1 //===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===// 2 // 3 // Copyright 2019 The MLIR Authors. 4 // 5 // Licensed under the Apache License, Version 2.0 (the "License"); 6 // you may not use this file except in compliance with the License. 7 // You may obtain a copy of the License at 8 // 9 // http://www.apache.org/licenses/LICENSE-2.0 10 // 11 // Unless required by applicable law or agreed to in writing, software 12 // distributed under the License is distributed on an "AS IS" BASIS, 13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 // See the License for the specific language governing permissions and 15 // limitations under the License. 16 // ============================================================================= 17 // 18 // This file implements the GPU kernel-related dialect and its operations. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "mlir/Dialect/GPU/GPUDialect.h" 23 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 24 #include "mlir/Dialect/StandardOps/Ops.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/IR/Function.h" 27 #include "mlir/IR/FunctionImplementation.h" 28 #include "mlir/IR/Module.h" 29 #include "mlir/IR/OpImplementation.h" 30 #include "mlir/IR/PatternMatch.h" 31 #include "mlir/IR/StandardTypes.h" 32 33 using namespace mlir; 34 using namespace mlir::gpu; 35 36 //===----------------------------------------------------------------------===// 37 // GPUDialect 38 //===----------------------------------------------------------------------===// 39 40 StringRef GPUDialect::getDialectName() { return "gpu"; } 41 42 bool GPUDialect::isKernel(Operation *op) { 43 UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName()); 44 return static_cast<bool>(isKernelAttr); 45 } 46 47 GPUDialect::GPUDialect(MLIRContext *context) 48 : Dialect(getDialectName(), context) { 49 addOperations<LaunchFuncOp, 50 #define GET_OP_LIST 51 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 52 >(); 53 } 54 55 LogicalResult GPUDialect::verifyOperationAttribute(Operation *op, 56 NamedAttribute attr) { 57 if (!attr.second.isa<UnitAttr>() || 58 !attr.first.is(getContainerModuleAttrName())) 59 return success(); 60 61 auto module = dyn_cast<ModuleOp>(op); 62 if (!module) 63 return op->emitError("expected '") 64 << getContainerModuleAttrName() << "' attribute to be attached to '" 65 << ModuleOp::getOperationName() << '\''; 66 67 auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult { 68 // Ignore launches that are nested more or less deep than functions in the 69 // module we are currently checking. 70 if (!launchOp.getParentOp() || 71 launchOp.getParentOp()->getParentOp() != module) 72 return success(); 73 74 // Ignore launch ops with missing attributes here. The errors will be 75 // reported by the verifiers of those ops. 76 if (!launchOp.getAttrOfType<StringAttr>( 77 LaunchFuncOp::getKernelAttrName()) || 78 !launchOp.getAttrOfType<SymbolRefAttr>( 79 LaunchFuncOp::getKernelModuleAttrName())) 80 return success(); 81 82 // Check that `launch_func` refers to a well-formed GPU kernel module. 83 StringRef kernelModuleName = launchOp.getKernelModuleName(); 84 auto kernelModule = module.lookupSymbol<ModuleOp>(kernelModuleName); 85 if (!kernelModule) 86 return launchOp.emitOpError() 87 << "kernel module '" << kernelModuleName << "' is undefined"; 88 if (!kernelModule.getAttrOfType<UnitAttr>( 89 GPUDialect::getKernelModuleAttrName())) 90 return launchOp.emitOpError("module '") 91 << kernelModuleName << "' is missing the '" 92 << GPUDialect::getKernelModuleAttrName() << "' attribute"; 93 94 // Check that `launch_func` refers to a well-formed kernel function. 95 StringRef kernelName = launchOp.kernel(); 96 Operation *kernelFunc = kernelModule.lookupSymbol(kernelName); 97 auto kernelStdFunction = dyn_cast_or_null<::mlir::FuncOp>(kernelFunc); 98 auto kernelLLVMFunction = dyn_cast_or_null<LLVM::LLVMFuncOp>(kernelFunc); 99 if (!kernelStdFunction && !kernelLLVMFunction) 100 return launchOp.emitOpError("kernel function '") 101 << kernelName << "' is undefined"; 102 if (!kernelFunc->getAttrOfType<mlir::UnitAttr>( 103 GPUDialect::getKernelFuncAttrName())) 104 return launchOp.emitOpError("kernel function is missing the '") 105 << GPUDialect::getKernelFuncAttrName() << "' attribute"; 106 107 unsigned actualNumArguments = launchOp.getNumKernelOperands(); 108 unsigned expectedNumArguments = kernelLLVMFunction 109 ? kernelLLVMFunction.getNumArguments() 110 : kernelStdFunction.getNumArguments(); 111 if (expectedNumArguments != actualNumArguments) 112 return launchOp.emitOpError("got ") 113 << actualNumArguments << " kernel operands but expected " 114 << expectedNumArguments; 115 116 // Due to the ordering of the current impl of lowering and LLVMLowering, 117 // type checks need to be temporarily disabled. 118 // TODO(ntv,zinenko,herhut): reactivate checks once "changing gpu.launchFunc 119 // to encode target module" has landed. 120 // auto functionType = kernelFunc.getType(); 121 // for (unsigned i = 0; i < numKernelFuncArgs; ++i) { 122 // if (getKernelOperand(i)->getType() != functionType.getInput(i)) { 123 // return emitOpError("type of function argument ") 124 // << i << " does not match"; 125 // } 126 // } 127 128 return success(); 129 }); 130 131 return walkResult.wasInterrupted() ? failure() : success(); 132 } 133 134 template <typename T> static LogicalResult verifyIndexOp(T op) { 135 auto dimension = op.dimension(); 136 if (dimension != "x" && dimension != "y" && dimension != "z") 137 return op.emitError("dimension \"") << dimension << "\" is invalid"; 138 return success(); 139 } 140 141 static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) { 142 if (allReduce.body().empty() != allReduce.op().hasValue()) 143 return allReduce.emitError( 144 "expected either an op attribute or a non-empty body"); 145 if (!allReduce.body().empty()) { 146 if (allReduce.body().front().getNumArguments() != 2) 147 return allReduce.emitError("expected two region arguments"); 148 for (auto *argument : allReduce.body().front().getArguments()) { 149 if (argument->getType() != allReduce.getType()) 150 return allReduce.emitError("incorrect region argument type"); 151 } 152 unsigned yieldCount = 0; 153 for (Block &block : allReduce.body()) { 154 if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) { 155 if (yield.getNumOperands() != 1) 156 return allReduce.emitError("expected one gpu.yield operand"); 157 if (yield.getOperand(0)->getType() != allReduce.getType()) 158 return allReduce.emitError("incorrect gpu.yield type"); 159 ++yieldCount; 160 } 161 } 162 if (yieldCount == 0) 163 return allReduce.emitError("expected gpu.yield op in region"); 164 } 165 return success(); 166 } 167 168 //===----------------------------------------------------------------------===// 169 // LaunchOp 170 //===----------------------------------------------------------------------===// 171 172 static SmallVector<Type, 4> getValueTypes(ArrayRef<Value *> values) { 173 SmallVector<Type, 4> types; 174 types.reserve(values.size()); 175 for (Value *v : values) 176 types.push_back(v->getType()); 177 return types; 178 } 179 180 void LaunchOp::build(Builder *builder, OperationState &result, Value *gridSizeX, 181 Value *gridSizeY, Value *gridSizeZ, Value *blockSizeX, 182 Value *blockSizeY, Value *blockSizeZ, 183 ArrayRef<Value *> operands) { 184 // Add grid and block sizes as op operands, followed by the data operands. 185 result.addOperands( 186 {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); 187 result.addOperands(operands); 188 189 // Create a kernel body region with kNumConfigRegionAttributes + N arguments, 190 // where the first kNumConfigRegionAttributes arguments have `index` type and 191 // the rest have the same types as the data operands. 192 Region *kernelRegion = result.addRegion(); 193 Block *body = new Block(); 194 body->addArguments( 195 std::vector<Type>(kNumConfigRegionAttributes, builder->getIndexType())); 196 body->addArguments(getValueTypes(operands)); 197 kernelRegion->push_back(body); 198 } 199 200 KernelDim3 LaunchOp::getBlockIds() { 201 assert(!body().getBlocks().empty() && "FuncOp body must not be empty."); 202 auto args = body().getBlocks().front().getArguments(); 203 return KernelDim3{args[0], args[1], args[2]}; 204 } 205 206 KernelDim3 LaunchOp::getThreadIds() { 207 assert(!body().getBlocks().empty() && "FuncOp body must not be empty."); 208 auto args = body().getBlocks().front().getArguments(); 209 return KernelDim3{args[3], args[4], args[5]}; 210 } 211 212 KernelDim3 LaunchOp::getGridSize() { 213 assert(!body().getBlocks().empty() && "FuncOp body must not be empty."); 214 auto args = body().getBlocks().front().getArguments(); 215 return KernelDim3{args[6], args[7], args[8]}; 216 } 217 218 KernelDim3 LaunchOp::getBlockSize() { 219 assert(!body().getBlocks().empty() && "FuncOp body must not be empty."); 220 auto args = body().getBlocks().front().getArguments(); 221 return KernelDim3{args[9], args[10], args[11]}; 222 } 223 224 LaunchOp::operand_range LaunchOp::getKernelOperandValues() { 225 return llvm::drop_begin(getOperands(), kNumConfigOperands); 226 } 227 228 LaunchOp::operand_type_range LaunchOp::getKernelOperandTypes() { 229 return llvm::drop_begin(getOperandTypes(), kNumConfigOperands); 230 } 231 232 KernelDim3 LaunchOp::getGridSizeOperandValues() { 233 return KernelDim3{getOperand(0), getOperand(1), getOperand(2)}; 234 } 235 236 KernelDim3 LaunchOp::getBlockSizeOperandValues() { 237 return KernelDim3{getOperand(3), getOperand(4), getOperand(5)}; 238 } 239 240 llvm::iterator_range<Block::args_iterator> LaunchOp::getKernelArguments() { 241 auto args = body().getBlocks().front().getArguments(); 242 return llvm::drop_begin(args, LaunchOp::kNumConfigRegionAttributes); 243 } 244 245 LogicalResult verify(LaunchOp op) { 246 // Kernel launch takes kNumConfigOperands leading operands for grid/block 247 // sizes and transforms them into kNumConfigRegionAttributes region arguments 248 // for block/thread identifiers and grid/block sizes. 249 if (!op.body().empty()) { 250 Block &entryBlock = op.body().front(); 251 if (entryBlock.getNumArguments() != 252 LaunchOp::kNumConfigOperands + op.getNumOperands()) 253 return op.emitOpError("unexpected number of region arguments"); 254 } 255 256 // Block terminators without successors are expected to exit the kernel region 257 // and must be `gpu.launch`. 258 for (Block &block : op.body()) { 259 if (block.empty()) 260 continue; 261 if (block.back().getNumSuccessors() != 0) 262 continue; 263 if (!isa<gpu::ReturnOp>(&block.back())) { 264 return block.back() 265 .emitError("expected 'gpu.terminator' or a terminator with " 266 "successors") 267 .attachNote(op.getLoc()) 268 << "in '" << LaunchOp::getOperationName() << "' body region"; 269 } 270 } 271 272 return success(); 273 } 274 275 // Pretty-print the kernel grid/block size assignment as 276 // (%iter-x, %iter-y, %iter-z) in 277 // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use) 278 // where %size-* and %iter-* will correspond to the body region arguments. 279 static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size, 280 ArrayRef<Value *> operands, KernelDim3 ids) { 281 p << '(' << *ids.x << ", " << *ids.y << ", " << *ids.z << ") in ("; 282 p << *size.x << " = " << *operands[0] << ", "; 283 p << *size.y << " = " << *operands[1] << ", "; 284 p << *size.z << " = " << *operands[2] << ')'; 285 } 286 287 void printLaunchOp(OpAsmPrinter &p, LaunchOp op) { 288 SmallVector<Value *, 12> operandContainer(op.operand_begin(), 289 op.operand_end()); 290 ArrayRef<Value *> operands(operandContainer); 291 292 // Print the launch configuration. 293 p << LaunchOp::getOperationName() << ' ' << op.getBlocksKeyword(); 294 printSizeAssignment(p, op.getGridSize(), operands.take_front(3), 295 op.getBlockIds()); 296 p << ' ' << op.getThreadsKeyword(); 297 printSizeAssignment(p, op.getBlockSize(), operands.slice(3, 3), 298 op.getThreadIds()); 299 300 // From now on, the first kNumConfigOperands operands corresponding to grid 301 // and block sizes are irrelevant, so we can drop them. 302 operands = operands.drop_front(LaunchOp::kNumConfigOperands); 303 304 // Print the data argument remapping. 305 if (!op.body().empty() && !operands.empty()) { 306 p << ' ' << op.getArgsKeyword() << '('; 307 for (unsigned i = 0, e = operands.size(); i < e; ++i) { 308 if (i != 0) 309 p << ", "; 310 p << *op.body().front().getArgument(LaunchOp::kNumConfigRegionAttributes + 311 i) 312 << " = " << *operands[i]; 313 } 314 p << ") "; 315 } 316 317 // Print the types of data arguments. 318 if (!operands.empty()) { 319 p << ": "; 320 for (unsigned i = 0, e = operands.size(); i < e; ++i) { 321 if (i != 0) 322 p << ", "; 323 p << operands[i]->getType(); 324 } 325 } 326 327 p.printRegion(op.body(), /*printEntryBlockArgs=*/false); 328 p.printOptionalAttrDict(op.getAttrs()); 329 } 330 331 // Parse the size assignment blocks for blocks and threads. These have the form 332 // (%region_arg, %region_arg, %region_arg) in 333 // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand) 334 // where %region_arg are percent-identifiers for the region arguments to be 335 // introduced further (SSA defs), and %operand are percent-identifiers for the 336 // SSA value uses. 337 static ParseResult 338 parseSizeAssignment(OpAsmParser &parser, 339 MutableArrayRef<OpAsmParser::OperandType> sizes, 340 MutableArrayRef<OpAsmParser::OperandType> regionSizes, 341 MutableArrayRef<OpAsmParser::OperandType> indices) { 342 assert(indices.size() == 3 && "space for three indices expected"); 343 SmallVector<OpAsmParser::OperandType, 3> args; 344 if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3, 345 OpAsmParser::Delimiter::Paren) || 346 parser.parseKeyword("in") || parser.parseLParen()) 347 return failure(); 348 std::move(args.begin(), args.end(), indices.begin()); 349 350 for (int i = 0; i < 3; ++i) { 351 if (i != 0 && parser.parseComma()) 352 return failure(); 353 if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() || 354 parser.parseOperand(sizes[i])) 355 return failure(); 356 } 357 358 return parser.parseRParen(); 359 } 360 361 // Parses a Launch operation. 362 // operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment 363 // `threads` `(` ssa-id-list `)` `in` ssa-reassignment 364 // (`args` ssa-reassignment `:` type-list)? 365 // region attr-dict? 366 // ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)` 367 ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) { 368 // Sizes of the grid and block. 369 SmallVector<OpAsmParser::OperandType, LaunchOp::kNumConfigOperands> sizes( 370 LaunchOp::kNumConfigOperands); 371 MutableArrayRef<OpAsmParser::OperandType> sizesRef(sizes); 372 373 // Actual (data) operands passed to the kernel. 374 SmallVector<OpAsmParser::OperandType, 4> dataOperands; 375 376 // Region arguments to be created. 377 SmallVector<OpAsmParser::OperandType, 16> regionArgs( 378 LaunchOp::kNumConfigRegionAttributes); 379 MutableArrayRef<OpAsmParser::OperandType> regionArgsRef(regionArgs); 380 381 // Parse the size assignment segments: the first segment assigns grid sizes 382 // and defines values for block identifiers; the second segment assigns block 383 // sizes and defines values for thread identifiers. In the region argument 384 // list, identifiers precede sizes, and block-related values precede 385 // thread-related values. 386 if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) || 387 parseSizeAssignment(parser, sizesRef.take_front(3), 388 regionArgsRef.slice(6, 3), 389 regionArgsRef.slice(0, 3)) || 390 parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) || 391 parseSizeAssignment(parser, sizesRef.drop_front(3), 392 regionArgsRef.slice(9, 3), 393 regionArgsRef.slice(3, 3)) || 394 parser.resolveOperands(sizes, parser.getBuilder().getIndexType(), 395 result.operands)) 396 return failure(); 397 398 // If kernel argument renaming segment is present, parse it. When present, 399 // the segment should have at least one element. If this segment is present, 400 // so is the trailing type list. Parse it as well and use the parsed types 401 // to resolve the operands passed to the kernel arguments. 402 SmallVector<Type, 4> dataTypes; 403 if (!parser.parseOptionalKeyword(LaunchOp::getArgsKeyword())) { 404 llvm::SMLoc argsLoc = parser.getCurrentLocation(); 405 406 regionArgs.push_back({}); 407 dataOperands.push_back({}); 408 if (parser.parseLParen() || parser.parseRegionArgument(regionArgs.back()) || 409 parser.parseEqual() || parser.parseOperand(dataOperands.back())) 410 return failure(); 411 412 while (!parser.parseOptionalComma()) { 413 regionArgs.push_back({}); 414 dataOperands.push_back({}); 415 if (parser.parseRegionArgument(regionArgs.back()) || 416 parser.parseEqual() || parser.parseOperand(dataOperands.back())) 417 return failure(); 418 } 419 420 if (parser.parseRParen() || parser.parseColonTypeList(dataTypes) || 421 parser.resolveOperands(dataOperands, dataTypes, argsLoc, 422 result.operands)) 423 return failure(); 424 } 425 426 // Introduce the body region and parse it. The region has 427 // kNumConfigRegionAttributes leading arguments that correspond to 428 // block/thread identifiers and grid/block sizes, all of the `index` type. 429 // Follow the actual kernel arguments. 430 Type index = parser.getBuilder().getIndexType(); 431 dataTypes.insert(dataTypes.begin(), LaunchOp::kNumConfigRegionAttributes, 432 index); 433 Region *body = result.addRegion(); 434 return failure(parser.parseRegion(*body, regionArgs, dataTypes) || 435 parser.parseOptionalAttrDict(result.attributes)); 436 } 437 438 void LaunchOp::eraseKernelArgument(unsigned index) { 439 Block &entryBlock = body().front(); 440 assert(index < entryBlock.getNumArguments() - kNumConfigRegionAttributes && 441 "kernel argument index overflow"); 442 entryBlock.eraseArgument(kNumConfigRegionAttributes + index); 443 getOperation()->eraseOperand(kNumConfigOperands + index); 444 } 445 446 namespace { 447 // Clone any known constants passed as operands to the kernel into its body. 448 class PropagateConstantBounds : public OpRewritePattern<LaunchOp> { 449 using OpRewritePattern<LaunchOp>::OpRewritePattern; 450 451 PatternMatchResult matchAndRewrite(LaunchOp launchOp, 452 PatternRewriter &rewriter) const override { 453 auto origInsertionPoint = rewriter.saveInsertionPoint(); 454 rewriter.setInsertionPointToStart(&launchOp.body().front()); 455 456 // Traverse operands passed to kernel and check if some of them are known 457 // constants. If so, clone the constant operation inside the kernel region 458 // and use it instead of passing the value from the parent region. Perform 459 // the traversal in the inverse order to simplify index arithmetics when 460 // dropping arguments. 461 SmallVector<Value *, 8> operands(launchOp.getKernelOperandValues().begin(), 462 launchOp.getKernelOperandValues().end()); 463 SmallVector<Value *, 8> kernelArgs(launchOp.getKernelArguments().begin(), 464 launchOp.getKernelArguments().end()); 465 bool found = false; 466 for (unsigned i = operands.size(); i > 0; --i) { 467 unsigned index = i - 1; 468 Value *operand = operands[index]; 469 if (!isa_and_nonnull<ConstantOp>(operand->getDefiningOp())) { 470 continue; 471 } 472 473 found = true; 474 Value *internalConstant = 475 rewriter.clone(*operand->getDefiningOp())->getResult(0); 476 Value *kernelArg = kernelArgs[index]; 477 kernelArg->replaceAllUsesWith(internalConstant); 478 launchOp.eraseKernelArgument(index); 479 } 480 rewriter.restoreInsertionPoint(origInsertionPoint); 481 482 if (!found) 483 return matchFailure(); 484 485 rewriter.updatedRootInPlace(launchOp); 486 return matchSuccess(); 487 } 488 }; 489 } // end namespace 490 491 void LaunchOp::getCanonicalizationPatterns(OwningRewritePatternList &results, 492 MLIRContext *context) { 493 results.insert<PropagateConstantBounds>(context); 494 } 495 496 //===----------------------------------------------------------------------===// 497 // LaunchFuncOp 498 //===----------------------------------------------------------------------===// 499 500 void LaunchFuncOp::build(Builder *builder, OperationState &result, 501 ::mlir::FuncOp kernelFunc, Value *gridSizeX, 502 Value *gridSizeY, Value *gridSizeZ, Value *blockSizeX, 503 Value *blockSizeY, Value *blockSizeZ, 504 ArrayRef<Value *> kernelOperands) { 505 // Add grid and block sizes as op operands, followed by the data operands. 506 result.addOperands( 507 {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); 508 result.addOperands(kernelOperands); 509 result.addAttribute(getKernelAttrName(), 510 builder->getStringAttr(kernelFunc.getName())); 511 auto kernelModule = kernelFunc.getParentOfType<ModuleOp>(); 512 if (Optional<StringRef> kernelModuleName = kernelModule.getName()) 513 result.addAttribute(getKernelModuleAttrName(), 514 builder->getSymbolRefAttr(*kernelModuleName)); 515 } 516 517 void LaunchFuncOp::build(Builder *builder, OperationState &result, 518 ::mlir::FuncOp kernelFunc, KernelDim3 gridSize, 519 KernelDim3 blockSize, 520 ArrayRef<Value *> kernelOperands) { 521 build(builder, result, kernelFunc, gridSize.x, gridSize.y, gridSize.z, 522 blockSize.x, blockSize.y, blockSize.z, kernelOperands); 523 } 524 525 StringRef LaunchFuncOp::kernel() { 526 return getAttrOfType<StringAttr>(getKernelAttrName()).getValue(); 527 } 528 529 unsigned LaunchFuncOp::getNumKernelOperands() { 530 return getNumOperands() - kNumConfigOperands; 531 } 532 533 StringRef LaunchFuncOp::getKernelModuleName() { 534 return getAttrOfType<SymbolRefAttr>(getKernelModuleAttrName()) 535 .getRootReference(); 536 } 537 538 Value *LaunchFuncOp::getKernelOperand(unsigned i) { 539 return getOperation()->getOperand(i + kNumConfigOperands); 540 } 541 542 KernelDim3 LaunchFuncOp::getGridSizeOperandValues() { 543 return KernelDim3{getOperand(0), getOperand(1), getOperand(2)}; 544 } 545 546 KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() { 547 return KernelDim3{getOperand(3), getOperand(4), getOperand(5)}; 548 } 549 550 LogicalResult LaunchFuncOp::verify() { 551 auto module = getParentOfType<ModuleOp>(); 552 if (!module) 553 return emitOpError("expected to belong to a module"); 554 555 if (!module.getAttrOfType<UnitAttr>(GPUDialect::getContainerModuleAttrName())) 556 return emitOpError("expected the closest surrounding module to have the '" + 557 GPUDialect::getContainerModuleAttrName() + 558 "' attribute"); 559 560 auto kernelAttr = getAttrOfType<StringAttr>(getKernelAttrName()); 561 if (!kernelAttr) 562 return emitOpError("string attribute '" + getKernelAttrName() + 563 "' must be specified"); 564 565 auto kernelModuleAttr = 566 getAttrOfType<SymbolRefAttr>(getKernelModuleAttrName()); 567 if (!kernelModuleAttr) 568 return emitOpError("symbol reference attribute '" + 569 getKernelModuleAttrName() + "' must be specified"); 570 571 return success(); 572 } 573 574 //===----------------------------------------------------------------------===// 575 // GPUFuncOp 576 //===----------------------------------------------------------------------===// 577 578 void GPUFuncOp::build(Builder *builder, OperationState &result, StringRef name, 579 FunctionType type, ArrayRef<Type> workgroupAttributions, 580 ArrayRef<Type> privateAttributions, 581 ArrayRef<NamedAttribute> attrs) { 582 result.addAttribute(SymbolTable::getSymbolAttrName(), 583 builder->getStringAttr(name)); 584 result.addAttribute(getTypeAttrName(), TypeAttr::get(type)); 585 result.addAttribute(getNumWorkgroupAttributionsAttrName(), 586 builder->getI64IntegerAttr(workgroupAttributions.size())); 587 result.addAttributes(attrs); 588 Region *body = result.addRegion(); 589 Block *entryBlock = new Block; 590 entryBlock->addArguments(type.getInputs()); 591 entryBlock->addArguments(workgroupAttributions); 592 entryBlock->addArguments(privateAttributions); 593 594 body->getBlocks().push_back(entryBlock); 595 } 596 597 /// Parses a GPU function memory attribution. 598 /// 599 /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)? 600 /// (`private` `(` ssa-id-and-type-list `)`)? 601 /// 602 /// Note that this function parses only one of the two similar parts, with the 603 /// keyword provided as argument. 604 static ParseResult 605 parseAttributions(OpAsmParser &parser, StringRef keyword, 606 SmallVectorImpl<OpAsmParser::OperandType> &args, 607 SmallVectorImpl<Type> &argTypes) { 608 // If we could not parse the keyword, just assume empty list and succeed. 609 if (failed(parser.parseOptionalKeyword(keyword))) 610 return success(); 611 612 if (failed(parser.parseLParen())) 613 return failure(); 614 615 // Early exit for an empty list. 616 if (succeeded(parser.parseOptionalRParen())) 617 return success(); 618 619 do { 620 OpAsmParser::OperandType arg; 621 Type type; 622 623 if (parser.parseRegionArgument(arg) || parser.parseColonType(type)) 624 return failure(); 625 626 args.push_back(arg); 627 argTypes.push_back(type); 628 } while (succeeded(parser.parseOptionalComma())); 629 630 return parser.parseRParen(); 631 } 632 633 /// Parses a GPU function. 634 /// 635 /// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)` 636 /// (`->` function-result-list)? memory-attribution `kernel`? 637 /// function-attributes? region 638 static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) { 639 SmallVector<OpAsmParser::OperandType, 8> entryArgs; 640 SmallVector<SmallVector<NamedAttribute, 2>, 1> argAttrs; 641 SmallVector<SmallVector<NamedAttribute, 2>, 1> resultAttrs; 642 SmallVector<Type, 8> argTypes; 643 SmallVector<Type, 4> resultTypes; 644 bool isVariadic; 645 646 // Parse the function name. 647 StringAttr nameAttr; 648 if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), 649 result.attributes)) 650 return failure(); 651 652 auto signatureLocation = parser.getCurrentLocation(); 653 if (failed(impl::parseFunctionSignature( 654 parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs, 655 isVariadic, resultTypes, resultAttrs))) 656 return failure(); 657 658 if (entryArgs.empty() && !argTypes.empty()) 659 return parser.emitError(signatureLocation) 660 << "gpu.func requires named arguments"; 661 662 // Construct the function type. More types will be added to the region, but 663 // not to the functiont type. 664 Builder &builder = parser.getBuilder(); 665 auto type = builder.getFunctionType(argTypes, resultTypes); 666 result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type)); 667 668 // Parse workgroup memory attributions. 669 if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(), 670 entryArgs, argTypes))) 671 return failure(); 672 673 // Store the number of operands we just parsed as the number of workgroup 674 // memory attributions. 675 unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs(); 676 result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(), 677 builder.getI64IntegerAttr(numWorkgroupAttrs)); 678 679 // Parse private memory attributions. 680 if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), 681 entryArgs, argTypes))) 682 return failure(); 683 684 // Parse the kernel attribute if present. 685 if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword()))) 686 result.addAttribute(GPUDialect::getKernelFuncAttrName(), 687 builder.getUnitAttr()); 688 689 // Parse attributes. 690 if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) 691 return failure(); 692 mlir::impl::addArgAndResultAttrs(builder, result, argAttrs, resultAttrs); 693 694 // Parse the region. If no argument names were provided, take all names 695 // (including those of attributions) from the entry block. 696 auto *body = result.addRegion(); 697 return parser.parseRegion(*body, entryArgs, argTypes); 698 } 699 700 static void printAttributions(OpAsmPrinter &p, StringRef keyword, 701 ArrayRef<BlockArgument *> values) { 702 if (values.empty()) 703 return; 704 705 p << ' ' << keyword << '('; 706 interleaveComma(values, p.getStream(), 707 [&p](BlockArgument *v) { p << *v << " : " << v->getType(); }); 708 p << ')'; 709 } 710 711 /// Prints a GPU Func op. 712 void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) { 713 p << GPUFuncOp::getOperationName() << ' '; 714 p.printSymbolName(op.getName()); 715 716 FunctionType type = op.getType(); 717 impl::printFunctionSignature(p, op.getOperation(), type.getInputs(), 718 /*isVariadic=*/false, type.getResults()); 719 720 printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions()); 721 printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions()); 722 if (op.isKernel()) 723 p << ' ' << op.getKernelKeyword(); 724 725 impl::printFunctionAttributes(p, op.getOperation(), type.getNumInputs(), 726 type.getNumResults(), 727 {op.getNumWorkgroupAttributionsAttrName(), 728 GPUDialect::getKernelFuncAttrName()}); 729 p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false); 730 } 731 732 /// Hook for FunctionLike verifier. 733 LogicalResult GPUFuncOp::verifyType() { 734 Type type = getTypeAttr().getValue(); 735 if (!type.isa<FunctionType>()) 736 return emitOpError("requires '" + getTypeAttrName() + 737 "' attribute of function type"); 738 return success(); 739 } 740 741 /// Verifies the body of the function. 742 LogicalResult GPUFuncOp::verifyBody() { 743 unsigned numFuncArguments = getNumArguments(); 744 unsigned numWorkgroupAttributions = getNumWorkgroupAttributions(); 745 unsigned numBlockArguments = front().getNumArguments(); 746 if (numBlockArguments < numFuncArguments + numWorkgroupAttributions) 747 return emitOpError() << "expected at least " 748 << numFuncArguments + numWorkgroupAttributions 749 << " arguments to body region"; 750 751 ArrayRef<Type> funcArgTypes = getType().getInputs(); 752 for (unsigned i = 0; i < numFuncArguments; ++i) { 753 Type blockArgType = front().getArgument(i)->getType(); 754 if (funcArgTypes[i] != blockArgType) 755 return emitOpError() << "expected body region argument #" << i 756 << " to be of type " << funcArgTypes[i] << ", got " 757 << blockArgType; 758 } 759 760 return success(); 761 } 762 763 // Namespace avoids ambiguous ReturnOpOperandAdaptor. 764 namespace mlir { 765 namespace gpu { 766 #define GET_OP_CLASSES 767 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 768 } // namespace gpu 769 } // namespace mlir 770