34 35 //===----------------------------------------------------------------------===// 36 // MMAMatrixType 37 //===----------------------------------------------------------------------===// 38 39 MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType, 40 StringRef operand) { 41 return Base::get(elementType.getContext(), shape, elementType, operand); 42 } 43 44 MMAMatrixType 45 MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError, 46 ArrayRef<int64_t> shape, Type elementType, 47 StringRef operand) { 48 return Base::getChecked(emitError, elementType.getContext(), shape, 49 elementType, operand); 50 } 51 52 unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; } 53 54 ArrayRef<int64_t> MMAMatrixType::getShape() const { 55 return getImpl()->getShape(); 56 } 57 58 Type MMAMatrixType::getElementType() const { return getImpl()->elementType; } 59 60 StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); } 61 62 bool MMAMatrixType::isValidElementType(Type elementType) { 63 return elementType.isF16() || elementType.isF32(); 64 } 65 66 LogicalResult 67 MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError, 68 ArrayRef<int64_t> shape, Type elementType, 69 StringRef operand) { 70 if (!operand.equals("AOp") && !operand.equals("BOp") && 71 !operand.equals("COp")) 72 return emitError() << "operand expected to be one of AOp, BOp or COp"; 73 74 if (shape.size() != 2) 75 return emitError() << "MMAMatrixType must have exactly two dimensions"; 76 77 if (!MMAMatrixType::isValidElementType(elementType)) 78 return emitError() << "MMAMatrixType elements must be F16 or F32"; 79 80 return success(); 81 } 82 83 //===----------------------------------------------------------------------===// 84 // GPUDialect 85 //===----------------------------------------------------------------------===// 86 87 /// GPU memory space identifiers. 88 enum GPUMemorySpace { 89 /// Generic memory space identifier. 90 kGenericMemorySpace = 0, 91 92 /// Global memory space identifier. 93 kGlobalMemorySpace = 1, 94 95 /// Shared memory space identifier. 96 kSharedMemorySpace = 3 97 }; 98 99 bool GPUDialect::isKernel(Operation *op) { 100 UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName()); 101 return static_cast<bool>(isKernelAttr); 102 } 103 104 namespace { 105 /// This class defines the interface for handling inlining with gpu 106 /// operations. 107 struct GPUInlinerInterface : public DialectInlinerInterface { 108 using DialectInlinerInterface::DialectInlinerInterface; 109 110 /// All gpu dialect ops can be inlined. 111 bool isLegalToInline(Operation *, Region *, bool, 112 BlockAndValueMapping &) const final { 113 return true; 114 } 115 }; 116 } // namespace 117 118 void GPUDialect::initialize() { 119 addTypes<AsyncTokenType>(); 120 addTypes<MMAMatrixType>(); 121 addOperations< 122 #define GET_OP_LIST 123 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 124 >(); 125 addAttributes< 126 #define GET_ATTRDEF_LIST 127 #include "mlir/Dialect/GPU/GPUOpsAttributes.cpp.inc" 128 >(); 129 addInterfaces<GPUInlinerInterface>(); 130 } 131 132 Type GPUDialect::parseType(DialectAsmParser &parser) const { 133 // Parse the main keyword for the type. 134 StringRef keyword; 135 if (parser.parseKeyword(&keyword)) 136 return Type(); 137 MLIRContext *context = getContext(); 138 139 // Handle 'async token' types. 140 if (keyword == "async.token") 141 return AsyncTokenType::get(context); 142 143 if (keyword == "mma_matrix") { 144 SMLoc beginLoc = parser.getNameLoc(); 145 146 // Parse '<'. 147 if (parser.parseLess()) 148 return nullptr; 149 150 // Parse the size and elementType. 151 SmallVector<int64_t> shape; 152 Type elementType; 153 if (parser.parseDimensionList(shape, /*allowDynamic=*/false) || 154 parser.parseType(elementType)) 155 return nullptr; 156 157 // Parse ',' 158 if (parser.parseComma()) 159 return nullptr; 160 161 // Parse operand. 162 std::string operand; 163 if (failed(parser.parseOptionalString(&operand))) 164 return nullptr; 165 166 // Parse '>'. 167 if (parser.parseGreater()) 168 return nullptr; 169 170 return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn( 171 parser.getEncodedSourceLoc(beginLoc)), 172 shape, elementType, operand); 173 } 174 175 parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword); 176 return Type(); 177 } 178 179 void GPUDialect::printType(Type type, DialectAsmPrinter &os) const { 180 TypeSwitch<Type>(type) 181 .Case<AsyncTokenType>([&](Type) { os << "async.token"; }) 182 .Case<MMAMatrixType>([&](MMAMatrixType fragTy) { 183 os << "mma_matrix<"; 184 auto shape = fragTy.getShape(); 185 for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim) 186 os << *dim << 'x'; 187 os << shape.back() << 'x' << fragTy.getElementType(); 188 os << ", \"" << fragTy.getOperand() << "\"" << '>'; 189 }) 190 .Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); }); 191 } 192 193 LogicalResult GPUDialect::verifyOperationAttribute(Operation *op, 194 NamedAttribute attr) { 195 if (!attr.getValue().isa<UnitAttr>() || 196 attr.getName() != getContainerModuleAttrName()) 197 return success(); 198 199 auto module = dyn_cast<ModuleOp>(op); 200 if (!module) 201 return op->emitError("expected '") 202 << getContainerModuleAttrName() << "' attribute to be attached to '" 203 << ModuleOp::getOperationName() << '\''; 204 205 auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult { 206 // Ignore launches that are nested more or less deep than functions in the 207 // module we are currently checking. 208 if (!launchOp->getParentOp() || 209 launchOp->getParentOp()->getParentOp() != module) 210 return success(); 211 212 // Ignore launch ops with missing attributes here. The errors will be 213 // reported by the verifiers of those ops. 214 if (!launchOp->getAttrOfType<SymbolRefAttr>( 215 LaunchFuncOp::getKernelAttrName())) 216 return success(); 217 218 // Check that `launch_func` refers to a well-formed GPU kernel module. 219 StringAttr kernelModuleName = launchOp.getKernelModuleName(); 220 auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName); 221 if (!kernelModule) 222 return launchOp.emitOpError() 223 << "kernel module '" << kernelModuleName.getValue() 224 << "' is undefined"; 225 226 // Check that `launch_func` refers to a well-formed kernel function. 227 Operation *kernelFunc = module.lookupSymbol(launchOp.kernelAttr()); 228 if (!kernelFunc) 229 return launchOp.emitOpError("kernel function '") 230 << launchOp.kernel() << "' is undefined"; 231 auto kernelConvertedFunction = dyn_cast<FunctionOpInterface>(kernelFunc); 232 if (!kernelConvertedFunction) { 233 InFlightDiagnostic diag = launchOp.emitOpError() 234 << "referenced kernel '" << launchOp.kernel() 235 << "' is not a function"; 236 diag.attachNote(kernelFunc->getLoc()) << "see the kernel definition here"; 237 return diag; 238 } 239 240 if (!kernelFunc->getAttrOfType<mlir::UnitAttr>( 241 GPUDialect::getKernelFuncAttrName())) 242 return launchOp.emitOpError("kernel function is missing the '") 243 << GPUDialect::getKernelFuncAttrName() << "' attribute"; 244 245 // TODO: If the kernel isn't a GPU function (which happens during separate 246 // compilation), do not check type correspondence as it would require the 247 // verifier to be aware of the type conversion. 248 auto kernelGPUFunction = dyn_cast<gpu::GPUFuncOp>(kernelFunc); 249 if (!kernelGPUFunction) 250 return success(); 251 252 unsigned actualNumArguments = launchOp.getNumKernelOperands(); 253 unsigned expectedNumArguments = kernelGPUFunction.getNumArguments(); 254 if (expectedNumArguments != actualNumArguments) 255 return launchOp.emitOpError("got ") 256 << actualNumArguments << " kernel operands but expected " 257 << expectedNumArguments; 258 259 auto functionType = kernelGPUFunction.getFunctionType(); 260 for (unsigned i = 0; i < expectedNumArguments; ++i) { 261 if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) { 262 return launchOp.emitOpError("type of function argument ") 263 << i << " does not match"; 264 } 265 } 266 267 return success(); 268 }); 269 270 return walkResult.wasInterrupted() ? failure() : success(); 271 } 272 273 /// Parses an optional list of async operands with an optional leading keyword. 274 /// (`async`)? (`[` ssa-id-list `]`)? 275 /// 276 /// This method is used by the tablegen assembly format for async ops as well. 277 static ParseResult parseAsyncDependencies( 278 OpAsmParser &parser, Type &asyncTokenType, 279 SmallVectorImpl<OpAsmParser::UnresolvedOperand> &asyncDependencies) { 280 auto loc = parser.getCurrentLocation(); 281 if (succeeded(parser.parseOptionalKeyword("async"))) { 282 if (parser.getNumResults() == 0) 283 return parser.emitError(loc, "needs to be named when marked 'async'"); 284 asyncTokenType = parser.getBuilder().getType<AsyncTokenType>(); 285 } 286 return parser.parseOperandList(asyncDependencies, 287 OpAsmParser::Delimiter::OptionalSquare); 288 } 289 290 /// Prints optional async dependencies with its leading keyword. 291 /// (`async`)? (`[` ssa-id-list `]`)? 292 // Used by the tablegen assembly format for several async ops. 293 static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op, 294 Type asyncTokenType, 295 OperandRange asyncDependencies) { 296 if (asyncTokenType) 297 printer << "async"; 298 if (asyncDependencies.empty()) 299 return; 300 if (asyncTokenType) 301 printer << ' '; 302 printer << '['; 303 llvm::interleaveComma(asyncDependencies, printer); 304 printer << ']'; 305 } 306 307 //===----------------------------------------------------------------------===// 308 // AllReduceOp 309 //===----------------------------------------------------------------------===// 310 311 LogicalResult gpu::AllReduceOp::verifyRegions() { 312 if (body().empty() != op().hasValue()) 313 return emitError("expected either an op attribute or a non-empty body"); 314 if (!body().empty()) { 315 if (body().getNumArguments() != 2) 316 return emitError("expected two region arguments"); 317 for (auto argument : body().getArguments()) { 318 if (argument.getType() != getType()) 319 return emitError("incorrect region argument type"); 320 } 321 unsigned yieldCount = 0; 322 for (Block &block : body()) { 323 if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) { 324 if (yield.getNumOperands() != 1) 325 return emitError("expected one gpu.yield operand"); 326 if (yield.getOperand(0).getType() != getType()) 327 return emitError("incorrect gpu.yield type"); 328 ++yieldCount; 329 } 330 } 331 if (yieldCount == 0) 332 return emitError("expected gpu.yield op in region"); 333 } else { 334 gpu::AllReduceOperation opName = *op(); 335 if ((opName == gpu::AllReduceOperation::AND || 336 opName == gpu::AllReduceOperation::OR || 337 opName == gpu::AllReduceOperation::XOR) && 338 !getType().isa<IntegerType>()) { 339 return emitError() 340 << '`' << gpu::stringifyAllReduceOperation(opName) 341 << "` accumulator is only compatible with Integer type"; 342 } 343 } 344 return success(); 345 } 346 347 // TODO: Support optional custom attributes (without dialect prefix). 348 static ParseResult parseAllReduceOperation(AsmParser &parser, 349 AllReduceOperationAttr &attr) { 350 StringRef enumStr; 351 if (!parser.parseOptionalKeyword(&enumStr)) { 352 Optional<AllReduceOperation> op = gpu::symbolizeAllReduceOperation(enumStr); 353 if (!op) 354 return parser.emitError(parser.getCurrentLocation(), "invalid op kind"); 355 attr = AllReduceOperationAttr::get(parser.getContext(), *op); 356 } 357 return success(); 358 } 359 360 static void printAllReduceOperation(AsmPrinter &printer, Operation *op, 361 AllReduceOperationAttr attr) { 362 if (attr) 363 attr.print(printer); 364 } 365 366 //===----------------------------------------------------------------------===// 367 // AsyncOpInterface 368 //===----------------------------------------------------------------------===// 369 370 void gpu::addAsyncDependency(Operation *op, Value token) { 371 op->insertOperands(0, {token}); 372 if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>()) 373 return; 374 auto attrName = 375 OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr(); 376 auto sizeAttr = op->template getAttrOfType<DenseIntElementsAttr>(attrName); 377 378 // Async dependencies is the only variadic operand. 379 if (!sizeAttr) 380 return; 381 382 SmallVector<int32_t, 8> sizes(sizeAttr.getValues<int32_t>()); 383 ++sizes.front(); 384 op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes)); 385 } 386 387 //===----------------------------------------------------------------------===// 388 // LaunchOp 389 //===----------------------------------------------------------------------===// 390 391 void LaunchOp::build(OpBuilder &builder, OperationState &result, 392 Value gridSizeX, Value gridSizeY, Value gridSizeZ, 393 Value blockSizeX, Value blockSizeY, Value blockSizeZ, 394 Value dynamicSharedMemorySize, Type asyncTokenType, 395 ValueRange asyncDependencies) { 396 result.addOperands(asyncDependencies); 397 if (asyncTokenType) 398 result.types.push_back(builder.getType<AsyncTokenType>()); 399 400 // Add grid and block sizes as op operands, followed by the data operands. 401 result.addOperands( 402 {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); 403 if (dynamicSharedMemorySize) 404 result.addOperands(dynamicSharedMemorySize); 405 406 // Create a kernel body region with kNumConfigRegionAttributes + N arguments, 407 // where the first kNumConfigRegionAttributes arguments have `index` type and 408 // the rest have the same types as the data operands. 409 Region *kernelRegion = result.addRegion(); 410 Block *body = new Block(); 411 for (unsigned i = 0; i < kNumConfigRegionAttributes; ++i) 412 body->addArgument(builder.getIndexType(), result.location); 413 kernelRegion->push_back(body); 414 SmallVector<int32_t, 8> segmentSizes(8, 1); 415 segmentSizes.front() = asyncDependencies.size(); 416 segmentSizes.back() = dynamicSharedMemorySize ? 1 : 0; 417 result.addAttribute(getOperandSegmentSizeAttr(), 418 builder.getI32VectorAttr(segmentSizes)); 419 } 420 421 KernelDim3 LaunchOp::getBlockIds() { 422 assert(!body().empty() && "LaunchOp body must not be empty."); 423 auto args = body().getArguments(); 424 return KernelDim3{args[0], args[1], args[2]}; 425 } 426 427 KernelDim3 LaunchOp::getThreadIds() { 428 assert(!body().empty() && "LaunchOp body must not be empty."); 429 auto args = body().getArguments(); 430 return KernelDim3{args[3], args[4], args[5]}; 431 } 432 433 KernelDim3 LaunchOp::getGridSize() { 434 assert(!body().empty() && "LaunchOp body must not be empty."); 435 auto args = body().getArguments(); 436 return KernelDim3{args[6], args[7], args[8]}; 437 } 438 439 KernelDim3 LaunchOp::getBlockSize() { 440 assert(!body().empty() && "LaunchOp body must not be empty."); 441 auto args = body().getArguments(); 442 return KernelDim3{args[9], args[10], args[11]}; 443 } 444 445 KernelDim3 LaunchOp::getGridSizeOperandValues() { 446 auto operands = getOperands().drop_front(asyncDependencies().size()); 447 return KernelDim3{operands[0], operands[1], operands[2]}; 448 } 449 450 KernelDim3 LaunchOp::getBlockSizeOperandValues() { 451 auto operands = getOperands().drop_front(asyncDependencies().size()); 452 return KernelDim3{operands[3], operands[4], operands[5]}; 453 } 454 455 LogicalResult LaunchOp::verifyRegions() { 456 // Kernel launch takes kNumConfigOperands leading operands for grid/block 457 // sizes and transforms them into kNumConfigRegionAttributes region arguments 458 // for block/thread identifiers and grid/block sizes. 459 if (!body().empty()) { 460 if (body().getNumArguments() != 461 LaunchOp::kNumConfigOperands + getNumOperands() - 462 (dynamicSharedMemorySize() ? 1 : 0) - asyncDependencies().size()) 463 return emitOpError("unexpected number of region arguments"); 464 } 465 466 // Block terminators without successors are expected to exit the kernel region 467 // and must be `gpu.terminator`. 468 for (Block &block : body()) { 469 if (block.empty()) 470 continue; 471 if (block.back().getNumSuccessors() != 0) 472 continue; 473 if (!isa<gpu::TerminatorOp>(&block.back())) { 474 return block.back() 475 .emitError() 476 .append("expected '", gpu::TerminatorOp::getOperationName(), 477 "' or a terminator with successors") 478 .attachNote(getLoc()) 479 .append("in '", LaunchOp::getOperationName(), "' body region"); 480 } 481 } 482 483 if (getNumResults() == 0 && asyncToken()) 484 return emitOpError("needs to be named when async keyword is specified"); 485 486 return success(); 487 } 488 489 // Pretty-print the kernel grid/block size assignment as 490 // (%iter-x, %iter-y, %iter-z) in 491 // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use) 492 // where %size-* and %iter-* will correspond to the body region arguments. 493 static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size, 494 KernelDim3 operands, KernelDim3 ids) { 495 p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in ("; 496 p << size.x << " = " << operands.x << ", "; 497 p << size.y << " = " << operands.y << ", "; 498 p << size.z << " = " << operands.z << ')'; 499 } 500 501 void LaunchOp::print(OpAsmPrinter &p) { 502 if (asyncToken()) { 503 p << " async"; 504 if (!asyncDependencies().empty()) 505 p << " [" << asyncDependencies() << ']'; 506 } 507 // Print the launch configuration. 508 p << ' ' << getBlocksKeyword(); 509 printSizeAssignment(p, getGridSize(), getGridSizeOperandValues(), 510 getBlockIds()); 511 p << ' ' << getThreadsKeyword(); 512 printSizeAssignment(p, getBlockSize(), getBlockSizeOperandValues(), 513 getThreadIds()); 514 if (dynamicSharedMemorySize()) 515 p << ' ' << getDynamicSharedMemorySizeKeyword() << ' ' 516 << dynamicSharedMemorySize(); 517 518 p << ' '; 519 p.printRegion(body(), /*printEntryBlockArgs=*/false); 520 p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{ 521 LaunchOp::getOperandSegmentSizeAttr()}); 522 } 523 524 // Parse the size assignment blocks for blocks and threads. These have the form 525 // (%region_arg, %region_arg, %region_arg) in 526 // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand) 527 // where %region_arg are percent-identifiers for the region arguments to be 528 // introduced further (SSA defs), and %operand are percent-identifiers for the 529 // SSA value uses. 530 static ParseResult 531 parseSizeAssignment(OpAsmParser &parser, 532 MutableArrayRef<OpAsmParser::UnresolvedOperand> sizes, 533 MutableArrayRef<OpAsmParser::UnresolvedOperand> regionSizes, 534 MutableArrayRef<OpAsmParser::UnresolvedOperand> indices) { 535 assert(indices.size() == 3 && "space for three indices expected"); 536 SmallVector<OpAsmParser::UnresolvedOperand, 3> args; 537 if (parser.parseOperandList(args, OpAsmParser::Delimiter::Paren, 538 /*allowResultNumber=*/false) || 539 parser.parseKeyword("in") || parser.parseLParen()) 540 return failure(); 541 std::move(args.begin(), args.end(), indices.begin()); 542 543 for (int i = 0; i < 3; ++i) { 544 if (i != 0 && parser.parseComma()) 545 return failure(); 546 if (parser.parseOperand(regionSizes[i], /*allowResultNumber=*/false) || 547 parser.parseEqual() || parser.parseOperand(sizes[i])) 548 return failure(); 549 } 550 551 return parser.parseRParen(); 552 } 553 554 /// Parses a Launch operation. 555 /// operation ::= `gpu.launch` (`async` `[` ssa-id-list `]`)? 556 // `blocks` `(` ssa-id-list `)` `in` ssa-reassignment 557 /// `threads` `(` ssa-id-list `)` `in` ssa-reassignment 558 /// region attr-dict? 559 /// ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)` 560 ParseResult LaunchOp::parse(OpAsmParser &parser, OperationState &result) { 561 // Sizes of the grid and block. 562 SmallVector<OpAsmParser::UnresolvedOperand, LaunchOp::kNumConfigOperands> 563 sizes(LaunchOp::kNumConfigOperands); 564 MutableArrayRef<OpAsmParser::UnresolvedOperand> sizesRef(sizes); 565 566 // Actual (data) operands passed to the kernel. 567 SmallVector<OpAsmParser::UnresolvedOperand, 4> dataOperands; 568 569 // Region arguments to be created. 570 SmallVector<OpAsmParser::UnresolvedOperand, 16> regionArgs( 571 LaunchOp::kNumConfigRegionAttributes); 572 MutableArrayRef<OpAsmParser::UnresolvedOperand> regionArgsRef(regionArgs); 573 574 // Parse optional async dependencies. 575 SmallVector<OpAsmParser::UnresolvedOperand, 4> asyncDependencies; 576 Type asyncTokenType; 577 if (failed( 578 parseAsyncDependencies(parser, asyncTokenType, asyncDependencies)) || 579 parser.resolveOperands(asyncDependencies, asyncTokenType, 580 result.operands)) 581 return failure(); 582 if (parser.getNumResults() > 0) 583 result.types.push_back(asyncTokenType); 584 585 // Parse the size assignment segments: the first segment assigns grid sizes 586 // and defines values for block identifiers; the second segment assigns block 587 // sizes and defines values for thread identifiers. In the region argument 588 // list, identifiers precede sizes, and block-related values precede 589 // thread-related values. 590 if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) || 591 parseSizeAssignment(parser, sizesRef.take_front(3), 592 regionArgsRef.slice(6, 3), 593 regionArgsRef.slice(0, 3)) || 594 parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) || 595 parseSizeAssignment(parser, sizesRef.drop_front(3), 596 regionArgsRef.slice(9, 3), 597 regionArgsRef.slice(3, 3)) || 598 parser.resolveOperands(sizes, parser.getBuilder().getIndexType(), 599 result.operands)) 600 return failure(); 601 602 OpAsmParser::UnresolvedOperand dynamicSharedMemorySize; 603 bool hasDynamicSharedMemorySize = false; 604 if (!parser.parseOptionalKeyword( 605 LaunchOp::getDynamicSharedMemorySizeKeyword())) { 606 hasDynamicSharedMemorySize = true; 607 if (parser.parseOperand(dynamicSharedMemorySize) || 608 parser.resolveOperand(dynamicSharedMemorySize, 609 parser.getBuilder().getI32Type(), 610 result.operands)) 611 return failure(); 612 } 613 614 // Introduce the body region and parse it. The region has 615 // kNumConfigRegionAttributes arguments that correspond to 616 // block/thread identifiers and grid/block sizes, all of the `index` type. 617 Type index = parser.getBuilder().getIndexType(); 618 SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes( 619 LaunchOp::kNumConfigRegionAttributes, index); 620 621 SmallVector<OpAsmParser::Argument> regionArguments; 622 for (auto ssaValueAndType : llvm::zip(regionArgs, dataTypes)) { 623 OpAsmParser::Argument arg; 624 arg.ssaName = std::get<0>(ssaValueAndType); 625 arg.type = std::get<1>(ssaValueAndType); 626 regionArguments.push_back(arg); 627 } 628 629 Region *body = result.addRegion(); 630 if (parser.parseRegion(*body, regionArguments) || 631 parser.parseOptionalAttrDict(result.attributes)) 632 return failure(); 633 634 SmallVector<int32_t, 8> segmentSizes(8, 1); 635 segmentSizes.front() = asyncDependencies.size(); 636 segmentSizes.back() = hasDynamicSharedMemorySize ? 1 : 0; 637 result.addAttribute(LaunchOp::getOperandSegmentSizeAttr(), 638 parser.getBuilder().getI32VectorAttr(segmentSizes)); 639 return success(); 640 } 641 642 /// Simplify the gpu.launch when the range of a thread or block ID is 643 /// trivially known to be one. 644 struct FoldLaunchArguments : public OpRewritePattern<LaunchOp> { 645 using OpRewritePattern<LaunchOp>::OpRewritePattern; 646 LogicalResult matchAndRewrite(LaunchOp op, 647 PatternRewriter &rewriter) const override { 648 // If the range implies a single value for `id`, replace `id`'s uses by 649 // zero. 650 Value zero; 651 bool simplified = false; 652 auto constPropIdUses = [&](Value id, Value size) { 653 // Check if size is trivially one. 654 if (!matchPattern(size, m_One())) 655 return; 656 if (!simplified) { 657 // Create a zero value the first time. 658 OpBuilder::InsertionGuard guard(rewriter); 659 rewriter.setInsertionPointToStart(&op.body().front()); 660 zero = 661 rewriter.create<arith::ConstantIndexOp>(op.getLoc(), /*value=*/0); 662 } 663 id.replaceAllUsesWith(zero); 664 simplified = true; 665 }; 666 constPropIdUses(op.getBlockIds().x, op.gridSizeX()); 667 constPropIdUses(op.getBlockIds().y, op.gridSizeY()); 668 constPropIdUses(op.getBlockIds().z, op.gridSizeZ()); 669 constPropIdUses(op.getThreadIds().x, op.blockSizeX()); 670 constPropIdUses(op.getThreadIds().y, op.blockSizeY()); 671 constPropIdUses(op.getThreadIds().z, op.blockSizeZ()); 672 673 return success(simplified); 674 } 675 }; 676 677 void LaunchOp::getCanonicalizationPatterns(RewritePatternSet &rewrites, 678 MLIRContext *context) { 679 rewrites.add<FoldLaunchArguments>(context); 680 } 681 682 //===----------------------------------------------------------------------===// 683 // LaunchFuncOp 684 //===----------------------------------------------------------------------===// 685 686 void LaunchFuncOp::build(OpBuilder &builder, OperationState &result, 687 GPUFuncOp kernelFunc, KernelDim3 gridSize, 688 KernelDim3 blockSize, Value dynamicSharedMemorySize, 689 ValueRange kernelOperands, Type asyncTokenType, 690 ValueRange asyncDependencies) { 691 result.addOperands(asyncDependencies); 692 if (asyncTokenType) 693 result.types.push_back(builder.getType<AsyncTokenType>()); 694 695 // Add grid and block sizes as op operands, followed by the data operands. 696 result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x, 697 blockSize.y, blockSize.z}); 698 if (dynamicSharedMemorySize) 699 result.addOperands(dynamicSharedMemorySize); 700 result.addOperands(kernelOperands); 701 auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>(); 702 auto kernelSymbol = 703 SymbolRefAttr::get(kernelModule.getNameAttr(), 704 {SymbolRefAttr::get(kernelFunc.getNameAttr())}); 705 result.addAttribute(getKernelAttrName(), kernelSymbol); 706 SmallVector<int32_t, 9> segmentSizes(9, 1); 707 segmentSizes.front() = asyncDependencies.size(); 708 segmentSizes[segmentSizes.size() - 2] = dynamicSharedMemorySize ? 1 : 0; 709 segmentSizes.back() = static_cast<int32_t>(kernelOperands.size()); 710 result.addAttribute(getOperandSegmentSizeAttr(), 711 builder.getI32VectorAttr(segmentSizes)); 712 } 713 714 unsigned LaunchFuncOp::getNumKernelOperands() { 715 return getNumOperands() - asyncDependencies().size() - kNumConfigOperands - 716 (dynamicSharedMemorySize() ? 1 : 0); 717 } 718 719 StringAttr LaunchFuncOp::getKernelModuleName() { 720 return kernel().getRootReference(); 721 } 722 723 StringAttr LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); } 724 725 Value LaunchFuncOp::getKernelOperand(unsigned i) { 726 return getOperand(asyncDependencies().size() + kNumConfigOperands + 727 (dynamicSharedMemorySize() ? 1 : 0) + i); 728 } 729 730 KernelDim3 LaunchFuncOp::getGridSizeOperandValues() { 731 auto operands = getOperands().drop_front(asyncDependencies().size()); 732 return KernelDim3{operands[0], operands[1], operands[2]}; 733 } 734 735 KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() { 736 auto operands = getOperands().drop_front(asyncDependencies().size()); 737 return KernelDim3{operands[3], operands[4], operands[5]}; 738 } 739 740 LogicalResult LaunchFuncOp::verify() { 741 auto module = (*this)->getParentOfType<ModuleOp>(); 742 if (!module) 743 return emitOpError("expected to belong to a module"); 744 745 if (!module->getAttrOfType<UnitAttr>( 746 GPUDialect::getContainerModuleAttrName())) 747 return emitOpError("expected the closest surrounding module to have the '" + 748 GPUDialect::getContainerModuleAttrName() + 749 "' attribute"); 750 751 auto kernelAttr = (*this)->getAttrOfType<SymbolRefAttr>(getKernelAttrName()); 752 if (!kernelAttr) 753 return emitOpError("symbol reference attribute '" + getKernelAttrName() + 754 "' must be specified"); 755 756 return success(); 757 } 758 759 static ParseResult parseLaunchFuncOperands( 760 OpAsmParser &parser, 761 SmallVectorImpl<OpAsmParser::UnresolvedOperand> &argNames, 762 SmallVectorImpl<Type> &argTypes) { 763 if (parser.parseOptionalKeyword("args")) 764 return success(); 765 766 SmallVector<OpAsmParser::Argument> args; 767 if (parser.parseArgumentList(args, OpAsmParser::Delimiter::Paren, 768 /*allowType=*/true)) 769 return failure(); 770 for (auto &arg : args) { 771 argNames.push_back(arg.ssaName); 772 argTypes.push_back(arg.type); 773 } 774 return success(); 775 } 776 777 static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *, 778 OperandRange operands, TypeRange types) { 779 if (operands.empty()) 780 return; 781 printer << "args("; 782 llvm::interleaveComma(llvm::zip(operands, types), printer, 783 [&](const auto &pair) { 784 printer.printOperand(std::get<0>(pair)); 785 printer << " : "; 786 printer.printType(std::get<1>(pair)); 787 }); 788 printer << ")"; 789 } 790 791 //===----------------------------------------------------------------------===// 792 // ShuffleOp 793 //===----------------------------------------------------------------------===// 794 795 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value value, 796 int32_t offset, int32_t width, ShuffleMode mode) { 797 build(builder, result, value, 798 builder.create<arith::ConstantOp>(result.location, 799 builder.getI32IntegerAttr(offset)), 800 builder.create<arith::ConstantOp>(result.location, 801 builder.getI32IntegerAttr(width)), 802 mode); 803 } 804 805 //===----------------------------------------------------------------------===// 806 // GPUFuncOp 807 //===----------------------------------------------------------------------===// 808 809 /// Adds a new block argument that corresponds to buffers located in 810 /// workgroup memory. 811 BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type, Location loc) { 812 auto attrName = getNumWorkgroupAttributionsAttrName(); 813 auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName); 814 (*this)->setAttr(attrName, 815 IntegerAttr::get(attr.getType(), attr.getValue() + 1)); 816 return getBody().insertArgument( 817 getFunctionType().getNumInputs() + attr.getInt(), type, loc); 818 } 819 820 /// Adds a new block argument that corresponds to buffers located in 821 /// private memory. 822 BlockArgument GPUFuncOp::addPrivateAttribution(Type type, Location loc) { 823 // Buffers on the private memory always come after buffers on the workgroup 824 // memory. 825 return getBody().addArgument(type, loc); 826 } 827 828 void GPUFuncOp::build(OpBuilder &builder, OperationState &result, 829 StringRef name, FunctionType type, 830 TypeRange workgroupAttributions, 831 TypeRange privateAttributions, 832 ArrayRef<NamedAttribute> attrs) { 833 result.addAttribute(SymbolTable::getSymbolAttrName(), 834 builder.getStringAttr(name)); 835 result.addAttribute(getTypeAttrName(), TypeAttr::get(type)); 836 result.addAttribute(getNumWorkgroupAttributionsAttrName(), 837 builder.getI64IntegerAttr(workgroupAttributions.size())); 838 result.addAttributes(attrs); 839 Region *body = result.addRegion(); 840 Block *entryBlock = new Block; 841 842 // TODO: Allow passing in proper locations here. 843 for (Type argTy : type.getInputs()) 844 entryBlock->addArgument(argTy, result.location); 845 for (Type argTy : workgroupAttributions) 846 entryBlock->addArgument(argTy, result.location); 847 for (Type argTy : privateAttributions) 848 entryBlock->addArgument(argTy, result.location); 849 850 body->getBlocks().push_back(entryBlock); 851 } 852 853 /// Parses a GPU function memory attribution. 854 /// 855 /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)? 856 /// (`private` `(` ssa-id-and-type-list `)`)? 857 /// 858 /// Note that this function parses only one of the two similar parts, with the 859 /// keyword provided as argument. 860 static ParseResult 861 parseAttributions(OpAsmParser &parser, StringRef keyword, 862 SmallVectorImpl<OpAsmParser::Argument> &args) { 863 // If we could not parse the keyword, just assume empty list and succeed. 864 if (failed(parser.parseOptionalKeyword(keyword))) 865 return success(); 866 867 return parser.parseArgumentList(args, OpAsmParser::Delimiter::Paren, 868 /*allowType=*/true); 869 } 870 871 /// Parses a GPU function. 872 /// 873 /// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)` 874 /// (`->` function-result-list)? memory-attribution `kernel`? 875 /// function-attributes? region 876 ParseResult GPUFuncOp::parse(OpAsmParser &parser, OperationState &result) { 877 SmallVector<OpAsmParser::Argument> entryArgs; 878 SmallVector<DictionaryAttr> resultAttrs; 879 SmallVector<Type> resultTypes; 880 bool isVariadic; 881 882 // Parse the function name. 883 StringAttr nameAttr; 884 if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), 885 result.attributes)) 886 return failure(); 887 888 auto signatureLocation = parser.getCurrentLocation(); 889 if (failed(function_interface_impl::parseFunctionSignature( 890 parser, /*allowVariadic=*/false, entryArgs, isVariadic, resultTypes, 891 resultAttrs))) 892 return failure(); 893 894 if (!entryArgs.empty() && entryArgs[0].ssaName.name.empty()) 895 return parser.emitError(signatureLocation) 896 << "gpu.func requires named arguments"; 897 898 // Construct the function type. More types will be added to the region, but 899 // not to the function type. 900 Builder &builder = parser.getBuilder(); 901 902 SmallVector<Type> argTypes; 903 for (auto &arg : entryArgs) 904 argTypes.push_back(arg.type); 905 auto type = builder.getFunctionType(argTypes, resultTypes); 906 result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type)); 907 908 function_interface_impl::addArgAndResultAttrs(builder, result, entryArgs, 909 resultAttrs); 910 911 // Parse workgroup memory attributions. 912 if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(), 913 entryArgs))) 914 return failure(); 915 916 // Store the number of operands we just parsed as the number of workgroup 917 // memory attributions. 918 unsigned numWorkgroupAttrs = entryArgs.size() - type.getNumInputs(); 919 result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(), 920 builder.getI64IntegerAttr(numWorkgroupAttrs)); 921 922 // Parse private memory attributions. 923 if (failed( 924 parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), entryArgs))) 925 return failure(); 926 927 // Parse the kernel attribute if present. 928 if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword()))) 929 result.addAttribute(GPUDialect::getKernelFuncAttrName(), 930 builder.getUnitAttr()); 931 932 // Parse attributes. 933 if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) 934 return failure(); 935 936 // Parse the region. If no argument names were provided, take all names 937 // (including those of attributions) from the entry block. 938 auto *body = result.addRegion(); 939 return parser.parseRegion(*body, entryArgs); 940 } 941 942 static void printAttributions(OpAsmPrinter &p, StringRef keyword, 943 ArrayRef<BlockArgument> values) { 944 if (values.empty()) 945 return; 946 947 p << ' ' << keyword << '('; 948 llvm::interleaveComma( 949 values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); }); 950 p << ')'; 951 } 952 953 void GPUFuncOp::print(OpAsmPrinter &p) { 954 p << ' '; 955 p.printSymbolName(getName()); 956 957 FunctionType type = getFunctionType(); 958 function_interface_impl::printFunctionSignature(p, *this, type.getInputs(), 959 /*isVariadic=*/false, 960 type.getResults()); 961 962 printAttributions(p, getWorkgroupKeyword(), getWorkgroupAttributions()); 963 printAttributions(p, getPrivateKeyword(), getPrivateAttributions()); 964 if (isKernel()) 965 p << ' ' << getKernelKeyword(); 966 967 function_interface_impl::printFunctionAttributes( 968 p, *this, type.getNumInputs(), type.getNumResults(), 969 {getNumWorkgroupAttributionsAttrName(), 970 GPUDialect::getKernelFuncAttrName()}); 971 p << ' '; 972 p.printRegion(getBody(), /*printEntryBlockArgs=*/false); 973 } 974 975 LogicalResult GPUFuncOp::verifyType() { 976 Type type = getFunctionTypeAttr().getValue(); 977 if (!type.isa<FunctionType>()) 978 return emitOpError("requires '" + getTypeAttrName() + 979 "' attribute of function type"); 980 981 if (isKernel() && getFunctionType().getNumResults() != 0) 982 return emitOpError() << "expected void return type for kernel function"; 983 984 return success(); 985 } 986 987 static LogicalResult verifyAttributions(Operation *op, 988 ArrayRef<BlockArgument> attributions, 989 unsigned memorySpace) { 990 for (Value v : attributions) { 991 auto type = v.getType().dyn_cast<MemRefType>(); 992 if (!type) 993 return op->emitOpError() << "expected memref type in attribution"; 994 995 if (type.getMemorySpaceAsInt() != memorySpace) { 996 return op->emitOpError() 997 << "expected memory space " << memorySpace << " in attribution"; 998 } 999 } 1000 return success(); 1001 } 1002 1003 /// Verifies the body of the function. 1004 LogicalResult GPUFuncOp::verifyBody() { 1005 unsigned numFuncArguments = getNumArguments(); 1006 unsigned numWorkgroupAttributions = getNumWorkgroupAttributions(); 1007 unsigned numBlockArguments = front().getNumArguments(); 1008 if (numBlockArguments < numFuncArguments + numWorkgroupAttributions) 1009 return emitOpError() << "expected at least " 1010 << numFuncArguments + numWorkgroupAttributions 1011 << " arguments to body region"; 1012 1013 ArrayRef<Type> funcArgTypes = getFunctionType().getInputs(); 1014 for (unsigned i = 0; i < numFuncArguments; ++i) { 1015 Type blockArgType = front().getArgument(i).getType(); 1016 if (funcArgTypes[i] != blockArgType) 1017 return emitOpError() << "expected body region argument #" << i 1018 << " to be of type " << funcArgTypes[i] << ", got " 1019 << blockArgType; 1020 } 1021 1022 if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(), 1023 GPUDialect::getWorkgroupAddressSpace())) || 1024 failed(verifyAttributions(getOperation(), getPrivateAttributions(), 1025 GPUDialect::getPrivateAddressSpace()))) 1026 return failure(); 1027 1028 return success(); 1029 } 1030 1031 //===----------------------------------------------------------------------===// 1032 // ReturnOp 1033 //===----------------------------------------------------------------------===// 1034 1035 LogicalResult gpu::ReturnOp::verify() { 1036 GPUFuncOp function = (*this)->getParentOfType<GPUFuncOp>(); 1037 1038 FunctionType funType = function.getFunctionType(); 1039 1040 if (funType.getNumResults() != operands().size()) 1041 return emitOpError() 1042 .append("expected ", funType.getNumResults(), " result operands") 1043 .attachNote(function.getLoc()) 1044 .append("return type declared here"); 1045 1046 for (const auto &pair : llvm::enumerate( 1047 llvm::zip(function.getFunctionType().getResults(), operands()))) { 1048 Type type; 1049 Value operand; 1050 std::tie(type, operand) = pair.value(); 1051 if (type != operand.getType()) 1052 return emitOpError() << "unexpected type `" << operand.getType() 1053 << "' for operand #" << pair.index(); 1054 } 1055 return success(); 1056 } 1057 1058 //===----------------------------------------------------------------------===// 1059 // GPUModuleOp 1060 //===----------------------------------------------------------------------===// 1061 1062 void GPUModuleOp::build(OpBuilder &builder, OperationState &result, 1063 StringRef name) { 1064 ensureTerminator(*result.addRegion(), builder, result.location); 1065 result.attributes.push_back(builder.getNamedAttr( 1066 ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); 1067 } 1068 1069 ParseResult GPUModuleOp::parse(OpAsmParser &parser, OperationState &result) { 1070 StringAttr nameAttr; 1071 if (parser.parseSymbolName(nameAttr, mlir::SymbolTable::getSymbolAttrName(), 1072 result.attributes) || 1073 // If module attributes are present, parse them. 1074 parser.parseOptionalAttrDictWithKeyword(result.attributes)) 1075 return failure(); 1076 1077 // Parse the module body. 1078 auto *body = result.addRegion(); 1079 if (parser.parseRegion(*body, {})) 1080 return failure(); 1081 1082 // Ensure that this module has a valid terminator. 1083 GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location); 1084 return success(); 1085 } 1086 1087 void GPUModuleOp::print(OpAsmPrinter &p) { 1088 p << ' '; 1089 p.printSymbolName(getName()); 1090 p.printOptionalAttrDictWithKeyword((*this)->getAttrs(), 1091 {mlir::SymbolTable::getSymbolAttrName()}); 1092 p << ' '; 1093 p.printRegion(getRegion(), /*printEntryBlockArgs=*/false, 1094 /*printBlockTerminators=*/false); 1095 } 1096 1097 //===----------------------------------------------------------------------===// 1098 // GPUMemcpyOp 1099 //===----------------------------------------------------------------------===// 1100 1101 LogicalResult MemcpyOp::verify() { 1102 auto srcType = src().getType(); 1103 auto dstType = dst().getType(); 1104 1105 if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType)) 1106 return emitOpError("arguments have incompatible element type"); 1107 1108 if (failed(verifyCompatibleShape(srcType, dstType))) 1109 return emitOpError("arguments have incompatible shape"); 1110 1111 return success(); 1112 } 1113 1114 //===----------------------------------------------------------------------===// 1115 // GPU_SubgroupMmaLoadMatrixOp 1116 //===----------------------------------------------------------------------===// 1117 1118 /// Return true if the last dimension of the MemRefType has unit stride. Also 1119 /// return true for memrefs with no strides. 1120 static bool isLastMemrefDimUnitStride(MemRefType type) { 1121 int64_t offset; 1122 SmallVector<int64_t> strides; 1123 if (failed(getStridesAndOffset(type, strides, offset))) { 1124 return false; 1125 } 1126 return strides.back() == 1; 1127 } 1128 1129 LogicalResult SubgroupMmaLoadMatrixOp::verify() { 1130 auto srcType = srcMemref().getType(); 1131 auto resType = res().getType(); 1132 auto resMatrixType = resType.cast<gpu::MMAMatrixType>(); 1133 auto operand = resMatrixType.getOperand(); 1134 auto srcMemrefType = srcType.cast<MemRefType>(); 1135 auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt(); 1136 1137 if (!isLastMemrefDimUnitStride(srcMemrefType)) 1138 return emitError( 1139 "expected source memref most minor dim must have unit stride"); 1140 1141 if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace && 1142 srcMemSpace != kGlobalMemorySpace) 1143 return emitError( 1144 "source memorySpace kGenericMemorySpace, kSharedMemorySpace or " 1145 "kGlobalMemorySpace only allowed"); 1146 1147 if (!operand.equals("AOp") && !operand.equals("BOp") && 1148 !operand.equals("COp")) 1149 return emitError("only AOp, BOp and COp can be loaded"); 1150 1151 return success(); 1152 } 1153 1154 //===----------------------------------------------------------------------===// 1155 // GPU_SubgroupMmaStoreMatrixOp 1156 //===----------------------------------------------------------------------===// 1157 1158 LogicalResult SubgroupMmaStoreMatrixOp::verify() { 1159 auto srcType = src().getType(); 1160 auto dstType = dstMemref().getType(); 1161 auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>(); 1162 auto dstMemrefType = dstType.cast<MemRefType>(); 1163 auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt(); 1164 1165 if (!isLastMemrefDimUnitStride(dstMemrefType)) 1166 return emitError( 1167 "expected destination memref most minor dim must have unit stride"); 1168 1169 if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace && 1170 dstMemSpace != kGlobalMemorySpace) 1171 return emitError("destination memorySpace of kGenericMemorySpace, " 1172 "kGlobalMemorySpace or kSharedMemorySpace only allowed"); 1173 1174 if (!srcMatrixType.getOperand().equals("COp")) 1175 return emitError( 1176 "expected the operand matrix being stored to have 'COp' operand type"); 1177 1178 return success(); 1179 } 1180 1181 //===----------------------------------------------------------------------===// 1182 // GPU_SubgroupMmaComputeOp 1183 //===----------------------------------------------------------------------===// 1184 1185 LogicalResult SubgroupMmaComputeOp::verify() { 1186 enum OperandMap { A, B, C }; 1187 SmallVector<MMAMatrixType, 3> opTypes; 1188 opTypes.push_back(opA().getType().cast<MMAMatrixType>()); 1189 opTypes.push_back(opB().getType().cast<MMAMatrixType>()); 1190 opTypes.push_back(opC().getType().cast<MMAMatrixType>()); 1191 1192 if (!opTypes[A].getOperand().equals("AOp") || 1193 !opTypes[B].getOperand().equals("BOp") || 1194 !opTypes[C].getOperand().equals("COp")) 1195 return emitError("operands must be in the order AOp, BOp, COp"); 1196 1197 ArrayRef<int64_t> aShape, bShape, cShape; 1198 aShape = opTypes[A].getShape(); 1199 bShape = opTypes[B].getShape(); 1200 cShape = opTypes[C].getShape(); 1201 1202 if (aShape[1] != bShape[0] || aShape[0] != cShape[0] || 1203 bShape[1] != cShape[1]) 1204 return emitError("operand shapes do not satisfy matmul constraints"); 1205 1206 return success(); 1207 } 1208 1209 /// This is a common class used for patterns of the form 1210 /// "someop(memrefcast) -> someop". It folds the source of any memref.cast 1211 /// into the root operation directly. 1212 static LogicalResult foldMemRefCast(Operation *op) { 1213 bool folded = false; 1214 for (OpOperand &operand : op->getOpOperands()) { 1215 auto cast = operand.get().getDefiningOp<mlir::memref::CastOp>(); 1216 if (cast) { 1217 operand.set(cast.getOperand()); 1218 folded = true; 1219 } 1220 } 1221 return success(folded); 1222 } 1223 1224 LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands, 1225 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1226 return foldMemRefCast(*this); 1227 } 1228 1229 LogicalResult MemsetOp::fold(ArrayRef<Attribute> operands, 1230 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1231 return foldMemRefCast(*this); 1232 } 1233 1234 //===----------------------------------------------------------------------===// 1235 // GPU_WaitOp 1236 //===----------------------------------------------------------------------===// 1237 1238 namespace { 1239 1240 /// Remove gpu.wait op use of gpu.wait op def without async dependencies. 1241 /// %t = gpu.wait async [] // No async dependencies. 1242 /// ... gpu.wait ... [%t, ...] // %t can be removed. 1243 struct EraseRedundantGpuWaitOpPairs : public OpRewritePattern<WaitOp> { 1244 public: 1245 using OpRewritePattern::OpRewritePattern; 1246 1247 LogicalResult matchAndRewrite(WaitOp op, 1248 PatternRewriter &rewriter) const final { 1249 auto predicate = [](Value value) { 1250 auto waitOp = value.getDefiningOp<WaitOp>(); 1251 return waitOp && waitOp->getNumOperands() == 0; 1252 }; 1253 if (llvm::none_of(op.asyncDependencies(), predicate)) 1254 return failure(); 1255 SmallVector<Value> validOperands; 1256 for (Value operand : op->getOperands()) { 1257 if (predicate(operand)) 1258 continue; 1259 validOperands.push_back(operand); 1260 } 1261 op->setOperands(validOperands); 1262 return success(); 1263 } 1264 }; 1265 1266 /// Simplify trivial gpu.wait ops for the following patterns. 1267 /// 1. %t = gpu.wait async ... ops, where %t has no uses (regardless of async 1268 /// dependencies). 1269 /// 2. %t1 = gpu.wait async [%t0], in this case, we can replace uses of %t1 with 1270 /// %t0. 1271 /// 3. gpu.wait [] ops, i.e gpu.wait ops that neither have any async 1272 /// dependencies nor return any token. 1273 struct SimplifyGpuWaitOp : public OpRewritePattern<WaitOp> { 1274 public: 1275 using OpRewritePattern::OpRewritePattern; 1276 1277 LogicalResult matchAndRewrite(WaitOp op, 1278 PatternRewriter &rewriter) const final { 1279 // Erase gpu.wait ops that neither have any async dependencies nor return 1280 // any async token. 1281 if (op.asyncDependencies().empty() && !op.asyncToken()) { 1282 rewriter.eraseOp(op); 1283 return success(); 1284 } 1285 // Replace uses of %t1 = gpu.wait async [%t0] ops with %t0 and erase the op. 1286 if (llvm::hasSingleElement(op.asyncDependencies()) && op.asyncToken()) { 1287 rewriter.replaceOp(op, op.asyncDependencies()); 1288 return success(); 1289 } 1290 // Erase %t = gpu.wait async ... ops, where %t has no uses. 1291 if (op.asyncToken() && op.asyncToken().use_empty()) { 1292 rewriter.eraseOp(op); 1293 return success(); 1294 } 1295 return failure(); 1296 } 1297 }; 1298 1299 } // end anonymous namespace 1300 1301 void WaitOp::getCanonicalizationPatterns(RewritePatternSet &results, 1302 MLIRContext *context) { 1303 results.add<EraseRedundantGpuWaitOpPairs, SimplifyGpuWaitOp>(context); 1304 } 1305 1306 //===----------------------------------------------------------------------===// 1307 // GPU_AllocOp 1308 //===----------------------------------------------------------------------===// 1309 1310 LogicalResult AllocOp::verify() { 1311 auto memRefType = memref().getType().cast<MemRefType>(); 1312 1313 if (static_cast<int64_t>(dynamicSizes().size()) != 1314 memRefType.getNumDynamicDims()) 1315 return emitOpError("dimension operand count does not equal memref " 1316 "dynamic dimension count"); 1317 1318 unsigned numSymbols = 0; 1319 if (!memRefType.getLayout().isIdentity()) 1320 numSymbols = memRefType.getLayout().getAffineMap().getNumSymbols(); 1321 if (symbolOperands().size() != numSymbols) { 1322 return emitOpError( 1323 "symbol operand count does not equal memref symbol count"); 1324 } 1325 1326 return success(); 1327 } 1328 1329 namespace { 1330 1331 /// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to 1332 /// `memref::AllocOp`. 1333 struct SimplifyDimOfAllocOp : public OpRewritePattern<memref::DimOp> { 1334 using OpRewritePattern<memref::DimOp>::OpRewritePattern; 1335 1336 LogicalResult matchAndRewrite(memref::DimOp dimOp, 1337 PatternRewriter &rewriter) const override { 1338 auto index = dimOp.index().getDefiningOp<arith::ConstantIndexOp>(); 1339 if (!index) 1340 return failure(); 1341 1342 auto memrefType = dimOp.source().getType().dyn_cast<MemRefType>(); 1343 if (!memrefType || !memrefType.isDynamicDim(index.value())) 1344 return failure(); 1345 1346 auto alloc = dimOp.source().getDefiningOp<AllocOp>(); 1347 if (!alloc) 1348 return failure(); 1349 1350 Value substituteOp = *(alloc.dynamicSizes().begin() + 1351 memrefType.getDynamicDimIndex(index.value())); 1352 rewriter.replaceOp(dimOp, substituteOp); 1353 return success(); 1354 } 1355 }; 1356 1357 } // namespace 1358 1359 void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results, 1360 MLIRContext *context) { 1361 results.add<SimplifyDimOfAllocOp>(context); 1362 } 1363 1364 #include "mlir/Dialect/GPU/GPUOpInterfaces.cpp.inc" 1365 #include "mlir/Dialect/GPU/GPUOpsEnums.cpp.inc" 1366 1367 #define GET_ATTRDEF_CLASSES 1368 #include "mlir/Dialect/GPU/GPUOpsAttributes.cpp.inc" 1369 1370 #define GET_OP_CLASSES 1371 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 1372