1 //===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the GPU kernel-related dialect and its operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/GPU/GPUDialect.h"
14 
15 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
16 #include "mlir/Dialect/MemRef/IR/MemRef.h"
17 #include "mlir/Dialect/StandardOps/IR/Ops.h"
18 #include "mlir/IR/Attributes.h"
19 #include "mlir/IR/Builders.h"
20 #include "mlir/IR/BuiltinOps.h"
21 #include "mlir/IR/BuiltinTypes.h"
22 #include "mlir/IR/DialectImplementation.h"
23 #include "mlir/IR/FunctionImplementation.h"
24 #include "mlir/IR/Matchers.h"
25 #include "mlir/IR/OpImplementation.h"
26 #include "mlir/IR/PatternMatch.h"
27 #include "mlir/IR/TypeUtilities.h"
28 #include "llvm/ADT/TypeSwitch.h"
29 
30 using namespace mlir;
31 using namespace mlir::gpu;
32 
33 #include "mlir/Dialect/GPU/GPUOpsDialect.cpp.inc"
34 
35 //===----------------------------------------------------------------------===//
36 // MMAMatrixType
37 //===----------------------------------------------------------------------===//
38 
39 MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType,
40                                  StringRef operand) {
41   return Base::get(elementType.getContext(), shape, elementType, operand);
42 }
43 
44 MMAMatrixType
45 MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError,
46                           ArrayRef<int64_t> shape, Type elementType,
47                           StringRef operand) {
48   return Base::getChecked(emitError, elementType.getContext(), shape,
49                           elementType, operand);
50 }
51 
52 unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; }
53 
54 ArrayRef<int64_t> MMAMatrixType::getShape() const {
55   return getImpl()->getShape();
56 }
57 
58 Type MMAMatrixType::getElementType() const { return getImpl()->elementType; }
59 
60 StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); }
61 
62 bool MMAMatrixType::isValidElementType(Type elementType) {
63   return elementType.isF16() || elementType.isF32();
64 }
65 
66 LogicalResult
67 MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError,
68                       ArrayRef<int64_t> shape, Type elementType,
69                       StringRef operand) {
70   if (!operand.equals("AOp") && !operand.equals("BOp") &&
71       !operand.equals("COp"))
72     return emitError() << "operand expected to be one of AOp, BOp or COp";
73 
74   if (shape.size() != 2)
75     return emitError() << "MMAMatrixType must have exactly two dimensions";
76 
77   if (!MMAMatrixType::isValidElementType(elementType))
78     return emitError() << "MMAMatrixType elements must be F16 or F32";
79 
80   return success();
81 }
82 
83 //===----------------------------------------------------------------------===//
84 // GPUDialect
85 //===----------------------------------------------------------------------===//
86 
87 /// GPU memory space identifiers.
88 enum GPUMemorySpace {
89   /// Generic memory space identifier.
90   kGenericMemorySpace = 0,
91 
92   /// Global memory space identifier.
93   kGlobalMemorySpace = 1,
94 
95   /// Shared memory space identifier.
96   kSharedMemorySpace = 3
97 };
98 
99 bool GPUDialect::isKernel(Operation *op) {
100   UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName());
101   return static_cast<bool>(isKernelAttr);
102 }
103 
104 void GPUDialect::initialize() {
105   addTypes<AsyncTokenType>();
106   addTypes<MMAMatrixType>();
107   addOperations<
108 #define GET_OP_LIST
109 #include "mlir/Dialect/GPU/GPUOps.cpp.inc"
110       >();
111 }
112 
113 Type GPUDialect::parseType(DialectAsmParser &parser) const {
114   // Parse the main keyword for the type.
115   StringRef keyword;
116   if (parser.parseKeyword(&keyword))
117     return Type();
118   MLIRContext *context = getContext();
119 
120   // Handle 'async token' types.
121   if (keyword == "async.token")
122     return AsyncTokenType::get(context);
123 
124   if (keyword == "mma_matrix") {
125     llvm::SMLoc beginLoc = parser.getNameLoc();
126 
127     // Parse '<'.
128     if (parser.parseLess())
129       return nullptr;
130 
131     // Parse the size and elementType.
132     SmallVector<int64_t> shape;
133     Type elementType;
134     if (parser.parseDimensionList(shape, /*allowDynamic=*/false) ||
135         parser.parseType(elementType))
136       return nullptr;
137 
138     // Parse ','
139     if (parser.parseComma())
140       return nullptr;
141 
142     // Parse operand.
143     std::string operand;
144     if (failed(parser.parseOptionalString(&operand)))
145       return nullptr;
146 
147     // Parse '>'.
148     if (parser.parseGreater())
149       return nullptr;
150 
151     return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn(
152                                          parser.getEncodedSourceLoc(beginLoc)),
153                                      shape, elementType, operand);
154   }
155 
156   parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword);
157   return Type();
158 }
159 
160 void GPUDialect::printType(Type type, DialectAsmPrinter &os) const {
161   TypeSwitch<Type>(type)
162       .Case<AsyncTokenType>([&](Type) { os << "async.token"; })
163       .Case<MMAMatrixType>([&](MMAMatrixType fragTy) {
164         os << "mma_matrix<";
165         auto shape = fragTy.getShape();
166         for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim)
167           os << *dim << 'x';
168         os << shape.back() << 'x' << fragTy.getElementType();
169         os << ", \"" << fragTy.getOperand() << "\"" << '>';
170       })
171       .Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); });
172 }
173 
174 LogicalResult GPUDialect::verifyOperationAttribute(Operation *op,
175                                                    NamedAttribute attr) {
176   if (!attr.second.isa<UnitAttr>() ||
177       attr.first != getContainerModuleAttrName())
178     return success();
179 
180   auto module = dyn_cast<ModuleOp>(op);
181   if (!module)
182     return op->emitError("expected '")
183            << getContainerModuleAttrName() << "' attribute to be attached to '"
184            << ModuleOp::getOperationName() << '\'';
185 
186   auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult {
187     // Ignore launches that are nested more or less deep than functions in the
188     // module we are currently checking.
189     if (!launchOp->getParentOp() ||
190         launchOp->getParentOp()->getParentOp() != module)
191       return success();
192 
193     // Ignore launch ops with missing attributes here. The errors will be
194     // reported by the verifiers of those ops.
195     if (!launchOp->getAttrOfType<SymbolRefAttr>(
196             LaunchFuncOp::getKernelAttrName()))
197       return success();
198 
199     // Check that `launch_func` refers to a well-formed GPU kernel module.
200     StringAttr kernelModuleName = launchOp.getKernelModuleName();
201     auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName);
202     if (!kernelModule)
203       return launchOp.emitOpError()
204              << "kernel module '" << kernelModuleName.getValue()
205              << "' is undefined";
206 
207     // Check that `launch_func` refers to a well-formed kernel function.
208     Operation *kernelFunc = module.lookupSymbol(launchOp.kernelAttr());
209     auto kernelGPUFunction = dyn_cast_or_null<gpu::GPUFuncOp>(kernelFunc);
210     auto kernelLLVMFunction = dyn_cast_or_null<LLVM::LLVMFuncOp>(kernelFunc);
211     if (!kernelGPUFunction && !kernelLLVMFunction)
212       return launchOp.emitOpError("kernel function '")
213              << launchOp.kernel() << "' is undefined";
214     if (!kernelFunc->getAttrOfType<mlir::UnitAttr>(
215             GPUDialect::getKernelFuncAttrName()))
216       return launchOp.emitOpError("kernel function is missing the '")
217              << GPUDialect::getKernelFuncAttrName() << "' attribute";
218 
219     // TODO: if the kernel function has been converted to
220     // the LLVM dialect but the caller hasn't (which happens during the
221     // separate compilation), do not check type correspondence as it would
222     // require the verifier to be aware of the LLVM type conversion.
223     if (kernelLLVMFunction)
224       return success();
225 
226     unsigned actualNumArguments = launchOp.getNumKernelOperands();
227     unsigned expectedNumArguments = kernelGPUFunction.getNumArguments();
228     if (expectedNumArguments != actualNumArguments)
229       return launchOp.emitOpError("got ")
230              << actualNumArguments << " kernel operands but expected "
231              << expectedNumArguments;
232 
233     auto functionType = kernelGPUFunction.getType();
234     for (unsigned i = 0; i < expectedNumArguments; ++i) {
235       if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) {
236         return launchOp.emitOpError("type of function argument ")
237                << i << " does not match";
238       }
239     }
240 
241     return success();
242   });
243 
244   return walkResult.wasInterrupted() ? failure() : success();
245 }
246 
247 template <typename T>
248 static LogicalResult verifyIndexOp(T op) {
249   auto dimension = op.dimension();
250   if (dimension != "x" && dimension != "y" && dimension != "z")
251     return op.emitError("dimension \"") << dimension << "\" is invalid";
252   return success();
253 }
254 
255 static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) {
256   if (allReduce.body().empty() != allReduce.op().hasValue())
257     return allReduce.emitError(
258         "expected either an op attribute or a non-empty body");
259   if (!allReduce.body().empty()) {
260     if (allReduce.body().getNumArguments() != 2)
261       return allReduce.emitError("expected two region arguments");
262     for (auto argument : allReduce.body().getArguments()) {
263       if (argument.getType() != allReduce.getType())
264         return allReduce.emitError("incorrect region argument type");
265     }
266     unsigned yieldCount = 0;
267     for (Block &block : allReduce.body()) {
268       if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) {
269         if (yield.getNumOperands() != 1)
270           return allReduce.emitError("expected one gpu.yield operand");
271         if (yield.getOperand(0).getType() != allReduce.getType())
272           return allReduce.emitError("incorrect gpu.yield type");
273         ++yieldCount;
274       }
275     }
276     if (yieldCount == 0)
277       return allReduce.emitError("expected gpu.yield op in region");
278   } else {
279     StringRef opName = *allReduce.op();
280     if ((opName == "and" || opName == "or" || opName == "xor") &&
281         !allReduce.getType().isa<IntegerType>()) {
282       return allReduce.emitError()
283              << '`' << opName << '`'
284              << " accumulator is only compatible with Integer type";
285     }
286   }
287   return success();
288 }
289 
290 static LogicalResult verifyShuffleOp(gpu::ShuffleOp shuffleOp) {
291   auto type = shuffleOp.value().getType();
292   if (shuffleOp.result().getType() != type) {
293     return shuffleOp.emitOpError()
294            << "requires the same type for value operand and result";
295   }
296   if (!type.isSignlessIntOrFloat() || type.getIntOrFloatBitWidth() != 32) {
297     return shuffleOp.emitOpError()
298            << "requires value operand type to be f32 or i32";
299   }
300   return success();
301 }
302 
303 static void printShuffleOp(OpAsmPrinter &p, ShuffleOp op) {
304   p << ' ' << op.getOperands() << ' ' << op.mode() << " : "
305     << op.value().getType();
306 }
307 
308 static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &state) {
309   SmallVector<OpAsmParser::OperandType, 3> operandInfo;
310   if (parser.parseOperandList(operandInfo, 3))
311     return failure();
312 
313   StringRef mode;
314   if (parser.parseKeyword(&mode))
315     return failure();
316   state.addAttribute("mode", parser.getBuilder().getStringAttr(mode));
317 
318   Type valueType;
319   Type int32Type = parser.getBuilder().getIntegerType(32);
320   Type int1Type = parser.getBuilder().getI1Type();
321   if (parser.parseColonType(valueType) ||
322       parser.resolveOperands(operandInfo, {valueType, int32Type, int32Type},
323                              parser.getCurrentLocation(), state.operands) ||
324       parser.addTypesToList({valueType, int1Type}, state.types))
325     return failure();
326   return success();
327 }
328 
329 //===----------------------------------------------------------------------===//
330 // AsyncOpInterface
331 //===----------------------------------------------------------------------===//
332 
333 void gpu::addAsyncDependency(Operation *op, Value token) {
334   op->insertOperands(0, {token});
335   if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>())
336     return;
337   auto attrName =
338       OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr();
339   auto sizeAttr = op->template getAttrOfType<DenseIntElementsAttr>(attrName);
340 
341   // Async dependencies is the only variadic operand.
342   if (!sizeAttr)
343     return;
344 
345   SmallVector<int32_t, 8> sizes(sizeAttr.getValues<int32_t>());
346   ++sizes.front();
347   op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes));
348 }
349 
350 //===----------------------------------------------------------------------===//
351 // LaunchOp
352 //===----------------------------------------------------------------------===//
353 
354 void LaunchOp::build(OpBuilder &builder, OperationState &result,
355                      Value gridSizeX, Value gridSizeY, Value gridSizeZ,
356                      Value blockSizeX, Value blockSizeY, Value blockSizeZ) {
357   // Add grid and block sizes as op operands, followed by the data operands.
358   result.addOperands(
359       {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ});
360 
361   // Create a kernel body region with kNumConfigRegionAttributes + N arguments,
362   // where the first kNumConfigRegionAttributes arguments have `index` type and
363   // the rest have the same types as the data operands.
364   Region *kernelRegion = result.addRegion();
365   Block *body = new Block();
366   body->addArguments(
367       std::vector<Type>(kNumConfigRegionAttributes, builder.getIndexType()));
368   kernelRegion->push_back(body);
369 }
370 
371 KernelDim3 LaunchOp::getBlockIds() {
372   assert(!body().empty() && "LaunchOp body must not be empty.");
373   auto args = body().getArguments();
374   return KernelDim3{args[0], args[1], args[2]};
375 }
376 
377 KernelDim3 LaunchOp::getThreadIds() {
378   assert(!body().empty() && "LaunchOp body must not be empty.");
379   auto args = body().getArguments();
380   return KernelDim3{args[3], args[4], args[5]};
381 }
382 
383 KernelDim3 LaunchOp::getGridSize() {
384   assert(!body().empty() && "LaunchOp body must not be empty.");
385   auto args = body().getArguments();
386   return KernelDim3{args[6], args[7], args[8]};
387 }
388 
389 KernelDim3 LaunchOp::getBlockSize() {
390   assert(!body().empty() && "LaunchOp body must not be empty.");
391   auto args = body().getArguments();
392   return KernelDim3{args[9], args[10], args[11]};
393 }
394 
395 KernelDim3 LaunchOp::getGridSizeOperandValues() {
396   return KernelDim3{getOperand(0), getOperand(1), getOperand(2)};
397 }
398 
399 KernelDim3 LaunchOp::getBlockSizeOperandValues() {
400   return KernelDim3{getOperand(3), getOperand(4), getOperand(5)};
401 }
402 
403 static LogicalResult verify(LaunchOp op) {
404   // Kernel launch takes kNumConfigOperands leading operands for grid/block
405   // sizes and transforms them into kNumConfigRegionAttributes region arguments
406   // for block/thread identifiers and grid/block sizes.
407   if (!op.body().empty()) {
408     if (op.body().getNumArguments() !=
409         LaunchOp::kNumConfigOperands + op.getNumOperands())
410       return op.emitOpError("unexpected number of region arguments");
411   }
412 
413   // Block terminators without successors are expected to exit the kernel region
414   // and must be `gpu.terminator`.
415   for (Block &block : op.body()) {
416     if (block.empty())
417       continue;
418     if (block.back().getNumSuccessors() != 0)
419       continue;
420     if (!isa<gpu::TerminatorOp>(&block.back())) {
421       return block.back()
422           .emitError()
423           .append("expected '", gpu::TerminatorOp::getOperationName(),
424                   "' or a terminator with successors")
425           .attachNote(op.getLoc())
426           .append("in '", LaunchOp::getOperationName(), "' body region");
427     }
428   }
429 
430   return success();
431 }
432 
433 // Pretty-print the kernel grid/block size assignment as
434 //   (%iter-x, %iter-y, %iter-z) in
435 //   (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use)
436 // where %size-* and %iter-* will correspond to the body region arguments.
437 static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size,
438                                 KernelDim3 operands, KernelDim3 ids) {
439   p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in (";
440   p << size.x << " = " << operands.x << ", ";
441   p << size.y << " = " << operands.y << ", ";
442   p << size.z << " = " << operands.z << ')';
443 }
444 
445 static void printLaunchOp(OpAsmPrinter &p, LaunchOp op) {
446   // Print the launch configuration.
447   p << ' ' << op.getBlocksKeyword();
448   printSizeAssignment(p, op.getGridSize(), op.getGridSizeOperandValues(),
449                       op.getBlockIds());
450   p << ' ' << op.getThreadsKeyword();
451   printSizeAssignment(p, op.getBlockSize(), op.getBlockSizeOperandValues(),
452                       op.getThreadIds());
453 
454   p.printRegion(op.body(), /*printEntryBlockArgs=*/false);
455   p.printOptionalAttrDict(op->getAttrs());
456 }
457 
458 // Parse the size assignment blocks for blocks and threads.  These have the form
459 //   (%region_arg, %region_arg, %region_arg) in
460 //   (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand)
461 // where %region_arg are percent-identifiers for the region arguments to be
462 // introduced further (SSA defs), and %operand are percent-identifiers for the
463 // SSA value uses.
464 static ParseResult
465 parseSizeAssignment(OpAsmParser &parser,
466                     MutableArrayRef<OpAsmParser::OperandType> sizes,
467                     MutableArrayRef<OpAsmParser::OperandType> regionSizes,
468                     MutableArrayRef<OpAsmParser::OperandType> indices) {
469   assert(indices.size() == 3 && "space for three indices expected");
470   SmallVector<OpAsmParser::OperandType, 3> args;
471   if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3,
472                                      OpAsmParser::Delimiter::Paren) ||
473       parser.parseKeyword("in") || parser.parseLParen())
474     return failure();
475   std::move(args.begin(), args.end(), indices.begin());
476 
477   for (int i = 0; i < 3; ++i) {
478     if (i != 0 && parser.parseComma())
479       return failure();
480     if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() ||
481         parser.parseOperand(sizes[i]))
482       return failure();
483   }
484 
485   return parser.parseRParen();
486 }
487 
488 // Parses a Launch operation.
489 // operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment
490 //                           `threads` `(` ssa-id-list `)` `in` ssa-reassignment
491 //                            region attr-dict?
492 // ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)`
493 static ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) {
494   // Sizes of the grid and block.
495   SmallVector<OpAsmParser::OperandType, LaunchOp::kNumConfigOperands> sizes(
496       LaunchOp::kNumConfigOperands);
497   MutableArrayRef<OpAsmParser::OperandType> sizesRef(sizes);
498 
499   // Actual (data) operands passed to the kernel.
500   SmallVector<OpAsmParser::OperandType, 4> dataOperands;
501 
502   // Region arguments to be created.
503   SmallVector<OpAsmParser::OperandType, 16> regionArgs(
504       LaunchOp::kNumConfigRegionAttributes);
505   MutableArrayRef<OpAsmParser::OperandType> regionArgsRef(regionArgs);
506 
507   // Parse the size assignment segments: the first segment assigns grid sizes
508   // and defines values for block identifiers; the second segment assigns block
509   // sizes and defines values for thread identifiers.  In the region argument
510   // list, identifiers precede sizes, and block-related values precede
511   // thread-related values.
512   if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) ||
513       parseSizeAssignment(parser, sizesRef.take_front(3),
514                           regionArgsRef.slice(6, 3),
515                           regionArgsRef.slice(0, 3)) ||
516       parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) ||
517       parseSizeAssignment(parser, sizesRef.drop_front(3),
518                           regionArgsRef.slice(9, 3),
519                           regionArgsRef.slice(3, 3)) ||
520       parser.resolveOperands(sizes, parser.getBuilder().getIndexType(),
521                              result.operands))
522     return failure();
523 
524   // Introduce the body region and parse it. The region has
525   // kNumConfigRegionAttributes arguments that correspond to
526   // block/thread identifiers and grid/block sizes, all of the `index` type.
527   Type index = parser.getBuilder().getIndexType();
528   SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes(
529       LaunchOp::kNumConfigRegionAttributes, index);
530   Region *body = result.addRegion();
531   return failure(parser.parseRegion(*body, regionArgs, dataTypes) ||
532                  parser.parseOptionalAttrDict(result.attributes));
533 }
534 
535 /// Simplify the gpu.launch when the range of a thread or block ID is
536 /// trivially known to be one.
537 struct FoldLaunchArguments : public OpRewritePattern<LaunchOp> {
538   using OpRewritePattern<LaunchOp>::OpRewritePattern;
539   LogicalResult matchAndRewrite(LaunchOp op,
540                                 PatternRewriter &rewriter) const override {
541     // If the range implies a single value for `id`, replace `id`'s uses by
542     // zero.
543     Value zero;
544     bool simplified = false;
545     auto constPropIdUses = [&](Value id, Value size) {
546       // Check if size is trivially one.
547       if (!matchPattern(size, m_One()))
548         return;
549       if (!simplified) {
550         // Create a zero value the first time.
551         OpBuilder::InsertionGuard guard(rewriter);
552         rewriter.setInsertionPointToStart(&op.body().front());
553         zero = rewriter.create<ConstantIndexOp>(op.getLoc(), /*value=*/0);
554       }
555       id.replaceAllUsesWith(zero);
556       simplified = true;
557     };
558     constPropIdUses(op.getBlockIds().x, op.gridSizeX());
559     constPropIdUses(op.getBlockIds().y, op.gridSizeY());
560     constPropIdUses(op.getBlockIds().z, op.gridSizeZ());
561     constPropIdUses(op.getThreadIds().x, op.blockSizeX());
562     constPropIdUses(op.getThreadIds().y, op.blockSizeY());
563     constPropIdUses(op.getThreadIds().z, op.blockSizeZ());
564 
565     return success(simplified);
566   }
567 };
568 
569 void LaunchOp::getCanonicalizationPatterns(RewritePatternSet &rewrites,
570                                            MLIRContext *context) {
571   rewrites.add<FoldLaunchArguments>(context);
572 }
573 
574 //===----------------------------------------------------------------------===//
575 // LaunchFuncOp
576 //===----------------------------------------------------------------------===//
577 
578 void LaunchFuncOp::build(OpBuilder &builder, OperationState &result,
579                          GPUFuncOp kernelFunc, KernelDim3 gridSize,
580                          KernelDim3 blockSize, ValueRange kernelOperands) {
581   // Add grid and block sizes as op operands, followed by the data operands.
582   result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x,
583                       blockSize.y, blockSize.z});
584   result.addOperands(kernelOperands);
585   auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>();
586   auto kernelSymbol =
587       SymbolRefAttr::get(kernelModule.getNameAttr(),
588                          {SymbolRefAttr::get(kernelFunc.getNameAttr())});
589   result.addAttribute(getKernelAttrName(), kernelSymbol);
590   SmallVector<int32_t, 8> segmentSizes(8, 1);
591   segmentSizes.front() = 0; // Initially no async dependencies.
592   segmentSizes.back() = static_cast<int32_t>(kernelOperands.size());
593   result.addAttribute(getOperandSegmentSizeAttr(),
594                       builder.getI32VectorAttr(segmentSizes));
595 }
596 
597 unsigned LaunchFuncOp::getNumKernelOperands() {
598   return getNumOperands() - asyncDependencies().size() - kNumConfigOperands;
599 }
600 
601 StringAttr LaunchFuncOp::getKernelModuleName() {
602   return kernel().getRootReference();
603 }
604 
605 StringAttr LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); }
606 
607 Value LaunchFuncOp::getKernelOperand(unsigned i) {
608   return getOperand(asyncDependencies().size() + kNumConfigOperands + i);
609 }
610 
611 KernelDim3 LaunchFuncOp::getGridSizeOperandValues() {
612   auto operands = getOperands().drop_front(asyncDependencies().size());
613   return KernelDim3{operands[0], operands[1], operands[2]};
614 }
615 
616 KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() {
617   auto operands = getOperands().drop_front(asyncDependencies().size());
618   return KernelDim3{operands[3], operands[4], operands[5]};
619 }
620 
621 static LogicalResult verify(LaunchFuncOp op) {
622   auto module = op->getParentOfType<ModuleOp>();
623   if (!module)
624     return op.emitOpError("expected to belong to a module");
625 
626   if (!module->getAttrOfType<UnitAttr>(
627           GPUDialect::getContainerModuleAttrName()))
628     return op.emitOpError(
629         "expected the closest surrounding module to have the '" +
630         GPUDialect::getContainerModuleAttrName() + "' attribute");
631 
632   auto kernelAttr = op->getAttrOfType<SymbolRefAttr>(op.getKernelAttrName());
633   if (!kernelAttr)
634     return op.emitOpError("symbol reference attribute '" +
635                           op.getKernelAttrName() + "' must be specified");
636 
637   return success();
638 }
639 
640 static ParseResult
641 parseLaunchFuncOperands(OpAsmParser &parser,
642                         SmallVectorImpl<OpAsmParser::OperandType> &argNames,
643                         SmallVectorImpl<Type> &argTypes) {
644   if (parser.parseOptionalKeyword("args"))
645     return success();
646   SmallVector<NamedAttrList, 4> argAttrs;
647   bool isVariadic = false;
648   return function_like_impl::parseFunctionArgumentList(
649       parser, /*allowAttributes=*/false,
650       /*allowVariadic=*/false, argNames, argTypes, argAttrs, isVariadic);
651 }
652 
653 static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *,
654                                     OperandRange operands, TypeRange types) {
655   if (operands.empty())
656     return;
657   printer << "args(";
658   llvm::interleaveComma(llvm::zip(operands, types), printer,
659                         [&](const auto &pair) {
660                           printer.printOperand(std::get<0>(pair));
661                           printer << " : ";
662                           printer.printType(std::get<1>(pair));
663                         });
664   printer << ")";
665 }
666 
667 //===----------------------------------------------------------------------===//
668 // GPUFuncOp
669 //===----------------------------------------------------------------------===//
670 
671 /// Adds a new block argument that corresponds to buffers located in
672 /// workgroup memory.
673 BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type) {
674   auto attrName = getNumWorkgroupAttributionsAttrName();
675   auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName);
676   (*this)->setAttr(attrName,
677                    IntegerAttr::get(attr.getType(), attr.getValue() + 1));
678   return getBody().insertArgument(getType().getNumInputs() + attr.getInt(),
679                                   type);
680 }
681 
682 /// Adds a new block argument that corresponds to buffers located in
683 /// private memory.
684 BlockArgument GPUFuncOp::addPrivateAttribution(Type type) {
685   // Buffers on the private memory always come after buffers on the workgroup
686   // memory.
687   return getBody().addArgument(type);
688 }
689 
690 void GPUFuncOp::build(OpBuilder &builder, OperationState &result,
691                       StringRef name, FunctionType type,
692                       TypeRange workgroupAttributions,
693                       TypeRange privateAttributions,
694                       ArrayRef<NamedAttribute> attrs) {
695   result.addAttribute(SymbolTable::getSymbolAttrName(),
696                       builder.getStringAttr(name));
697   result.addAttribute(getTypeAttrName(), TypeAttr::get(type));
698   result.addAttribute(getNumWorkgroupAttributionsAttrName(),
699                       builder.getI64IntegerAttr(workgroupAttributions.size()));
700   result.addAttributes(attrs);
701   Region *body = result.addRegion();
702   Block *entryBlock = new Block;
703   entryBlock->addArguments(type.getInputs());
704   entryBlock->addArguments(workgroupAttributions);
705   entryBlock->addArguments(privateAttributions);
706 
707   body->getBlocks().push_back(entryBlock);
708 }
709 
710 /// Parses a GPU function memory attribution.
711 ///
712 /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)?
713 ///                        (`private` `(` ssa-id-and-type-list `)`)?
714 ///
715 /// Note that this function parses only one of the two similar parts, with the
716 /// keyword provided as argument.
717 static ParseResult
718 parseAttributions(OpAsmParser &parser, StringRef keyword,
719                   SmallVectorImpl<OpAsmParser::OperandType> &args,
720                   SmallVectorImpl<Type> &argTypes) {
721   // If we could not parse the keyword, just assume empty list and succeed.
722   if (failed(parser.parseOptionalKeyword(keyword)))
723     return success();
724 
725   if (failed(parser.parseLParen()))
726     return failure();
727 
728   // Early exit for an empty list.
729   if (succeeded(parser.parseOptionalRParen()))
730     return success();
731 
732   do {
733     OpAsmParser::OperandType arg;
734     Type type;
735 
736     if (parser.parseRegionArgument(arg) || parser.parseColonType(type))
737       return failure();
738 
739     args.push_back(arg);
740     argTypes.push_back(type);
741   } while (succeeded(parser.parseOptionalComma()));
742 
743   return parser.parseRParen();
744 }
745 
746 /// Parses a GPU function.
747 ///
748 /// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)`
749 ///                 (`->` function-result-list)? memory-attribution `kernel`?
750 ///                 function-attributes? region
751 static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) {
752   SmallVector<OpAsmParser::OperandType, 8> entryArgs;
753   SmallVector<NamedAttrList, 1> argAttrs;
754   SmallVector<NamedAttrList, 1> resultAttrs;
755   SmallVector<Type, 8> argTypes;
756   SmallVector<Type, 4> resultTypes;
757   bool isVariadic;
758 
759   // Parse the function name.
760   StringAttr nameAttr;
761   if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(),
762                              result.attributes))
763     return failure();
764 
765   auto signatureLocation = parser.getCurrentLocation();
766   if (failed(function_like_impl::parseFunctionSignature(
767           parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs,
768           isVariadic, resultTypes, resultAttrs)))
769     return failure();
770 
771   if (entryArgs.empty() && !argTypes.empty())
772     return parser.emitError(signatureLocation)
773            << "gpu.func requires named arguments";
774 
775   // Construct the function type. More types will be added to the region, but
776   // not to the function type.
777   Builder &builder = parser.getBuilder();
778   auto type = builder.getFunctionType(argTypes, resultTypes);
779   result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type));
780 
781   // Parse workgroup memory attributions.
782   if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(),
783                                entryArgs, argTypes)))
784     return failure();
785 
786   // Store the number of operands we just parsed as the number of workgroup
787   // memory attributions.
788   unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs();
789   result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(),
790                       builder.getI64IntegerAttr(numWorkgroupAttrs));
791 
792   // Parse private memory attributions.
793   if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(),
794                                entryArgs, argTypes)))
795     return failure();
796 
797   // Parse the kernel attribute if present.
798   if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword())))
799     result.addAttribute(GPUDialect::getKernelFuncAttrName(),
800                         builder.getUnitAttr());
801 
802   // Parse attributes.
803   if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes)))
804     return failure();
805   function_like_impl::addArgAndResultAttrs(builder, result, argAttrs,
806                                            resultAttrs);
807 
808   // Parse the region. If no argument names were provided, take all names
809   // (including those of attributions) from the entry block.
810   auto *body = result.addRegion();
811   return parser.parseRegion(*body, entryArgs, argTypes);
812 }
813 
814 static void printAttributions(OpAsmPrinter &p, StringRef keyword,
815                               ArrayRef<BlockArgument> values) {
816   if (values.empty())
817     return;
818 
819   p << ' ' << keyword << '(';
820   llvm::interleaveComma(
821       values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); });
822   p << ')';
823 }
824 
825 /// Prints a GPU Func op.
826 static void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) {
827   p << ' ';
828   p.printSymbolName(op.getName());
829 
830   FunctionType type = op.getType();
831   function_like_impl::printFunctionSignature(
832       p, op.getOperation(), type.getInputs(),
833       /*isVariadic=*/false, type.getResults());
834 
835   printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions());
836   printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions());
837   if (op.isKernel())
838     p << ' ' << op.getKernelKeyword();
839 
840   function_like_impl::printFunctionAttributes(
841       p, op.getOperation(), type.getNumInputs(), type.getNumResults(),
842       {op.getNumWorkgroupAttributionsAttrName(),
843        GPUDialect::getKernelFuncAttrName()});
844   p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false);
845 }
846 
847 /// Hook for FunctionLike verifier.
848 LogicalResult GPUFuncOp::verifyType() {
849   Type type = getTypeAttr().getValue();
850   if (!type.isa<FunctionType>())
851     return emitOpError("requires '" + getTypeAttrName() +
852                        "' attribute of function type");
853 
854   if (isKernel() && getType().getNumResults() != 0)
855     return emitOpError() << "expected void return type for kernel function";
856 
857   return success();
858 }
859 
860 static LogicalResult verifyAttributions(Operation *op,
861                                         ArrayRef<BlockArgument> attributions,
862                                         unsigned memorySpace) {
863   for (Value v : attributions) {
864     auto type = v.getType().dyn_cast<MemRefType>();
865     if (!type)
866       return op->emitOpError() << "expected memref type in attribution";
867 
868     if (type.getMemorySpaceAsInt() != memorySpace) {
869       return op->emitOpError()
870              << "expected memory space " << memorySpace << " in attribution";
871     }
872   }
873   return success();
874 }
875 
876 /// Verifies the body of the function.
877 LogicalResult GPUFuncOp::verifyBody() {
878   unsigned numFuncArguments = getNumArguments();
879   unsigned numWorkgroupAttributions = getNumWorkgroupAttributions();
880   unsigned numBlockArguments = front().getNumArguments();
881   if (numBlockArguments < numFuncArguments + numWorkgroupAttributions)
882     return emitOpError() << "expected at least "
883                          << numFuncArguments + numWorkgroupAttributions
884                          << " arguments to body region";
885 
886   ArrayRef<Type> funcArgTypes = getType().getInputs();
887   for (unsigned i = 0; i < numFuncArguments; ++i) {
888     Type blockArgType = front().getArgument(i).getType();
889     if (funcArgTypes[i] != blockArgType)
890       return emitOpError() << "expected body region argument #" << i
891                            << " to be of type " << funcArgTypes[i] << ", got "
892                            << blockArgType;
893   }
894 
895   if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(),
896                                 GPUDialect::getWorkgroupAddressSpace())) ||
897       failed(verifyAttributions(getOperation(), getPrivateAttributions(),
898                                 GPUDialect::getPrivateAddressSpace())))
899     return failure();
900 
901   return success();
902 }
903 
904 //===----------------------------------------------------------------------===//
905 // ReturnOp
906 //===----------------------------------------------------------------------===//
907 
908 static LogicalResult verify(gpu::ReturnOp returnOp) {
909   GPUFuncOp function = returnOp->getParentOfType<GPUFuncOp>();
910 
911   FunctionType funType = function.getType();
912 
913   if (funType.getNumResults() != returnOp.operands().size())
914     return returnOp.emitOpError()
915         .append("expected ", funType.getNumResults(), " result operands")
916         .attachNote(function.getLoc())
917         .append("return type declared here");
918 
919   for (auto pair : llvm::enumerate(
920            llvm::zip(function.getType().getResults(), returnOp.operands()))) {
921     Type type;
922     Value operand;
923     std::tie(type, operand) = pair.value();
924     if (type != operand.getType())
925       return returnOp.emitOpError() << "unexpected type `" << operand.getType()
926                                     << "' for operand #" << pair.index();
927   }
928   return success();
929 }
930 
931 //===----------------------------------------------------------------------===//
932 // GPUModuleOp
933 //===----------------------------------------------------------------------===//
934 
935 void GPUModuleOp::build(OpBuilder &builder, OperationState &result,
936                         StringRef name) {
937   ensureTerminator(*result.addRegion(), builder, result.location);
938   result.attributes.push_back(builder.getNamedAttr(
939       ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name)));
940 }
941 
942 static ParseResult parseGPUModuleOp(OpAsmParser &parser,
943                                     OperationState &result) {
944   StringAttr nameAttr;
945   if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(),
946                              result.attributes))
947     return failure();
948 
949   // If module attributes are present, parse them.
950   if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
951     return failure();
952 
953   // Parse the module body.
954   auto *body = result.addRegion();
955   if (parser.parseRegion(*body, None, None))
956     return failure();
957 
958   // Ensure that this module has a valid terminator.
959   GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location);
960   return success();
961 }
962 
963 static void print(OpAsmPrinter &p, GPUModuleOp op) {
964   p << ' ';
965   p.printSymbolName(op.getName());
966   p.printOptionalAttrDictWithKeyword(op->getAttrs(),
967                                      {SymbolTable::getSymbolAttrName()});
968   p.printRegion(op->getRegion(0), /*printEntryBlockArgs=*/false,
969                 /*printBlockTerminators=*/false);
970 }
971 
972 //===----------------------------------------------------------------------===//
973 // GPUMemcpyOp
974 //===----------------------------------------------------------------------===//
975 
976 static LogicalResult verify(MemcpyOp op) {
977   auto srcType = op.src().getType();
978   auto dstType = op.dst().getType();
979 
980   if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType))
981     return op.emitOpError("arguments have incompatible element type");
982 
983   if (failed(verifyCompatibleShape(srcType, dstType)))
984     return op.emitOpError("arguments have incompatible shape");
985 
986   return success();
987 }
988 
989 static ParseResult parseAsyncDependencies(
990     OpAsmParser &parser, Type &asyncTokenType,
991     SmallVectorImpl<OpAsmParser::OperandType> &asyncDependencies) {
992   auto loc = parser.getCurrentLocation();
993   if (succeeded(parser.parseOptionalKeyword("async"))) {
994     if (parser.getNumResults() == 0)
995       return parser.emitError(loc, "needs to be named when marked 'async'");
996     asyncTokenType = parser.getBuilder().getType<AsyncTokenType>();
997   }
998   return parser.parseOperandList(asyncDependencies,
999                                  OpAsmParser::Delimiter::OptionalSquare);
1000 }
1001 
1002 static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op,
1003                                    Type asyncTokenType,
1004                                    OperandRange asyncDependencies) {
1005   if (asyncTokenType)
1006     printer << "async ";
1007   if (asyncDependencies.empty())
1008     return;
1009   printer << "[";
1010   llvm::interleaveComma(asyncDependencies, printer);
1011   printer << "]";
1012 }
1013 
1014 //===----------------------------------------------------------------------===//
1015 // GPU_SubgroupMmaLoadMatrixOp
1016 //===----------------------------------------------------------------------===//
1017 
1018 static LogicalResult verify(SubgroupMmaLoadMatrixOp op) {
1019   auto srcType = op.srcMemref().getType();
1020   auto resType = op.res().getType();
1021   auto resMatrixType = resType.cast<gpu::MMAMatrixType>();
1022   auto operand = resMatrixType.getOperand();
1023   auto srcMemrefType = srcType.cast<MemRefType>();
1024   auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt();
1025 
1026   if (!srcMemrefType.getAffineMaps().empty() &&
1027       !srcMemrefType.getAffineMaps().front().isIdentity())
1028     return op.emitError("expected identity layout map for source memref");
1029 
1030   if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace &&
1031       srcMemSpace != kGlobalMemorySpace)
1032     return op.emitError(
1033         "source memorySpace kGenericMemorySpace, kSharedMemorySpace or "
1034         "kGlobalMemorySpace only allowed");
1035 
1036   if (!operand.equals("AOp") && !operand.equals("BOp") &&
1037       !operand.equals("COp"))
1038     return op.emitError("only AOp, BOp and COp can be loaded");
1039 
1040   return success();
1041 }
1042 
1043 //===----------------------------------------------------------------------===//
1044 // GPU_SubgroupMmaStoreMatrixOp
1045 //===----------------------------------------------------------------------===//
1046 
1047 static LogicalResult verify(SubgroupMmaStoreMatrixOp op) {
1048   auto srcType = op.src().getType();
1049   auto dstType = op.dstMemref().getType();
1050   auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>();
1051   auto dstMemrefType = dstType.cast<MemRefType>();
1052   auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt();
1053 
1054   if (!dstMemrefType.getAffineMaps().empty() &&
1055       !dstMemrefType.getAffineMaps().front().isIdentity())
1056     return op.emitError("expected identity layout map for destination memref");
1057 
1058   if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace &&
1059       dstMemSpace != kGlobalMemorySpace)
1060     return op.emitError(
1061         "destination memorySpace of kGenericMemorySpace, "
1062         "kGlobalMemorySpace or kSharedMemorySpace only allowed");
1063 
1064   if (!srcMatrixType.getOperand().equals("COp"))
1065     return op.emitError(
1066         "expected the operand matrix being stored to have 'COp' operand type");
1067 
1068   return success();
1069 }
1070 
1071 //===----------------------------------------------------------------------===//
1072 // GPU_SubgroupMmaComputeOp
1073 //===----------------------------------------------------------------------===//
1074 
1075 static LogicalResult verify(SubgroupMmaComputeOp op) {
1076   enum OperandMap { A, B, C };
1077   SmallVector<MMAMatrixType, 3> opTypes;
1078 
1079   auto populateOpInfo = [&opTypes, &op]() {
1080     opTypes.push_back(op.opA().getType().cast<MMAMatrixType>());
1081     opTypes.push_back(op.opB().getType().cast<MMAMatrixType>());
1082     opTypes.push_back(op.opC().getType().cast<MMAMatrixType>());
1083   };
1084   populateOpInfo();
1085 
1086   if (!opTypes[A].getOperand().equals("AOp") ||
1087       !opTypes[B].getOperand().equals("BOp") ||
1088       !opTypes[C].getOperand().equals("COp"))
1089     return op.emitError("operands must be in the order AOp, BOp, COp");
1090 
1091   ArrayRef<int64_t> aShape, bShape, cShape;
1092   aShape = opTypes[A].getShape();
1093   bShape = opTypes[B].getShape();
1094   cShape = opTypes[C].getShape();
1095 
1096   if (aShape[1] != bShape[0] || aShape[0] != cShape[0] ||
1097       bShape[1] != cShape[1])
1098     return op.emitError("operand shapes do not satisfy matmul constraints");
1099 
1100   return success();
1101 }
1102 
1103 /// This is a common class used for patterns of the form
1104 /// "someop(memrefcast) -> someop".  It folds the source of any memref.cast
1105 /// into the root operation directly.
1106 static LogicalResult foldMemRefCast(Operation *op) {
1107   bool folded = false;
1108   for (OpOperand &operand : op->getOpOperands()) {
1109     auto cast = operand.get().getDefiningOp<mlir::memref::CastOp>();
1110     if (cast) {
1111       operand.set(cast.getOperand());
1112       folded = true;
1113     }
1114   }
1115   return success(folded);
1116 }
1117 
1118 LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands,
1119                              SmallVectorImpl<::mlir::OpFoldResult> &results) {
1120   return foldMemRefCast(*this);
1121 }
1122 
1123 LogicalResult MemsetOp::fold(ArrayRef<Attribute> operands,
1124                              SmallVectorImpl<::mlir::OpFoldResult> &results) {
1125   return foldMemRefCast(*this);
1126 }
1127 
1128 //===----------------------------------------------------------------------===//
1129 // GPU_AllocOp
1130 //===----------------------------------------------------------------------===//
1131 namespace {
1132 
1133 /// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to
1134 /// `memref::AllocOp`.
1135 struct SimplifyDimOfAllocOp : public OpRewritePattern<memref::DimOp> {
1136   using OpRewritePattern<memref::DimOp>::OpRewritePattern;
1137 
1138   LogicalResult matchAndRewrite(memref::DimOp dimOp,
1139                                 PatternRewriter &rewriter) const override {
1140     auto index = dimOp.index().getDefiningOp<ConstantIndexOp>();
1141     if (!index)
1142       return failure();
1143 
1144     auto memrefType = dimOp.source().getType().dyn_cast<MemRefType>();
1145     if (!memrefType || !memrefType.isDynamicDim(index.getValue()))
1146       return failure();
1147 
1148     auto alloc = dimOp.source().getDefiningOp<AllocOp>();
1149     if (!alloc)
1150       return failure();
1151 
1152     Value substituteOp = *(alloc.dynamicSizes().begin() +
1153                            memrefType.getDynamicDimIndex(index.getValue()));
1154     rewriter.replaceOp(dimOp, substituteOp);
1155     return success();
1156   }
1157 };
1158 
1159 } // end anonymous namespace.
1160 
1161 void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results,
1162                                           MLIRContext *context) {
1163   results.add<SimplifyDimOfAllocOp>(context);
1164 }
1165 
1166 #include "mlir/Dialect/GPU/GPUOpInterfaces.cpp.inc"
1167 
1168 #define GET_OP_CLASSES
1169 #include "mlir/Dialect/GPU/GPUOps.cpp.inc"
1170