1 //===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the GPU kernel-related dialect and its operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/GPU/GPUDialect.h" 14 15 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 16 #include "mlir/Dialect/MemRef/IR/MemRef.h" 17 #include "mlir/Dialect/StandardOps/IR/Ops.h" 18 #include "mlir/IR/Attributes.h" 19 #include "mlir/IR/Builders.h" 20 #include "mlir/IR/BuiltinOps.h" 21 #include "mlir/IR/BuiltinTypes.h" 22 #include "mlir/IR/DialectImplementation.h" 23 #include "mlir/IR/FunctionImplementation.h" 24 #include "mlir/IR/Matchers.h" 25 #include "mlir/IR/OpImplementation.h" 26 #include "mlir/IR/PatternMatch.h" 27 #include "mlir/IR/TypeUtilities.h" 28 #include "llvm/ADT/TypeSwitch.h" 29 30 using namespace mlir; 31 using namespace mlir::gpu; 32 33 #include "mlir/Dialect/GPU/GPUOpsDialect.cpp.inc" 34 35 //===----------------------------------------------------------------------===// 36 // MMAMatrixType 37 //===----------------------------------------------------------------------===// 38 39 MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType, 40 StringRef operand) { 41 return Base::get(elementType.getContext(), shape, elementType, operand); 42 } 43 44 MMAMatrixType 45 MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError, 46 ArrayRef<int64_t> shape, Type elementType, 47 StringRef operand) { 48 return Base::getChecked(emitError, elementType.getContext(), shape, 49 elementType, operand); 50 } 51 52 unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; } 53 54 ArrayRef<int64_t> MMAMatrixType::getShape() const { 55 return getImpl()->getShape(); 56 } 57 58 Type MMAMatrixType::getElementType() const { return getImpl()->elementType; } 59 60 StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); } 61 62 bool MMAMatrixType::isValidElementType(Type elementType) { 63 return elementType.isF16() || elementType.isF32(); 64 } 65 66 LogicalResult 67 MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError, 68 ArrayRef<int64_t> shape, Type elementType, 69 StringRef operand) { 70 if (!operand.equals("AOp") && !operand.equals("BOp") && 71 !operand.equals("COp")) 72 return emitError() << "operand expected to be one of AOp, BOp or COp"; 73 74 if (shape.size() != 2) 75 return emitError() << "MMAMatrixType must have exactly two dimensions"; 76 77 if (!MMAMatrixType::isValidElementType(elementType)) 78 return emitError() << "MMAMatrixType elements must be F16 or F32"; 79 80 return success(); 81 } 82 83 //===----------------------------------------------------------------------===// 84 // GPUDialect 85 //===----------------------------------------------------------------------===// 86 87 /// GPU memory space identifiers. 88 enum GPUMemorySpace { 89 /// Generic memory space identifier. 90 kGenericMemorySpace = 0, 91 92 /// Global memory space identifier. 93 kGlobalMemorySpace = 1, 94 95 /// Shared memory space identifier. 96 kSharedMemorySpace = 3 97 }; 98 99 bool GPUDialect::isKernel(Operation *op) { 100 UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName()); 101 return static_cast<bool>(isKernelAttr); 102 } 103 104 void GPUDialect::initialize() { 105 addTypes<AsyncTokenType>(); 106 addTypes<MMAMatrixType>(); 107 addOperations< 108 #define GET_OP_LIST 109 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 110 >(); 111 } 112 113 Type GPUDialect::parseType(DialectAsmParser &parser) const { 114 // Parse the main keyword for the type. 115 StringRef keyword; 116 if (parser.parseKeyword(&keyword)) 117 return Type(); 118 MLIRContext *context = getContext(); 119 120 // Handle 'async token' types. 121 if (keyword == "async.token") 122 return AsyncTokenType::get(context); 123 124 if (keyword == "mma_matrix") { 125 llvm::SMLoc beginLoc = parser.getNameLoc(); 126 127 // Parse '<'. 128 if (parser.parseLess()) 129 return nullptr; 130 131 // Parse the size and elementType. 132 SmallVector<int64_t> shape; 133 Type elementType; 134 if (parser.parseDimensionList(shape, /*allowDynamic=*/false) || 135 parser.parseType(elementType)) 136 return nullptr; 137 138 // Parse ',' 139 if (parser.parseComma()) 140 return nullptr; 141 142 // Parse operand. 143 std::string operand; 144 if (failed(parser.parseOptionalString(&operand))) 145 return nullptr; 146 147 // Parse '>'. 148 if (parser.parseGreater()) 149 return nullptr; 150 151 return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn( 152 parser.getEncodedSourceLoc(beginLoc)), 153 shape, elementType, operand); 154 } 155 156 parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword); 157 return Type(); 158 } 159 160 void GPUDialect::printType(Type type, DialectAsmPrinter &os) const { 161 TypeSwitch<Type>(type) 162 .Case<AsyncTokenType>([&](Type) { os << "async.token"; }) 163 .Case<MMAMatrixType>([&](MMAMatrixType fragTy) { 164 os << "mma_matrix<"; 165 auto shape = fragTy.getShape(); 166 for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim) 167 os << *dim << 'x'; 168 os << shape.back() << 'x' << fragTy.getElementType(); 169 os << ", \"" << fragTy.getOperand() << "\"" << '>'; 170 }) 171 .Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); }); 172 } 173 174 LogicalResult GPUDialect::verifyOperationAttribute(Operation *op, 175 NamedAttribute attr) { 176 if (!attr.second.isa<UnitAttr>() || 177 attr.first != getContainerModuleAttrName()) 178 return success(); 179 180 auto module = dyn_cast<ModuleOp>(op); 181 if (!module) 182 return op->emitError("expected '") 183 << getContainerModuleAttrName() << "' attribute to be attached to '" 184 << ModuleOp::getOperationName() << '\''; 185 186 auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult { 187 // Ignore launches that are nested more or less deep than functions in the 188 // module we are currently checking. 189 if (!launchOp->getParentOp() || 190 launchOp->getParentOp()->getParentOp() != module) 191 return success(); 192 193 // Ignore launch ops with missing attributes here. The errors will be 194 // reported by the verifiers of those ops. 195 if (!launchOp->getAttrOfType<SymbolRefAttr>( 196 LaunchFuncOp::getKernelAttrName())) 197 return success(); 198 199 // Check that `launch_func` refers to a well-formed GPU kernel module. 200 StringAttr kernelModuleName = launchOp.getKernelModuleName(); 201 auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName); 202 if (!kernelModule) 203 return launchOp.emitOpError() 204 << "kernel module '" << kernelModuleName.getValue() 205 << "' is undefined"; 206 207 // Check that `launch_func` refers to a well-formed kernel function. 208 Operation *kernelFunc = module.lookupSymbol(launchOp.kernelAttr()); 209 auto kernelGPUFunction = dyn_cast_or_null<gpu::GPUFuncOp>(kernelFunc); 210 auto kernelLLVMFunction = dyn_cast_or_null<LLVM::LLVMFuncOp>(kernelFunc); 211 if (!kernelGPUFunction && !kernelLLVMFunction) 212 return launchOp.emitOpError("kernel function '") 213 << launchOp.kernel() << "' is undefined"; 214 if (!kernelFunc->getAttrOfType<mlir::UnitAttr>( 215 GPUDialect::getKernelFuncAttrName())) 216 return launchOp.emitOpError("kernel function is missing the '") 217 << GPUDialect::getKernelFuncAttrName() << "' attribute"; 218 219 // TODO: if the kernel function has been converted to 220 // the LLVM dialect but the caller hasn't (which happens during the 221 // separate compilation), do not check type correspondence as it would 222 // require the verifier to be aware of the LLVM type conversion. 223 if (kernelLLVMFunction) 224 return success(); 225 226 unsigned actualNumArguments = launchOp.getNumKernelOperands(); 227 unsigned expectedNumArguments = kernelGPUFunction.getNumArguments(); 228 if (expectedNumArguments != actualNumArguments) 229 return launchOp.emitOpError("got ") 230 << actualNumArguments << " kernel operands but expected " 231 << expectedNumArguments; 232 233 auto functionType = kernelGPUFunction.getType(); 234 for (unsigned i = 0; i < expectedNumArguments; ++i) { 235 if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) { 236 return launchOp.emitOpError("type of function argument ") 237 << i << " does not match"; 238 } 239 } 240 241 return success(); 242 }); 243 244 return walkResult.wasInterrupted() ? failure() : success(); 245 } 246 247 template <typename T> 248 static LogicalResult verifyIndexOp(T op) { 249 auto dimension = op.dimension(); 250 if (dimension != "x" && dimension != "y" && dimension != "z") 251 return op.emitError("dimension \"") << dimension << "\" is invalid"; 252 return success(); 253 } 254 255 static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) { 256 if (allReduce.body().empty() != allReduce.op().hasValue()) 257 return allReduce.emitError( 258 "expected either an op attribute or a non-empty body"); 259 if (!allReduce.body().empty()) { 260 if (allReduce.body().getNumArguments() != 2) 261 return allReduce.emitError("expected two region arguments"); 262 for (auto argument : allReduce.body().getArguments()) { 263 if (argument.getType() != allReduce.getType()) 264 return allReduce.emitError("incorrect region argument type"); 265 } 266 unsigned yieldCount = 0; 267 for (Block &block : allReduce.body()) { 268 if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) { 269 if (yield.getNumOperands() != 1) 270 return allReduce.emitError("expected one gpu.yield operand"); 271 if (yield.getOperand(0).getType() != allReduce.getType()) 272 return allReduce.emitError("incorrect gpu.yield type"); 273 ++yieldCount; 274 } 275 } 276 if (yieldCount == 0) 277 return allReduce.emitError("expected gpu.yield op in region"); 278 } else { 279 StringRef opName = *allReduce.op(); 280 if ((opName == "and" || opName == "or" || opName == "xor") && 281 !allReduce.getType().isa<IntegerType>()) { 282 return allReduce.emitError() 283 << '`' << opName << '`' 284 << " accumulator is only compatible with Integer type"; 285 } 286 } 287 return success(); 288 } 289 290 static LogicalResult verifyShuffleOp(gpu::ShuffleOp shuffleOp) { 291 auto type = shuffleOp.value().getType(); 292 if (shuffleOp.result().getType() != type) { 293 return shuffleOp.emitOpError() 294 << "requires the same type for value operand and result"; 295 } 296 if (!type.isSignlessIntOrFloat() || type.getIntOrFloatBitWidth() != 32) { 297 return shuffleOp.emitOpError() 298 << "requires value operand type to be f32 or i32"; 299 } 300 return success(); 301 } 302 303 static void printShuffleOp(OpAsmPrinter &p, ShuffleOp op) { 304 p << ' ' << op.getOperands() << ' ' << op.mode() << " : " 305 << op.value().getType(); 306 } 307 308 static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &state) { 309 SmallVector<OpAsmParser::OperandType, 3> operandInfo; 310 if (parser.parseOperandList(operandInfo, 3)) 311 return failure(); 312 313 StringRef mode; 314 if (parser.parseKeyword(&mode)) 315 return failure(); 316 state.addAttribute("mode", parser.getBuilder().getStringAttr(mode)); 317 318 Type valueType; 319 Type int32Type = parser.getBuilder().getIntegerType(32); 320 Type int1Type = parser.getBuilder().getI1Type(); 321 if (parser.parseColonType(valueType) || 322 parser.resolveOperands(operandInfo, {valueType, int32Type, int32Type}, 323 parser.getCurrentLocation(), state.operands) || 324 parser.addTypesToList({valueType, int1Type}, state.types)) 325 return failure(); 326 return success(); 327 } 328 329 //===----------------------------------------------------------------------===// 330 // AsyncOpInterface 331 //===----------------------------------------------------------------------===// 332 333 void gpu::addAsyncDependency(Operation *op, Value token) { 334 op->insertOperands(0, {token}); 335 if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>()) 336 return; 337 auto attrName = 338 OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr(); 339 auto sizeAttr = op->template getAttrOfType<DenseIntElementsAttr>(attrName); 340 341 // Async dependencies is the only variadic operand. 342 if (!sizeAttr) 343 return; 344 345 SmallVector<int32_t, 8> sizes(sizeAttr.getValues<int32_t>()); 346 ++sizes.front(); 347 op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes)); 348 } 349 350 //===----------------------------------------------------------------------===// 351 // LaunchOp 352 //===----------------------------------------------------------------------===// 353 354 void LaunchOp::build(OpBuilder &builder, OperationState &result, 355 Value gridSizeX, Value gridSizeY, Value gridSizeZ, 356 Value blockSizeX, Value blockSizeY, Value blockSizeZ, 357 Value dynamicSharedMemorySize) { 358 // Add grid and block sizes as op operands, followed by the data operands. 359 result.addOperands( 360 {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); 361 if (dynamicSharedMemorySize) 362 result.addOperands(dynamicSharedMemorySize); 363 364 // Create a kernel body region with kNumConfigRegionAttributes + N arguments, 365 // where the first kNumConfigRegionAttributes arguments have `index` type and 366 // the rest have the same types as the data operands. 367 Region *kernelRegion = result.addRegion(); 368 Block *body = new Block(); 369 body->addArguments( 370 std::vector<Type>(kNumConfigRegionAttributes, builder.getIndexType())); 371 kernelRegion->push_back(body); 372 } 373 374 KernelDim3 LaunchOp::getBlockIds() { 375 assert(!body().empty() && "LaunchOp body must not be empty."); 376 auto args = body().getArguments(); 377 return KernelDim3{args[0], args[1], args[2]}; 378 } 379 380 KernelDim3 LaunchOp::getThreadIds() { 381 assert(!body().empty() && "LaunchOp body must not be empty."); 382 auto args = body().getArguments(); 383 return KernelDim3{args[3], args[4], args[5]}; 384 } 385 386 KernelDim3 LaunchOp::getGridSize() { 387 assert(!body().empty() && "LaunchOp body must not be empty."); 388 auto args = body().getArguments(); 389 return KernelDim3{args[6], args[7], args[8]}; 390 } 391 392 KernelDim3 LaunchOp::getBlockSize() { 393 assert(!body().empty() && "LaunchOp body must not be empty."); 394 auto args = body().getArguments(); 395 return KernelDim3{args[9], args[10], args[11]}; 396 } 397 398 KernelDim3 LaunchOp::getGridSizeOperandValues() { 399 return KernelDim3{getOperand(0), getOperand(1), getOperand(2)}; 400 } 401 402 KernelDim3 LaunchOp::getBlockSizeOperandValues() { 403 return KernelDim3{getOperand(3), getOperand(4), getOperand(5)}; 404 } 405 406 static LogicalResult verify(LaunchOp op) { 407 // Kernel launch takes kNumConfigOperands leading operands for grid/block 408 // sizes and transforms them into kNumConfigRegionAttributes region arguments 409 // for block/thread identifiers and grid/block sizes. 410 if (!op.body().empty()) { 411 if (op.body().getNumArguments() != 412 LaunchOp::kNumConfigOperands + op.getNumOperands() - 413 (op.dynamicSharedMemorySize() ? 1 : 0)) 414 return op.emitOpError("unexpected number of region arguments"); 415 } 416 417 // Block terminators without successors are expected to exit the kernel region 418 // and must be `gpu.terminator`. 419 for (Block &block : op.body()) { 420 if (block.empty()) 421 continue; 422 if (block.back().getNumSuccessors() != 0) 423 continue; 424 if (!isa<gpu::TerminatorOp>(&block.back())) { 425 return block.back() 426 .emitError() 427 .append("expected '", gpu::TerminatorOp::getOperationName(), 428 "' or a terminator with successors") 429 .attachNote(op.getLoc()) 430 .append("in '", LaunchOp::getOperationName(), "' body region"); 431 } 432 } 433 434 return success(); 435 } 436 437 // Pretty-print the kernel grid/block size assignment as 438 // (%iter-x, %iter-y, %iter-z) in 439 // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use) 440 // where %size-* and %iter-* will correspond to the body region arguments. 441 static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size, 442 KernelDim3 operands, KernelDim3 ids) { 443 p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in ("; 444 p << size.x << " = " << operands.x << ", "; 445 p << size.y << " = " << operands.y << ", "; 446 p << size.z << " = " << operands.z << ')'; 447 } 448 449 static void printLaunchOp(OpAsmPrinter &p, LaunchOp op) { 450 // Print the launch configuration. 451 p << ' ' << op.getBlocksKeyword(); 452 printSizeAssignment(p, op.getGridSize(), op.getGridSizeOperandValues(), 453 op.getBlockIds()); 454 p << ' ' << op.getThreadsKeyword(); 455 printSizeAssignment(p, op.getBlockSize(), op.getBlockSizeOperandValues(), 456 op.getThreadIds()); 457 if (op.dynamicSharedMemorySize()) 458 p << ' ' << op.getDynamicSharedMemorySizeKeyword() << ' ' 459 << op.dynamicSharedMemorySize(); 460 461 p.printRegion(op.body(), /*printEntryBlockArgs=*/false); 462 p.printOptionalAttrDict(op->getAttrs()); 463 } 464 465 // Parse the size assignment blocks for blocks and threads. These have the form 466 // (%region_arg, %region_arg, %region_arg) in 467 // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand) 468 // where %region_arg are percent-identifiers for the region arguments to be 469 // introduced further (SSA defs), and %operand are percent-identifiers for the 470 // SSA value uses. 471 static ParseResult 472 parseSizeAssignment(OpAsmParser &parser, 473 MutableArrayRef<OpAsmParser::OperandType> sizes, 474 MutableArrayRef<OpAsmParser::OperandType> regionSizes, 475 MutableArrayRef<OpAsmParser::OperandType> indices) { 476 assert(indices.size() == 3 && "space for three indices expected"); 477 SmallVector<OpAsmParser::OperandType, 3> args; 478 if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3, 479 OpAsmParser::Delimiter::Paren) || 480 parser.parseKeyword("in") || parser.parseLParen()) 481 return failure(); 482 std::move(args.begin(), args.end(), indices.begin()); 483 484 for (int i = 0; i < 3; ++i) { 485 if (i != 0 && parser.parseComma()) 486 return failure(); 487 if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() || 488 parser.parseOperand(sizes[i])) 489 return failure(); 490 } 491 492 return parser.parseRParen(); 493 } 494 495 // Parses a Launch operation. 496 // operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment 497 // `threads` `(` ssa-id-list `)` `in` ssa-reassignment 498 // region attr-dict? 499 // ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)` 500 static ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) { 501 // Sizes of the grid and block. 502 SmallVector<OpAsmParser::OperandType, LaunchOp::kNumConfigOperands> sizes( 503 LaunchOp::kNumConfigOperands); 504 MutableArrayRef<OpAsmParser::OperandType> sizesRef(sizes); 505 506 // Actual (data) operands passed to the kernel. 507 SmallVector<OpAsmParser::OperandType, 4> dataOperands; 508 509 // Region arguments to be created. 510 SmallVector<OpAsmParser::OperandType, 16> regionArgs( 511 LaunchOp::kNumConfigRegionAttributes); 512 MutableArrayRef<OpAsmParser::OperandType> regionArgsRef(regionArgs); 513 514 // Parse the size assignment segments: the first segment assigns grid sizes 515 // and defines values for block identifiers; the second segment assigns block 516 // sizes and defines values for thread identifiers. In the region argument 517 // list, identifiers precede sizes, and block-related values precede 518 // thread-related values. 519 if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) || 520 parseSizeAssignment(parser, sizesRef.take_front(3), 521 regionArgsRef.slice(6, 3), 522 regionArgsRef.slice(0, 3)) || 523 parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) || 524 parseSizeAssignment(parser, sizesRef.drop_front(3), 525 regionArgsRef.slice(9, 3), 526 regionArgsRef.slice(3, 3)) || 527 parser.resolveOperands(sizes, parser.getBuilder().getIndexType(), 528 result.operands)) 529 return failure(); 530 531 OpAsmParser::OperandType dynamicSharedMemorySize; 532 if (!parser.parseOptionalKeyword( 533 LaunchOp::getDynamicSharedMemorySizeKeyword())) 534 if (parser.parseOperand(dynamicSharedMemorySize) || 535 parser.resolveOperand(dynamicSharedMemorySize, 536 parser.getBuilder().getI32Type(), 537 result.operands)) 538 return failure(); 539 540 // Introduce the body region and parse it. The region has 541 // kNumConfigRegionAttributes arguments that correspond to 542 // block/thread identifiers and grid/block sizes, all of the `index` type. 543 Type index = parser.getBuilder().getIndexType(); 544 SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes( 545 LaunchOp::kNumConfigRegionAttributes, index); 546 Region *body = result.addRegion(); 547 return failure(parser.parseRegion(*body, regionArgs, dataTypes) || 548 parser.parseOptionalAttrDict(result.attributes)); 549 } 550 551 /// Simplify the gpu.launch when the range of a thread or block ID is 552 /// trivially known to be one. 553 struct FoldLaunchArguments : public OpRewritePattern<LaunchOp> { 554 using OpRewritePattern<LaunchOp>::OpRewritePattern; 555 LogicalResult matchAndRewrite(LaunchOp op, 556 PatternRewriter &rewriter) const override { 557 // If the range implies a single value for `id`, replace `id`'s uses by 558 // zero. 559 Value zero; 560 bool simplified = false; 561 auto constPropIdUses = [&](Value id, Value size) { 562 // Check if size is trivially one. 563 if (!matchPattern(size, m_One())) 564 return; 565 if (!simplified) { 566 // Create a zero value the first time. 567 OpBuilder::InsertionGuard guard(rewriter); 568 rewriter.setInsertionPointToStart(&op.body().front()); 569 zero = rewriter.create<ConstantIndexOp>(op.getLoc(), /*value=*/0); 570 } 571 id.replaceAllUsesWith(zero); 572 simplified = true; 573 }; 574 constPropIdUses(op.getBlockIds().x, op.gridSizeX()); 575 constPropIdUses(op.getBlockIds().y, op.gridSizeY()); 576 constPropIdUses(op.getBlockIds().z, op.gridSizeZ()); 577 constPropIdUses(op.getThreadIds().x, op.blockSizeX()); 578 constPropIdUses(op.getThreadIds().y, op.blockSizeY()); 579 constPropIdUses(op.getThreadIds().z, op.blockSizeZ()); 580 581 return success(simplified); 582 } 583 }; 584 585 void LaunchOp::getCanonicalizationPatterns(RewritePatternSet &rewrites, 586 MLIRContext *context) { 587 rewrites.add<FoldLaunchArguments>(context); 588 } 589 590 //===----------------------------------------------------------------------===// 591 // LaunchFuncOp 592 //===----------------------------------------------------------------------===// 593 594 void LaunchFuncOp::build(OpBuilder &builder, OperationState &result, 595 GPUFuncOp kernelFunc, KernelDim3 gridSize, 596 KernelDim3 blockSize, Value dynamicSharedMemorySize, 597 ValueRange kernelOperands) { 598 // Add grid and block sizes as op operands, followed by the data operands. 599 result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x, 600 blockSize.y, blockSize.z}); 601 if (dynamicSharedMemorySize) 602 result.addOperands(dynamicSharedMemorySize); 603 result.addOperands(kernelOperands); 604 auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>(); 605 auto kernelSymbol = 606 SymbolRefAttr::get(kernelModule.getNameAttr(), 607 {SymbolRefAttr::get(kernelFunc.getNameAttr())}); 608 result.addAttribute(getKernelAttrName(), kernelSymbol); 609 SmallVector<int32_t, 9> segmentSizes(9, 1); 610 segmentSizes.front() = 0; // Initially no async dependencies. 611 segmentSizes[segmentSizes.size() - 2] = dynamicSharedMemorySize ? 1 : 0; 612 segmentSizes.back() = static_cast<int32_t>(kernelOperands.size()); 613 result.addAttribute(getOperandSegmentSizeAttr(), 614 builder.getI32VectorAttr(segmentSizes)); 615 } 616 617 unsigned LaunchFuncOp::getNumKernelOperands() { 618 return getNumOperands() - asyncDependencies().size() - kNumConfigOperands - 619 (dynamicSharedMemorySize() ? 1 : 0); 620 } 621 622 StringAttr LaunchFuncOp::getKernelModuleName() { 623 return kernel().getRootReference(); 624 } 625 626 StringAttr LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); } 627 628 Value LaunchFuncOp::getKernelOperand(unsigned i) { 629 return getOperand(asyncDependencies().size() + kNumConfigOperands + 630 (dynamicSharedMemorySize() ? 1 : 0) + i); 631 } 632 633 KernelDim3 LaunchFuncOp::getGridSizeOperandValues() { 634 auto operands = getOperands().drop_front(asyncDependencies().size()); 635 return KernelDim3{operands[0], operands[1], operands[2]}; 636 } 637 638 KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() { 639 auto operands = getOperands().drop_front(asyncDependencies().size()); 640 return KernelDim3{operands[3], operands[4], operands[5]}; 641 } 642 643 static LogicalResult verify(LaunchFuncOp op) { 644 auto module = op->getParentOfType<ModuleOp>(); 645 if (!module) 646 return op.emitOpError("expected to belong to a module"); 647 648 if (!module->getAttrOfType<UnitAttr>( 649 GPUDialect::getContainerModuleAttrName())) 650 return op.emitOpError( 651 "expected the closest surrounding module to have the '" + 652 GPUDialect::getContainerModuleAttrName() + "' attribute"); 653 654 auto kernelAttr = op->getAttrOfType<SymbolRefAttr>(op.getKernelAttrName()); 655 if (!kernelAttr) 656 return op.emitOpError("symbol reference attribute '" + 657 op.getKernelAttrName() + "' must be specified"); 658 659 return success(); 660 } 661 662 static ParseResult 663 parseLaunchFuncOperands(OpAsmParser &parser, 664 SmallVectorImpl<OpAsmParser::OperandType> &argNames, 665 SmallVectorImpl<Type> &argTypes) { 666 if (parser.parseOptionalKeyword("args")) 667 return success(); 668 SmallVector<NamedAttrList, 4> argAttrs; 669 bool isVariadic = false; 670 return function_like_impl::parseFunctionArgumentList( 671 parser, /*allowAttributes=*/false, 672 /*allowVariadic=*/false, argNames, argTypes, argAttrs, isVariadic); 673 } 674 675 static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *, 676 OperandRange operands, TypeRange types) { 677 if (operands.empty()) 678 return; 679 printer << "args("; 680 llvm::interleaveComma(llvm::zip(operands, types), printer, 681 [&](const auto &pair) { 682 printer.printOperand(std::get<0>(pair)); 683 printer << " : "; 684 printer.printType(std::get<1>(pair)); 685 }); 686 printer << ")"; 687 } 688 689 //===----------------------------------------------------------------------===// 690 // GPUFuncOp 691 //===----------------------------------------------------------------------===// 692 693 /// Adds a new block argument that corresponds to buffers located in 694 /// workgroup memory. 695 BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type) { 696 auto attrName = getNumWorkgroupAttributionsAttrName(); 697 auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName); 698 (*this)->setAttr(attrName, 699 IntegerAttr::get(attr.getType(), attr.getValue() + 1)); 700 return getBody().insertArgument(getType().getNumInputs() + attr.getInt(), 701 type); 702 } 703 704 /// Adds a new block argument that corresponds to buffers located in 705 /// private memory. 706 BlockArgument GPUFuncOp::addPrivateAttribution(Type type) { 707 // Buffers on the private memory always come after buffers on the workgroup 708 // memory. 709 return getBody().addArgument(type); 710 } 711 712 void GPUFuncOp::build(OpBuilder &builder, OperationState &result, 713 StringRef name, FunctionType type, 714 TypeRange workgroupAttributions, 715 TypeRange privateAttributions, 716 ArrayRef<NamedAttribute> attrs) { 717 result.addAttribute(SymbolTable::getSymbolAttrName(), 718 builder.getStringAttr(name)); 719 result.addAttribute(getTypeAttrName(), TypeAttr::get(type)); 720 result.addAttribute(getNumWorkgroupAttributionsAttrName(), 721 builder.getI64IntegerAttr(workgroupAttributions.size())); 722 result.addAttributes(attrs); 723 Region *body = result.addRegion(); 724 Block *entryBlock = new Block; 725 entryBlock->addArguments(type.getInputs()); 726 entryBlock->addArguments(workgroupAttributions); 727 entryBlock->addArguments(privateAttributions); 728 729 body->getBlocks().push_back(entryBlock); 730 } 731 732 /// Parses a GPU function memory attribution. 733 /// 734 /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)? 735 /// (`private` `(` ssa-id-and-type-list `)`)? 736 /// 737 /// Note that this function parses only one of the two similar parts, with the 738 /// keyword provided as argument. 739 static ParseResult 740 parseAttributions(OpAsmParser &parser, StringRef keyword, 741 SmallVectorImpl<OpAsmParser::OperandType> &args, 742 SmallVectorImpl<Type> &argTypes) { 743 // If we could not parse the keyword, just assume empty list and succeed. 744 if (failed(parser.parseOptionalKeyword(keyword))) 745 return success(); 746 747 if (failed(parser.parseLParen())) 748 return failure(); 749 750 // Early exit for an empty list. 751 if (succeeded(parser.parseOptionalRParen())) 752 return success(); 753 754 do { 755 OpAsmParser::OperandType arg; 756 Type type; 757 758 if (parser.parseRegionArgument(arg) || parser.parseColonType(type)) 759 return failure(); 760 761 args.push_back(arg); 762 argTypes.push_back(type); 763 } while (succeeded(parser.parseOptionalComma())); 764 765 return parser.parseRParen(); 766 } 767 768 /// Parses a GPU function. 769 /// 770 /// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)` 771 /// (`->` function-result-list)? memory-attribution `kernel`? 772 /// function-attributes? region 773 static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) { 774 SmallVector<OpAsmParser::OperandType, 8> entryArgs; 775 SmallVector<NamedAttrList, 1> argAttrs; 776 SmallVector<NamedAttrList, 1> resultAttrs; 777 SmallVector<Type, 8> argTypes; 778 SmallVector<Type, 4> resultTypes; 779 bool isVariadic; 780 781 // Parse the function name. 782 StringAttr nameAttr; 783 if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), 784 result.attributes)) 785 return failure(); 786 787 auto signatureLocation = parser.getCurrentLocation(); 788 if (failed(function_like_impl::parseFunctionSignature( 789 parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs, 790 isVariadic, resultTypes, resultAttrs))) 791 return failure(); 792 793 if (entryArgs.empty() && !argTypes.empty()) 794 return parser.emitError(signatureLocation) 795 << "gpu.func requires named arguments"; 796 797 // Construct the function type. More types will be added to the region, but 798 // not to the function type. 799 Builder &builder = parser.getBuilder(); 800 auto type = builder.getFunctionType(argTypes, resultTypes); 801 result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type)); 802 803 // Parse workgroup memory attributions. 804 if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(), 805 entryArgs, argTypes))) 806 return failure(); 807 808 // Store the number of operands we just parsed as the number of workgroup 809 // memory attributions. 810 unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs(); 811 result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(), 812 builder.getI64IntegerAttr(numWorkgroupAttrs)); 813 814 // Parse private memory attributions. 815 if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), 816 entryArgs, argTypes))) 817 return failure(); 818 819 // Parse the kernel attribute if present. 820 if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword()))) 821 result.addAttribute(GPUDialect::getKernelFuncAttrName(), 822 builder.getUnitAttr()); 823 824 // Parse attributes. 825 if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) 826 return failure(); 827 function_like_impl::addArgAndResultAttrs(builder, result, argAttrs, 828 resultAttrs); 829 830 // Parse the region. If no argument names were provided, take all names 831 // (including those of attributions) from the entry block. 832 auto *body = result.addRegion(); 833 return parser.parseRegion(*body, entryArgs, argTypes); 834 } 835 836 static void printAttributions(OpAsmPrinter &p, StringRef keyword, 837 ArrayRef<BlockArgument> values) { 838 if (values.empty()) 839 return; 840 841 p << ' ' << keyword << '('; 842 llvm::interleaveComma( 843 values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); }); 844 p << ')'; 845 } 846 847 /// Prints a GPU Func op. 848 static void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) { 849 p << ' '; 850 p.printSymbolName(op.getName()); 851 852 FunctionType type = op.getType(); 853 function_like_impl::printFunctionSignature( 854 p, op.getOperation(), type.getInputs(), 855 /*isVariadic=*/false, type.getResults()); 856 857 printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions()); 858 printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions()); 859 if (op.isKernel()) 860 p << ' ' << op.getKernelKeyword(); 861 862 function_like_impl::printFunctionAttributes( 863 p, op.getOperation(), type.getNumInputs(), type.getNumResults(), 864 {op.getNumWorkgroupAttributionsAttrName(), 865 GPUDialect::getKernelFuncAttrName()}); 866 p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false); 867 } 868 869 /// Hook for FunctionLike verifier. 870 LogicalResult GPUFuncOp::verifyType() { 871 Type type = getTypeAttr().getValue(); 872 if (!type.isa<FunctionType>()) 873 return emitOpError("requires '" + getTypeAttrName() + 874 "' attribute of function type"); 875 876 if (isKernel() && getType().getNumResults() != 0) 877 return emitOpError() << "expected void return type for kernel function"; 878 879 return success(); 880 } 881 882 static LogicalResult verifyAttributions(Operation *op, 883 ArrayRef<BlockArgument> attributions, 884 unsigned memorySpace) { 885 for (Value v : attributions) { 886 auto type = v.getType().dyn_cast<MemRefType>(); 887 if (!type) 888 return op->emitOpError() << "expected memref type in attribution"; 889 890 if (type.getMemorySpaceAsInt() != memorySpace) { 891 return op->emitOpError() 892 << "expected memory space " << memorySpace << " in attribution"; 893 } 894 } 895 return success(); 896 } 897 898 /// Verifies the body of the function. 899 LogicalResult GPUFuncOp::verifyBody() { 900 unsigned numFuncArguments = getNumArguments(); 901 unsigned numWorkgroupAttributions = getNumWorkgroupAttributions(); 902 unsigned numBlockArguments = front().getNumArguments(); 903 if (numBlockArguments < numFuncArguments + numWorkgroupAttributions) 904 return emitOpError() << "expected at least " 905 << numFuncArguments + numWorkgroupAttributions 906 << " arguments to body region"; 907 908 ArrayRef<Type> funcArgTypes = getType().getInputs(); 909 for (unsigned i = 0; i < numFuncArguments; ++i) { 910 Type blockArgType = front().getArgument(i).getType(); 911 if (funcArgTypes[i] != blockArgType) 912 return emitOpError() << "expected body region argument #" << i 913 << " to be of type " << funcArgTypes[i] << ", got " 914 << blockArgType; 915 } 916 917 if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(), 918 GPUDialect::getWorkgroupAddressSpace())) || 919 failed(verifyAttributions(getOperation(), getPrivateAttributions(), 920 GPUDialect::getPrivateAddressSpace()))) 921 return failure(); 922 923 return success(); 924 } 925 926 //===----------------------------------------------------------------------===// 927 // ReturnOp 928 //===----------------------------------------------------------------------===// 929 930 static LogicalResult verify(gpu::ReturnOp returnOp) { 931 GPUFuncOp function = returnOp->getParentOfType<GPUFuncOp>(); 932 933 FunctionType funType = function.getType(); 934 935 if (funType.getNumResults() != returnOp.operands().size()) 936 return returnOp.emitOpError() 937 .append("expected ", funType.getNumResults(), " result operands") 938 .attachNote(function.getLoc()) 939 .append("return type declared here"); 940 941 for (auto pair : llvm::enumerate( 942 llvm::zip(function.getType().getResults(), returnOp.operands()))) { 943 Type type; 944 Value operand; 945 std::tie(type, operand) = pair.value(); 946 if (type != operand.getType()) 947 return returnOp.emitOpError() << "unexpected type `" << operand.getType() 948 << "' for operand #" << pair.index(); 949 } 950 return success(); 951 } 952 953 //===----------------------------------------------------------------------===// 954 // GPUModuleOp 955 //===----------------------------------------------------------------------===// 956 957 void GPUModuleOp::build(OpBuilder &builder, OperationState &result, 958 StringRef name) { 959 ensureTerminator(*result.addRegion(), builder, result.location); 960 result.attributes.push_back(builder.getNamedAttr( 961 ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); 962 } 963 964 static ParseResult parseGPUModuleOp(OpAsmParser &parser, 965 OperationState &result) { 966 StringAttr nameAttr; 967 if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(), 968 result.attributes)) 969 return failure(); 970 971 // If module attributes are present, parse them. 972 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 973 return failure(); 974 975 // Parse the module body. 976 auto *body = result.addRegion(); 977 if (parser.parseRegion(*body, None, None)) 978 return failure(); 979 980 // Ensure that this module has a valid terminator. 981 GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location); 982 return success(); 983 } 984 985 static void print(OpAsmPrinter &p, GPUModuleOp op) { 986 p << ' '; 987 p.printSymbolName(op.getName()); 988 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 989 {SymbolTable::getSymbolAttrName()}); 990 p.printRegion(op->getRegion(0), /*printEntryBlockArgs=*/false, 991 /*printBlockTerminators=*/false); 992 } 993 994 //===----------------------------------------------------------------------===// 995 // GPUMemcpyOp 996 //===----------------------------------------------------------------------===// 997 998 static LogicalResult verify(MemcpyOp op) { 999 auto srcType = op.src().getType(); 1000 auto dstType = op.dst().getType(); 1001 1002 if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType)) 1003 return op.emitOpError("arguments have incompatible element type"); 1004 1005 if (failed(verifyCompatibleShape(srcType, dstType))) 1006 return op.emitOpError("arguments have incompatible shape"); 1007 1008 return success(); 1009 } 1010 1011 static ParseResult parseAsyncDependencies( 1012 OpAsmParser &parser, Type &asyncTokenType, 1013 SmallVectorImpl<OpAsmParser::OperandType> &asyncDependencies) { 1014 auto loc = parser.getCurrentLocation(); 1015 if (succeeded(parser.parseOptionalKeyword("async"))) { 1016 if (parser.getNumResults() == 0) 1017 return parser.emitError(loc, "needs to be named when marked 'async'"); 1018 asyncTokenType = parser.getBuilder().getType<AsyncTokenType>(); 1019 } 1020 return parser.parseOperandList(asyncDependencies, 1021 OpAsmParser::Delimiter::OptionalSquare); 1022 } 1023 1024 static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op, 1025 Type asyncTokenType, 1026 OperandRange asyncDependencies) { 1027 if (asyncTokenType) 1028 printer << "async "; 1029 if (asyncDependencies.empty()) 1030 return; 1031 printer << "["; 1032 llvm::interleaveComma(asyncDependencies, printer); 1033 printer << "]"; 1034 } 1035 1036 //===----------------------------------------------------------------------===// 1037 // GPU_SubgroupMmaLoadMatrixOp 1038 //===----------------------------------------------------------------------===// 1039 1040 static LogicalResult verify(SubgroupMmaLoadMatrixOp op) { 1041 auto srcType = op.srcMemref().getType(); 1042 auto resType = op.res().getType(); 1043 auto resMatrixType = resType.cast<gpu::MMAMatrixType>(); 1044 auto operand = resMatrixType.getOperand(); 1045 auto srcMemrefType = srcType.cast<MemRefType>(); 1046 auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt(); 1047 1048 if (!srcMemrefType.getAffineMaps().empty() && 1049 !srcMemrefType.getAffineMaps().front().isIdentity()) 1050 return op.emitError("expected identity layout map for source memref"); 1051 1052 if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace && 1053 srcMemSpace != kGlobalMemorySpace) 1054 return op.emitError( 1055 "source memorySpace kGenericMemorySpace, kSharedMemorySpace or " 1056 "kGlobalMemorySpace only allowed"); 1057 1058 if (!operand.equals("AOp") && !operand.equals("BOp") && 1059 !operand.equals("COp")) 1060 return op.emitError("only AOp, BOp and COp can be loaded"); 1061 1062 return success(); 1063 } 1064 1065 //===----------------------------------------------------------------------===// 1066 // GPU_SubgroupMmaStoreMatrixOp 1067 //===----------------------------------------------------------------------===// 1068 1069 static LogicalResult verify(SubgroupMmaStoreMatrixOp op) { 1070 auto srcType = op.src().getType(); 1071 auto dstType = op.dstMemref().getType(); 1072 auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>(); 1073 auto dstMemrefType = dstType.cast<MemRefType>(); 1074 auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt(); 1075 1076 if (!dstMemrefType.getAffineMaps().empty() && 1077 !dstMemrefType.getAffineMaps().front().isIdentity()) 1078 return op.emitError("expected identity layout map for destination memref"); 1079 1080 if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace && 1081 dstMemSpace != kGlobalMemorySpace) 1082 return op.emitError( 1083 "destination memorySpace of kGenericMemorySpace, " 1084 "kGlobalMemorySpace or kSharedMemorySpace only allowed"); 1085 1086 if (!srcMatrixType.getOperand().equals("COp")) 1087 return op.emitError( 1088 "expected the operand matrix being stored to have 'COp' operand type"); 1089 1090 return success(); 1091 } 1092 1093 //===----------------------------------------------------------------------===// 1094 // GPU_SubgroupMmaComputeOp 1095 //===----------------------------------------------------------------------===// 1096 1097 static LogicalResult verify(SubgroupMmaComputeOp op) { 1098 enum OperandMap { A, B, C }; 1099 SmallVector<MMAMatrixType, 3> opTypes; 1100 1101 auto populateOpInfo = [&opTypes, &op]() { 1102 opTypes.push_back(op.opA().getType().cast<MMAMatrixType>()); 1103 opTypes.push_back(op.opB().getType().cast<MMAMatrixType>()); 1104 opTypes.push_back(op.opC().getType().cast<MMAMatrixType>()); 1105 }; 1106 populateOpInfo(); 1107 1108 if (!opTypes[A].getOperand().equals("AOp") || 1109 !opTypes[B].getOperand().equals("BOp") || 1110 !opTypes[C].getOperand().equals("COp")) 1111 return op.emitError("operands must be in the order AOp, BOp, COp"); 1112 1113 ArrayRef<int64_t> aShape, bShape, cShape; 1114 aShape = opTypes[A].getShape(); 1115 bShape = opTypes[B].getShape(); 1116 cShape = opTypes[C].getShape(); 1117 1118 if (aShape[1] != bShape[0] || aShape[0] != cShape[0] || 1119 bShape[1] != cShape[1]) 1120 return op.emitError("operand shapes do not satisfy matmul constraints"); 1121 1122 return success(); 1123 } 1124 1125 /// This is a common class used for patterns of the form 1126 /// "someop(memrefcast) -> someop". It folds the source of any memref.cast 1127 /// into the root operation directly. 1128 static LogicalResult foldMemRefCast(Operation *op) { 1129 bool folded = false; 1130 for (OpOperand &operand : op->getOpOperands()) { 1131 auto cast = operand.get().getDefiningOp<mlir::memref::CastOp>(); 1132 if (cast) { 1133 operand.set(cast.getOperand()); 1134 folded = true; 1135 } 1136 } 1137 return success(folded); 1138 } 1139 1140 LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands, 1141 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1142 return foldMemRefCast(*this); 1143 } 1144 1145 LogicalResult MemsetOp::fold(ArrayRef<Attribute> operands, 1146 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1147 return foldMemRefCast(*this); 1148 } 1149 1150 //===----------------------------------------------------------------------===// 1151 // GPU_AllocOp 1152 //===----------------------------------------------------------------------===// 1153 namespace { 1154 1155 /// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to 1156 /// `memref::AllocOp`. 1157 struct SimplifyDimOfAllocOp : public OpRewritePattern<memref::DimOp> { 1158 using OpRewritePattern<memref::DimOp>::OpRewritePattern; 1159 1160 LogicalResult matchAndRewrite(memref::DimOp dimOp, 1161 PatternRewriter &rewriter) const override { 1162 auto index = dimOp.index().getDefiningOp<ConstantIndexOp>(); 1163 if (!index) 1164 return failure(); 1165 1166 auto memrefType = dimOp.source().getType().dyn_cast<MemRefType>(); 1167 if (!memrefType || !memrefType.isDynamicDim(index.getValue())) 1168 return failure(); 1169 1170 auto alloc = dimOp.source().getDefiningOp<AllocOp>(); 1171 if (!alloc) 1172 return failure(); 1173 1174 Value substituteOp = *(alloc.dynamicSizes().begin() + 1175 memrefType.getDynamicDimIndex(index.getValue())); 1176 rewriter.replaceOp(dimOp, substituteOp); 1177 return success(); 1178 } 1179 }; 1180 1181 } // end anonymous namespace. 1182 1183 void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results, 1184 MLIRContext *context) { 1185 results.add<SimplifyDimOfAllocOp>(context); 1186 } 1187 1188 #include "mlir/Dialect/GPU/GPUOpInterfaces.cpp.inc" 1189 1190 #define GET_OP_CLASSES 1191 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 1192