1 //===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the GPU kernel-related dialect and its operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/GPU/GPUDialect.h" 14 15 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 16 #include "mlir/Dialect/StandardOps/IR/Ops.h" 17 #include "mlir/IR/Attributes.h" 18 #include "mlir/IR/Builders.h" 19 #include "mlir/IR/BuiltinOps.h" 20 #include "mlir/IR/BuiltinTypes.h" 21 #include "mlir/IR/DialectImplementation.h" 22 #include "mlir/IR/FunctionImplementation.h" 23 #include "mlir/IR/OpImplementation.h" 24 #include "mlir/IR/PatternMatch.h" 25 #include "mlir/IR/TypeUtilities.h" 26 #include "llvm/ADT/TypeSwitch.h" 27 28 using namespace mlir; 29 using namespace mlir::gpu; 30 31 //===----------------------------------------------------------------------===// 32 // MMAMatrixType 33 //===----------------------------------------------------------------------===// 34 35 MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType, 36 StringRef operand) { 37 return Base::get(elementType.getContext(), shape, elementType, operand); 38 } 39 40 MMAMatrixType 41 MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError, 42 ArrayRef<int64_t> shape, Type elementType, 43 StringRef operand) { 44 return Base::getChecked(emitError, elementType.getContext(), shape, 45 elementType, operand); 46 } 47 48 unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; } 49 50 ArrayRef<int64_t> MMAMatrixType::getShape() const { 51 return getImpl()->getShape(); 52 } 53 54 Type MMAMatrixType::getElementType() const { return getImpl()->elementType; } 55 56 StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); } 57 58 bool MMAMatrixType::isValidElementType(Type elementType) { 59 return elementType.isF16() || elementType.isF32(); 60 } 61 62 LogicalResult 63 MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError, 64 ArrayRef<int64_t> shape, Type elementType, 65 StringRef operand) { 66 if (!operand.equals("AOp") && !operand.equals("BOp") && 67 !operand.equals("COp")) 68 return emitError() << "operand expected to be one of AOp, BOp or COp"; 69 70 if (shape.size() != 2) 71 return emitError() << "MMAMatrixType must have exactly two dimensions"; 72 73 if (!MMAMatrixType::isValidElementType(elementType)) 74 return emitError() << "MMAMatrixType elements must be F16 or F32"; 75 76 return success(); 77 } 78 79 //===----------------------------------------------------------------------===// 80 // GPUDialect 81 //===----------------------------------------------------------------------===// 82 83 /// GPU memory space identifiers. 84 enum GPUMemorySpace { 85 /// Generic memory space identifier. 86 kGenericMemorySpace = 0, 87 88 /// Global memory space identifier. 89 kGlobalMemorySpace = 1, 90 91 /// Shared memory space identifier. 92 kSharedMemorySpace = 3 93 }; 94 95 bool GPUDialect::isKernel(Operation *op) { 96 UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName()); 97 return static_cast<bool>(isKernelAttr); 98 } 99 100 void GPUDialect::initialize() { 101 addTypes<AsyncTokenType>(); 102 addTypes<MMAMatrixType>(); 103 addOperations< 104 #define GET_OP_LIST 105 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 106 >(); 107 } 108 109 Type GPUDialect::parseType(DialectAsmParser &parser) const { 110 // Parse the main keyword for the type. 111 StringRef keyword; 112 if (parser.parseKeyword(&keyword)) 113 return Type(); 114 MLIRContext *context = getContext(); 115 116 // Handle 'async token' types. 117 if (keyword == "async.token") 118 return AsyncTokenType::get(context); 119 120 if (keyword == "mma_matrix") { 121 llvm::SMLoc beginLoc = parser.getNameLoc(); 122 123 // Parse '<'. 124 if (parser.parseLess()) 125 return nullptr; 126 127 // Parse the size and elementType. 128 SmallVector<int64_t> shape; 129 Type elementType; 130 if (parser.parseDimensionList(shape, /*allowDynamic=*/false) || 131 parser.parseType(elementType)) 132 return nullptr; 133 134 // Parse ',' 135 if (parser.parseComma()) 136 return nullptr; 137 138 // Parse operand. 139 StringRef operand; 140 if (failed(parser.parseOptionalString(&operand))) 141 return nullptr; 142 143 // Parse '>'. 144 if (parser.parseGreater()) 145 return nullptr; 146 147 return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn( 148 parser.getEncodedSourceLoc(beginLoc)), 149 shape, elementType, operand); 150 } 151 152 parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword); 153 return Type(); 154 } 155 156 void GPUDialect::printType(Type type, DialectAsmPrinter &os) const { 157 TypeSwitch<Type>(type) 158 .Case<AsyncTokenType>([&](Type) { os << "async.token"; }) 159 .Case<MMAMatrixType>([&](MMAMatrixType fragTy) { 160 os << "mma_matrix<"; 161 auto shape = fragTy.getShape(); 162 for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim) 163 os << *dim << 'x'; 164 os << shape.back() << 'x' << fragTy.getElementType(); 165 os << ", \"" << fragTy.getOperand() << "\"" << '>'; 166 }) 167 .Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); }); 168 } 169 170 LogicalResult GPUDialect::verifyOperationAttribute(Operation *op, 171 NamedAttribute attr) { 172 if (!attr.second.isa<UnitAttr>() || 173 attr.first != getContainerModuleAttrName()) 174 return success(); 175 176 auto module = dyn_cast<ModuleOp>(op); 177 if (!module) 178 return op->emitError("expected '") 179 << getContainerModuleAttrName() << "' attribute to be attached to '" 180 << ModuleOp::getOperationName() << '\''; 181 182 auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult { 183 // Ignore launches that are nested more or less deep than functions in the 184 // module we are currently checking. 185 if (!launchOp->getParentOp() || 186 launchOp->getParentOp()->getParentOp() != module) 187 return success(); 188 189 // Ignore launch ops with missing attributes here. The errors will be 190 // reported by the verifiers of those ops. 191 if (!launchOp->getAttrOfType<SymbolRefAttr>( 192 LaunchFuncOp::getKernelAttrName())) 193 return success(); 194 195 // Check that `launch_func` refers to a well-formed GPU kernel module. 196 StringRef kernelModuleName = launchOp.getKernelModuleName(); 197 auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName); 198 if (!kernelModule) 199 return launchOp.emitOpError() 200 << "kernel module '" << kernelModuleName << "' is undefined"; 201 202 // Check that `launch_func` refers to a well-formed kernel function. 203 Operation *kernelFunc = module.lookupSymbol(launchOp.kernel()); 204 auto kernelGPUFunction = dyn_cast_or_null<gpu::GPUFuncOp>(kernelFunc); 205 auto kernelLLVMFunction = dyn_cast_or_null<LLVM::LLVMFuncOp>(kernelFunc); 206 if (!kernelGPUFunction && !kernelLLVMFunction) 207 return launchOp.emitOpError("kernel function '") 208 << launchOp.kernel() << "' is undefined"; 209 if (!kernelFunc->getAttrOfType<mlir::UnitAttr>( 210 GPUDialect::getKernelFuncAttrName())) 211 return launchOp.emitOpError("kernel function is missing the '") 212 << GPUDialect::getKernelFuncAttrName() << "' attribute"; 213 214 // TODO: if the kernel function has been converted to 215 // the LLVM dialect but the caller hasn't (which happens during the 216 // separate compilation), do not check type correspondence as it would 217 // require the verifier to be aware of the LLVM type conversion. 218 if (kernelLLVMFunction) 219 return success(); 220 221 unsigned actualNumArguments = launchOp.getNumKernelOperands(); 222 unsigned expectedNumArguments = kernelGPUFunction.getNumArguments(); 223 if (expectedNumArguments != actualNumArguments) 224 return launchOp.emitOpError("got ") 225 << actualNumArguments << " kernel operands but expected " 226 << expectedNumArguments; 227 228 auto functionType = kernelGPUFunction.getType(); 229 for (unsigned i = 0; i < expectedNumArguments; ++i) { 230 if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) { 231 return launchOp.emitOpError("type of function argument ") 232 << i << " does not match"; 233 } 234 } 235 236 return success(); 237 }); 238 239 return walkResult.wasInterrupted() ? failure() : success(); 240 } 241 242 template <typename T> 243 static LogicalResult verifyIndexOp(T op) { 244 auto dimension = op.dimension(); 245 if (dimension != "x" && dimension != "y" && dimension != "z") 246 return op.emitError("dimension \"") << dimension << "\" is invalid"; 247 return success(); 248 } 249 250 static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) { 251 if (allReduce.body().empty() != allReduce.op().hasValue()) 252 return allReduce.emitError( 253 "expected either an op attribute or a non-empty body"); 254 if (!allReduce.body().empty()) { 255 if (allReduce.body().getNumArguments() != 2) 256 return allReduce.emitError("expected two region arguments"); 257 for (auto argument : allReduce.body().getArguments()) { 258 if (argument.getType() != allReduce.getType()) 259 return allReduce.emitError("incorrect region argument type"); 260 } 261 unsigned yieldCount = 0; 262 for (Block &block : allReduce.body()) { 263 if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) { 264 if (yield.getNumOperands() != 1) 265 return allReduce.emitError("expected one gpu.yield operand"); 266 if (yield.getOperand(0).getType() != allReduce.getType()) 267 return allReduce.emitError("incorrect gpu.yield type"); 268 ++yieldCount; 269 } 270 } 271 if (yieldCount == 0) 272 return allReduce.emitError("expected gpu.yield op in region"); 273 } else { 274 StringRef opName = *allReduce.op(); 275 if ((opName == "and" || opName == "or" || opName == "xor") && 276 !allReduce.getType().isa<IntegerType>()) { 277 return allReduce.emitError() 278 << '`' << opName << '`' 279 << " accumulator is only compatible with Integer type"; 280 } 281 } 282 return success(); 283 } 284 285 static LogicalResult verifyShuffleOp(gpu::ShuffleOp shuffleOp) { 286 auto type = shuffleOp.value().getType(); 287 if (shuffleOp.result().getType() != type) { 288 return shuffleOp.emitOpError() 289 << "requires the same type for value operand and result"; 290 } 291 if (!type.isSignlessIntOrFloat() || type.getIntOrFloatBitWidth() != 32) { 292 return shuffleOp.emitOpError() 293 << "requires value operand type to be f32 or i32"; 294 } 295 return success(); 296 } 297 298 static void printShuffleOp(OpAsmPrinter &p, ShuffleOp op) { 299 p << ShuffleOp::getOperationName() << ' ' << op.getOperands() << ' ' 300 << op.mode() << " : " << op.value().getType(); 301 } 302 303 static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &state) { 304 SmallVector<OpAsmParser::OperandType, 3> operandInfo; 305 if (parser.parseOperandList(operandInfo, 3)) 306 return failure(); 307 308 StringRef mode; 309 if (parser.parseKeyword(&mode)) 310 return failure(); 311 state.addAttribute("mode", parser.getBuilder().getStringAttr(mode)); 312 313 Type valueType; 314 Type int32Type = parser.getBuilder().getIntegerType(32); 315 Type int1Type = parser.getBuilder().getI1Type(); 316 if (parser.parseColonType(valueType) || 317 parser.resolveOperands(operandInfo, {valueType, int32Type, int32Type}, 318 parser.getCurrentLocation(), state.operands) || 319 parser.addTypesToList({valueType, int1Type}, state.types)) 320 return failure(); 321 return success(); 322 } 323 324 //===----------------------------------------------------------------------===// 325 // AsyncOpInterface 326 //===----------------------------------------------------------------------===// 327 328 void gpu::addAsyncDependency(Operation *op, Value token) { 329 op->insertOperands(0, {token}); 330 if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>()) 331 return; 332 auto attrName = 333 OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr(); 334 auto sizeAttr = op->template getAttrOfType<DenseIntElementsAttr>(attrName); 335 if (!sizeAttr) 336 return; // Async dependencies is the only variadic operand. 337 SmallVector<int32_t, 8> sizes; 338 for (auto size : sizeAttr.getIntValues()) 339 sizes.push_back(size.getSExtValue()); 340 ++sizes.front(); 341 op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes)); 342 } 343 344 //===----------------------------------------------------------------------===// 345 // LaunchOp 346 //===----------------------------------------------------------------------===// 347 348 void LaunchOp::build(OpBuilder &builder, OperationState &result, 349 Value gridSizeX, Value gridSizeY, Value gridSizeZ, 350 Value blockSizeX, Value blockSizeY, Value blockSizeZ) { 351 // Add grid and block sizes as op operands, followed by the data operands. 352 result.addOperands( 353 {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); 354 355 // Create a kernel body region with kNumConfigRegionAttributes + N arguments, 356 // where the first kNumConfigRegionAttributes arguments have `index` type and 357 // the rest have the same types as the data operands. 358 Region *kernelRegion = result.addRegion(); 359 Block *body = new Block(); 360 body->addArguments( 361 std::vector<Type>(kNumConfigRegionAttributes, builder.getIndexType())); 362 kernelRegion->push_back(body); 363 } 364 365 KernelDim3 LaunchOp::getBlockIds() { 366 assert(!body().empty() && "LaunchOp body must not be empty."); 367 auto args = body().getArguments(); 368 return KernelDim3{args[0], args[1], args[2]}; 369 } 370 371 KernelDim3 LaunchOp::getThreadIds() { 372 assert(!body().empty() && "LaunchOp body must not be empty."); 373 auto args = body().getArguments(); 374 return KernelDim3{args[3], args[4], args[5]}; 375 } 376 377 KernelDim3 LaunchOp::getGridSize() { 378 assert(!body().empty() && "LaunchOp body must not be empty."); 379 auto args = body().getArguments(); 380 return KernelDim3{args[6], args[7], args[8]}; 381 } 382 383 KernelDim3 LaunchOp::getBlockSize() { 384 assert(!body().empty() && "LaunchOp body must not be empty."); 385 auto args = body().getArguments(); 386 return KernelDim3{args[9], args[10], args[11]}; 387 } 388 389 KernelDim3 LaunchOp::getGridSizeOperandValues() { 390 return KernelDim3{getOperand(0), getOperand(1), getOperand(2)}; 391 } 392 393 KernelDim3 LaunchOp::getBlockSizeOperandValues() { 394 return KernelDim3{getOperand(3), getOperand(4), getOperand(5)}; 395 } 396 397 static LogicalResult verify(LaunchOp op) { 398 // Kernel launch takes kNumConfigOperands leading operands for grid/block 399 // sizes and transforms them into kNumConfigRegionAttributes region arguments 400 // for block/thread identifiers and grid/block sizes. 401 if (!op.body().empty()) { 402 if (op.body().getNumArguments() != 403 LaunchOp::kNumConfigOperands + op.getNumOperands()) 404 return op.emitOpError("unexpected number of region arguments"); 405 } 406 407 // Block terminators without successors are expected to exit the kernel region 408 // and must be `gpu.terminator`. 409 for (Block &block : op.body()) { 410 if (block.empty()) 411 continue; 412 if (block.back().getNumSuccessors() != 0) 413 continue; 414 if (!isa<gpu::TerminatorOp>(&block.back())) { 415 return block.back() 416 .emitError() 417 .append("expected '", gpu::TerminatorOp::getOperationName(), 418 "' or a terminator with successors") 419 .attachNote(op.getLoc()) 420 .append("in '", LaunchOp::getOperationName(), "' body region"); 421 } 422 } 423 424 return success(); 425 } 426 427 // Pretty-print the kernel grid/block size assignment as 428 // (%iter-x, %iter-y, %iter-z) in 429 // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use) 430 // where %size-* and %iter-* will correspond to the body region arguments. 431 static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size, 432 KernelDim3 operands, KernelDim3 ids) { 433 p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in ("; 434 p << size.x << " = " << operands.x << ", "; 435 p << size.y << " = " << operands.y << ", "; 436 p << size.z << " = " << operands.z << ')'; 437 } 438 439 static void printLaunchOp(OpAsmPrinter &p, LaunchOp op) { 440 // Print the launch configuration. 441 p << LaunchOp::getOperationName() << ' ' << op.getBlocksKeyword(); 442 printSizeAssignment(p, op.getGridSize(), op.getGridSizeOperandValues(), 443 op.getBlockIds()); 444 p << ' ' << op.getThreadsKeyword(); 445 printSizeAssignment(p, op.getBlockSize(), op.getBlockSizeOperandValues(), 446 op.getThreadIds()); 447 448 p.printRegion(op.body(), /*printEntryBlockArgs=*/false); 449 p.printOptionalAttrDict(op->getAttrs()); 450 } 451 452 // Parse the size assignment blocks for blocks and threads. These have the form 453 // (%region_arg, %region_arg, %region_arg) in 454 // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand) 455 // where %region_arg are percent-identifiers for the region arguments to be 456 // introduced further (SSA defs), and %operand are percent-identifiers for the 457 // SSA value uses. 458 static ParseResult 459 parseSizeAssignment(OpAsmParser &parser, 460 MutableArrayRef<OpAsmParser::OperandType> sizes, 461 MutableArrayRef<OpAsmParser::OperandType> regionSizes, 462 MutableArrayRef<OpAsmParser::OperandType> indices) { 463 assert(indices.size() == 3 && "space for three indices expected"); 464 SmallVector<OpAsmParser::OperandType, 3> args; 465 if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3, 466 OpAsmParser::Delimiter::Paren) || 467 parser.parseKeyword("in") || parser.parseLParen()) 468 return failure(); 469 std::move(args.begin(), args.end(), indices.begin()); 470 471 for (int i = 0; i < 3; ++i) { 472 if (i != 0 && parser.parseComma()) 473 return failure(); 474 if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() || 475 parser.parseOperand(sizes[i])) 476 return failure(); 477 } 478 479 return parser.parseRParen(); 480 } 481 482 // Parses a Launch operation. 483 // operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment 484 // `threads` `(` ssa-id-list `)` `in` ssa-reassignment 485 // region attr-dict? 486 // ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)` 487 static ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) { 488 // Sizes of the grid and block. 489 SmallVector<OpAsmParser::OperandType, LaunchOp::kNumConfigOperands> sizes( 490 LaunchOp::kNumConfigOperands); 491 MutableArrayRef<OpAsmParser::OperandType> sizesRef(sizes); 492 493 // Actual (data) operands passed to the kernel. 494 SmallVector<OpAsmParser::OperandType, 4> dataOperands; 495 496 // Region arguments to be created. 497 SmallVector<OpAsmParser::OperandType, 16> regionArgs( 498 LaunchOp::kNumConfigRegionAttributes); 499 MutableArrayRef<OpAsmParser::OperandType> regionArgsRef(regionArgs); 500 501 // Parse the size assignment segments: the first segment assigns grid sizes 502 // and defines values for block identifiers; the second segment assigns block 503 // sizes and defines values for thread identifiers. In the region argument 504 // list, identifiers precede sizes, and block-related values precede 505 // thread-related values. 506 if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) || 507 parseSizeAssignment(parser, sizesRef.take_front(3), 508 regionArgsRef.slice(6, 3), 509 regionArgsRef.slice(0, 3)) || 510 parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) || 511 parseSizeAssignment(parser, sizesRef.drop_front(3), 512 regionArgsRef.slice(9, 3), 513 regionArgsRef.slice(3, 3)) || 514 parser.resolveOperands(sizes, parser.getBuilder().getIndexType(), 515 result.operands)) 516 return failure(); 517 518 // Introduce the body region and parse it. The region has 519 // kNumConfigRegionAttributes arguments that correspond to 520 // block/thread identifiers and grid/block sizes, all of the `index` type. 521 Type index = parser.getBuilder().getIndexType(); 522 SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes( 523 LaunchOp::kNumConfigRegionAttributes, index); 524 Region *body = result.addRegion(); 525 return failure(parser.parseRegion(*body, regionArgs, dataTypes) || 526 parser.parseOptionalAttrDict(result.attributes)); 527 } 528 529 //===----------------------------------------------------------------------===// 530 // LaunchFuncOp 531 //===----------------------------------------------------------------------===// 532 533 void LaunchFuncOp::build(OpBuilder &builder, OperationState &result, 534 GPUFuncOp kernelFunc, KernelDim3 gridSize, 535 KernelDim3 blockSize, ValueRange kernelOperands) { 536 // Add grid and block sizes as op operands, followed by the data operands. 537 result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x, 538 blockSize.y, blockSize.z}); 539 result.addOperands(kernelOperands); 540 auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>(); 541 auto kernelSymbol = builder.getSymbolRefAttr( 542 kernelModule.getName(), {builder.getSymbolRefAttr(kernelFunc.getName())}); 543 result.addAttribute(getKernelAttrName(), kernelSymbol); 544 SmallVector<int32_t, 8> segmentSizes(8, 1); 545 segmentSizes.front() = 0; // Initially no async dependencies. 546 segmentSizes.back() = static_cast<int32_t>(kernelOperands.size()); 547 result.addAttribute(getOperandSegmentSizeAttr(), 548 builder.getI32VectorAttr(segmentSizes)); 549 } 550 551 unsigned LaunchFuncOp::getNumKernelOperands() { 552 return getNumOperands() - asyncDependencies().size() - kNumConfigOperands; 553 } 554 555 StringRef LaunchFuncOp::getKernelModuleName() { 556 return kernel().getRootReference(); 557 } 558 559 StringRef LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); } 560 561 Value LaunchFuncOp::getKernelOperand(unsigned i) { 562 return getOperand(asyncDependencies().size() + kNumConfigOperands + i); 563 } 564 565 KernelDim3 LaunchFuncOp::getGridSizeOperandValues() { 566 auto operands = getOperands().drop_front(asyncDependencies().size()); 567 return KernelDim3{operands[0], operands[1], operands[2]}; 568 } 569 570 KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() { 571 auto operands = getOperands().drop_front(asyncDependencies().size()); 572 return KernelDim3{operands[3], operands[4], operands[5]}; 573 } 574 575 static LogicalResult verify(LaunchFuncOp op) { 576 auto module = op->getParentOfType<ModuleOp>(); 577 if (!module) 578 return op.emitOpError("expected to belong to a module"); 579 580 if (!module->getAttrOfType<UnitAttr>( 581 GPUDialect::getContainerModuleAttrName())) 582 return op.emitOpError( 583 "expected the closest surrounding module to have the '" + 584 GPUDialect::getContainerModuleAttrName() + "' attribute"); 585 586 auto kernelAttr = op->getAttrOfType<SymbolRefAttr>(op.getKernelAttrName()); 587 if (!kernelAttr) 588 return op.emitOpError("symbol reference attribute '" + 589 op.getKernelAttrName() + "' must be specified"); 590 591 return success(); 592 } 593 594 static ParseResult 595 parseLaunchFuncOperands(OpAsmParser &parser, 596 SmallVectorImpl<OpAsmParser::OperandType> &argNames, 597 SmallVectorImpl<Type> &argTypes) { 598 if (parser.parseOptionalKeyword("args")) 599 return success(); 600 SmallVector<NamedAttrList, 4> argAttrs; 601 bool isVariadic = false; 602 return function_like_impl::parseFunctionArgumentList( 603 parser, /*allowAttributes=*/false, 604 /*allowVariadic=*/false, argNames, argTypes, argAttrs, isVariadic); 605 } 606 607 static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *, 608 OperandRange operands, TypeRange types) { 609 if (operands.empty()) 610 return; 611 printer << "args("; 612 llvm::interleaveComma(llvm::zip(operands, types), printer, 613 [&](const auto &pair) { 614 printer.printOperand(std::get<0>(pair)); 615 printer << " : "; 616 printer.printType(std::get<1>(pair)); 617 }); 618 printer << ")"; 619 } 620 621 //===----------------------------------------------------------------------===// 622 // GPUFuncOp 623 //===----------------------------------------------------------------------===// 624 625 /// Adds a new block argument that corresponds to buffers located in 626 /// workgroup memory. 627 BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type) { 628 auto attrName = getNumWorkgroupAttributionsAttrName(); 629 auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName); 630 (*this)->setAttr(attrName, 631 IntegerAttr::get(attr.getType(), attr.getValue() + 1)); 632 return getBody().insertArgument(getType().getNumInputs() + attr.getInt(), 633 type); 634 } 635 636 /// Adds a new block argument that corresponds to buffers located in 637 /// private memory. 638 BlockArgument GPUFuncOp::addPrivateAttribution(Type type) { 639 // Buffers on the private memory always come after buffers on the workgroup 640 // memory. 641 return getBody().addArgument(type); 642 } 643 644 void GPUFuncOp::build(OpBuilder &builder, OperationState &result, 645 StringRef name, FunctionType type, 646 TypeRange workgroupAttributions, 647 TypeRange privateAttributions, 648 ArrayRef<NamedAttribute> attrs) { 649 result.addAttribute(SymbolTable::getSymbolAttrName(), 650 builder.getStringAttr(name)); 651 result.addAttribute(getTypeAttrName(), TypeAttr::get(type)); 652 result.addAttribute(getNumWorkgroupAttributionsAttrName(), 653 builder.getI64IntegerAttr(workgroupAttributions.size())); 654 result.addAttributes(attrs); 655 Region *body = result.addRegion(); 656 Block *entryBlock = new Block; 657 entryBlock->addArguments(type.getInputs()); 658 entryBlock->addArguments(workgroupAttributions); 659 entryBlock->addArguments(privateAttributions); 660 661 body->getBlocks().push_back(entryBlock); 662 } 663 664 /// Parses a GPU function memory attribution. 665 /// 666 /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)? 667 /// (`private` `(` ssa-id-and-type-list `)`)? 668 /// 669 /// Note that this function parses only one of the two similar parts, with the 670 /// keyword provided as argument. 671 static ParseResult 672 parseAttributions(OpAsmParser &parser, StringRef keyword, 673 SmallVectorImpl<OpAsmParser::OperandType> &args, 674 SmallVectorImpl<Type> &argTypes) { 675 // If we could not parse the keyword, just assume empty list and succeed. 676 if (failed(parser.parseOptionalKeyword(keyword))) 677 return success(); 678 679 if (failed(parser.parseLParen())) 680 return failure(); 681 682 // Early exit for an empty list. 683 if (succeeded(parser.parseOptionalRParen())) 684 return success(); 685 686 do { 687 OpAsmParser::OperandType arg; 688 Type type; 689 690 if (parser.parseRegionArgument(arg) || parser.parseColonType(type)) 691 return failure(); 692 693 args.push_back(arg); 694 argTypes.push_back(type); 695 } while (succeeded(parser.parseOptionalComma())); 696 697 return parser.parseRParen(); 698 } 699 700 /// Parses a GPU function. 701 /// 702 /// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)` 703 /// (`->` function-result-list)? memory-attribution `kernel`? 704 /// function-attributes? region 705 static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) { 706 SmallVector<OpAsmParser::OperandType, 8> entryArgs; 707 SmallVector<NamedAttrList, 1> argAttrs; 708 SmallVector<NamedAttrList, 1> resultAttrs; 709 SmallVector<Type, 8> argTypes; 710 SmallVector<Type, 4> resultTypes; 711 bool isVariadic; 712 713 // Parse the function name. 714 StringAttr nameAttr; 715 if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), 716 result.attributes)) 717 return failure(); 718 719 auto signatureLocation = parser.getCurrentLocation(); 720 if (failed(function_like_impl::parseFunctionSignature( 721 parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs, 722 isVariadic, resultTypes, resultAttrs))) 723 return failure(); 724 725 if (entryArgs.empty() && !argTypes.empty()) 726 return parser.emitError(signatureLocation) 727 << "gpu.func requires named arguments"; 728 729 // Construct the function type. More types will be added to the region, but 730 // not to the function type. 731 Builder &builder = parser.getBuilder(); 732 auto type = builder.getFunctionType(argTypes, resultTypes); 733 result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type)); 734 735 // Parse workgroup memory attributions. 736 if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(), 737 entryArgs, argTypes))) 738 return failure(); 739 740 // Store the number of operands we just parsed as the number of workgroup 741 // memory attributions. 742 unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs(); 743 result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(), 744 builder.getI64IntegerAttr(numWorkgroupAttrs)); 745 746 // Parse private memory attributions. 747 if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), 748 entryArgs, argTypes))) 749 return failure(); 750 751 // Parse the kernel attribute if present. 752 if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword()))) 753 result.addAttribute(GPUDialect::getKernelFuncAttrName(), 754 builder.getUnitAttr()); 755 756 // Parse attributes. 757 if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) 758 return failure(); 759 function_like_impl::addArgAndResultAttrs(builder, result, argAttrs, 760 resultAttrs); 761 762 // Parse the region. If no argument names were provided, take all names 763 // (including those of attributions) from the entry block. 764 auto *body = result.addRegion(); 765 return parser.parseRegion(*body, entryArgs, argTypes); 766 } 767 768 static void printAttributions(OpAsmPrinter &p, StringRef keyword, 769 ArrayRef<BlockArgument> values) { 770 if (values.empty()) 771 return; 772 773 p << ' ' << keyword << '('; 774 llvm::interleaveComma( 775 values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); }); 776 p << ')'; 777 } 778 779 /// Prints a GPU Func op. 780 static void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) { 781 p << GPUFuncOp::getOperationName() << ' '; 782 p.printSymbolName(op.getName()); 783 784 FunctionType type = op.getType(); 785 function_like_impl::printFunctionSignature( 786 p, op.getOperation(), type.getInputs(), 787 /*isVariadic=*/false, type.getResults()); 788 789 printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions()); 790 printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions()); 791 if (op.isKernel()) 792 p << ' ' << op.getKernelKeyword(); 793 794 function_like_impl::printFunctionAttributes( 795 p, op.getOperation(), type.getNumInputs(), type.getNumResults(), 796 {op.getNumWorkgroupAttributionsAttrName(), 797 GPUDialect::getKernelFuncAttrName()}); 798 p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false); 799 } 800 801 /// Hook for FunctionLike verifier. 802 LogicalResult GPUFuncOp::verifyType() { 803 Type type = getTypeAttr().getValue(); 804 if (!type.isa<FunctionType>()) 805 return emitOpError("requires '" + getTypeAttrName() + 806 "' attribute of function type"); 807 808 if (isKernel() && getType().getNumResults() != 0) 809 return emitOpError() << "expected void return type for kernel function"; 810 811 return success(); 812 } 813 814 static LogicalResult verifyAttributions(Operation *op, 815 ArrayRef<BlockArgument> attributions, 816 unsigned memorySpace) { 817 for (Value v : attributions) { 818 auto type = v.getType().dyn_cast<MemRefType>(); 819 if (!type) 820 return op->emitOpError() << "expected memref type in attribution"; 821 822 if (type.getMemorySpaceAsInt() != memorySpace) { 823 return op->emitOpError() 824 << "expected memory space " << memorySpace << " in attribution"; 825 } 826 } 827 return success(); 828 } 829 830 /// Verifies the body of the function. 831 LogicalResult GPUFuncOp::verifyBody() { 832 unsigned numFuncArguments = getNumArguments(); 833 unsigned numWorkgroupAttributions = getNumWorkgroupAttributions(); 834 unsigned numBlockArguments = front().getNumArguments(); 835 if (numBlockArguments < numFuncArguments + numWorkgroupAttributions) 836 return emitOpError() << "expected at least " 837 << numFuncArguments + numWorkgroupAttributions 838 << " arguments to body region"; 839 840 ArrayRef<Type> funcArgTypes = getType().getInputs(); 841 for (unsigned i = 0; i < numFuncArguments; ++i) { 842 Type blockArgType = front().getArgument(i).getType(); 843 if (funcArgTypes[i] != blockArgType) 844 return emitOpError() << "expected body region argument #" << i 845 << " to be of type " << funcArgTypes[i] << ", got " 846 << blockArgType; 847 } 848 849 if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(), 850 GPUDialect::getWorkgroupAddressSpace())) || 851 failed(verifyAttributions(getOperation(), getPrivateAttributions(), 852 GPUDialect::getPrivateAddressSpace()))) 853 return failure(); 854 855 return success(); 856 } 857 858 //===----------------------------------------------------------------------===// 859 // ReturnOp 860 //===----------------------------------------------------------------------===// 861 862 static ParseResult parseReturnOp(OpAsmParser &parser, OperationState &result) { 863 llvm::SmallVector<OpAsmParser::OperandType, 4> operands; 864 llvm::SmallVector<Type, 4> types; 865 if (parser.parseOperandList(operands) || 866 parser.parseOptionalColonTypeList(types) || 867 parser.resolveOperands(operands, types, parser.getCurrentLocation(), 868 result.operands)) 869 return failure(); 870 871 return success(); 872 } 873 874 static LogicalResult verify(gpu::ReturnOp returnOp) { 875 GPUFuncOp function = returnOp->getParentOfType<GPUFuncOp>(); 876 877 FunctionType funType = function.getType(); 878 879 if (funType.getNumResults() != returnOp.operands().size()) 880 return returnOp.emitOpError() 881 .append("expected ", funType.getNumResults(), " result operands") 882 .attachNote(function.getLoc()) 883 .append("return type declared here"); 884 885 for (auto pair : llvm::enumerate( 886 llvm::zip(function.getType().getResults(), returnOp.operands()))) { 887 Type type; 888 Value operand; 889 std::tie(type, operand) = pair.value(); 890 if (type != operand.getType()) 891 return returnOp.emitOpError() << "unexpected type `" << operand.getType() 892 << "' for operand #" << pair.index(); 893 } 894 return success(); 895 } 896 897 //===----------------------------------------------------------------------===// 898 // GPUModuleOp 899 //===----------------------------------------------------------------------===// 900 901 void GPUModuleOp::build(OpBuilder &builder, OperationState &result, 902 StringRef name) { 903 ensureTerminator(*result.addRegion(), builder, result.location); 904 result.attributes.push_back(builder.getNamedAttr( 905 ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); 906 } 907 908 static ParseResult parseGPUModuleOp(OpAsmParser &parser, 909 OperationState &result) { 910 StringAttr nameAttr; 911 if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(), 912 result.attributes)) 913 return failure(); 914 915 // If module attributes are present, parse them. 916 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 917 return failure(); 918 919 // Parse the module body. 920 auto *body = result.addRegion(); 921 if (parser.parseRegion(*body, None, None)) 922 return failure(); 923 924 // Ensure that this module has a valid terminator. 925 GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location); 926 return success(); 927 } 928 929 static void print(OpAsmPrinter &p, GPUModuleOp op) { 930 p << op.getOperationName() << ' '; 931 p.printSymbolName(op.getName()); 932 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 933 {SymbolTable::getSymbolAttrName()}); 934 p.printRegion(op->getRegion(0), /*printEntryBlockArgs=*/false, 935 /*printBlockTerminators=*/false); 936 } 937 938 //===----------------------------------------------------------------------===// 939 // GPUMemcpyOp 940 //===----------------------------------------------------------------------===// 941 942 static LogicalResult verify(MemcpyOp op) { 943 auto srcType = op.src().getType(); 944 auto dstType = op.dst().getType(); 945 946 if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType)) 947 return op.emitOpError("arguments have incompatible element type"); 948 949 if (failed(verifyCompatibleShape(srcType, dstType))) 950 return op.emitOpError("arguments have incompatible shape"); 951 952 return success(); 953 } 954 955 static ParseResult parseAsyncDependencies( 956 OpAsmParser &parser, Type &asyncTokenType, 957 SmallVectorImpl<OpAsmParser::OperandType> &asyncDependencies) { 958 auto loc = parser.getCurrentLocation(); 959 if (succeeded(parser.parseOptionalKeyword("async"))) { 960 if (parser.getNumResults() == 0) 961 return parser.emitError(loc, "needs to be named when marked 'async'"); 962 asyncTokenType = parser.getBuilder().getType<AsyncTokenType>(); 963 } 964 return parser.parseOperandList(asyncDependencies, 965 OpAsmParser::Delimiter::OptionalSquare); 966 } 967 968 static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op, 969 Type asyncTokenType, 970 OperandRange asyncDependencies) { 971 if (asyncTokenType) 972 printer << "async "; 973 if (asyncDependencies.empty()) 974 return; 975 printer << "["; 976 llvm::interleaveComma(asyncDependencies, printer); 977 printer << "]"; 978 } 979 980 //===----------------------------------------------------------------------===// 981 // GPU_SubgroupMmaLoadMatrixOp 982 //===----------------------------------------------------------------------===// 983 984 static LogicalResult verify(SubgroupMmaLoadMatrixOp op) { 985 auto srcType = op.srcMemref().getType(); 986 auto resType = op.res().getType(); 987 auto resMatrixType = resType.cast<gpu::MMAMatrixType>(); 988 auto operand = resMatrixType.getOperand(); 989 auto srcMemrefType = srcType.cast<MemRefType>(); 990 auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt(); 991 992 if (!srcMemrefType.getAffineMaps().empty() && 993 !srcMemrefType.getAffineMaps().front().isIdentity()) 994 return op.emitError("expected identity layout map for source memref"); 995 996 if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace && 997 srcMemSpace != kGlobalMemorySpace) 998 return op.emitError( 999 "source memorySpace kGenericMemorySpace, kSharedMemorySpace or " 1000 "kGlobalMemorySpace only allowed"); 1001 1002 if (!operand.equals("AOp") && !operand.equals("BOp") && 1003 !operand.equals("COp")) 1004 return op.emitError("only AOp, BOp and COp can be loaded"); 1005 1006 return success(); 1007 } 1008 1009 //===----------------------------------------------------------------------===// 1010 // GPU_SubgroupMmaStoreMatrixOp 1011 //===----------------------------------------------------------------------===// 1012 1013 static LogicalResult verify(SubgroupMmaStoreMatrixOp op) { 1014 auto srcType = op.src().getType(); 1015 auto dstType = op.dstMemref().getType(); 1016 auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>(); 1017 auto dstMemrefType = dstType.cast<MemRefType>(); 1018 auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt(); 1019 1020 if (!dstMemrefType.getAffineMaps().empty() && 1021 !dstMemrefType.getAffineMaps().front().isIdentity()) 1022 return op.emitError("expected identity layout map for destination memref"); 1023 1024 if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace && 1025 dstMemSpace != kGlobalMemorySpace) 1026 return op.emitError( 1027 "destination memorySpace of kGenericMemorySpace, " 1028 "kGlobalMemorySpace or kSharedMemorySpace only allowed"); 1029 1030 if (!srcMatrixType.getOperand().equals("COp")) 1031 return op.emitError( 1032 "expected the operand matrix being stored to have 'COp' operand type"); 1033 1034 return success(); 1035 } 1036 1037 //===----------------------------------------------------------------------===// 1038 // GPU_SubgroupMmaComputeOp 1039 //===----------------------------------------------------------------------===// 1040 1041 static LogicalResult verify(SubgroupMmaComputeOp op) { 1042 enum OperandMap { A, B, C }; 1043 SmallVector<MMAMatrixType, 3> opTypes; 1044 1045 auto populateOpInfo = [&opTypes, &op]() { 1046 opTypes.push_back(op.opA().getType().cast<MMAMatrixType>()); 1047 opTypes.push_back(op.opB().getType().cast<MMAMatrixType>()); 1048 opTypes.push_back(op.opC().getType().cast<MMAMatrixType>()); 1049 }; 1050 populateOpInfo(); 1051 1052 if (!opTypes[A].getOperand().equals("AOp") || 1053 !opTypes[B].getOperand().equals("BOp") || 1054 !opTypes[C].getOperand().equals("COp")) 1055 return op.emitError("operands must be in the order AOp, BOp, COp"); 1056 1057 ArrayRef<int64_t> aShape, bShape, cShape; 1058 aShape = opTypes[A].getShape(); 1059 bShape = opTypes[B].getShape(); 1060 cShape = opTypes[C].getShape(); 1061 1062 if (aShape[1] != bShape[0] || aShape[0] != cShape[0] || 1063 bShape[1] != cShape[1]) 1064 return op.emitError("operand shapes do not satisfy matmul constraints"); 1065 1066 return success(); 1067 } 1068 1069 #include "mlir/Dialect/GPU/GPUOpInterfaces.cpp.inc" 1070 1071 #define GET_OP_CLASSES 1072 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 1073