1 //===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the GPU kernel-related dialect and its operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/GPU/GPUDialect.h" 14 15 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 16 #include "mlir/Dialect/MemRef/IR/MemRef.h" 17 #include "mlir/Dialect/StandardOps/IR/Ops.h" 18 #include "mlir/IR/Attributes.h" 19 #include "mlir/IR/Builders.h" 20 #include "mlir/IR/BuiltinOps.h" 21 #include "mlir/IR/BuiltinTypes.h" 22 #include "mlir/IR/DialectImplementation.h" 23 #include "mlir/IR/FunctionImplementation.h" 24 #include "mlir/IR/Matchers.h" 25 #include "mlir/IR/OpImplementation.h" 26 #include "mlir/IR/PatternMatch.h" 27 #include "mlir/IR/TypeUtilities.h" 28 #include "llvm/ADT/TypeSwitch.h" 29 30 using namespace mlir; 31 using namespace mlir::gpu; 32 33 #include "mlir/Dialect/GPU/GPUOpsDialect.cpp.inc" 34 35 //===----------------------------------------------------------------------===// 36 // MMAMatrixType 37 //===----------------------------------------------------------------------===// 38 39 MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType, 40 StringRef operand) { 41 return Base::get(elementType.getContext(), shape, elementType, operand); 42 } 43 44 MMAMatrixType 45 MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError, 46 ArrayRef<int64_t> shape, Type elementType, 47 StringRef operand) { 48 return Base::getChecked(emitError, elementType.getContext(), shape, 49 elementType, operand); 50 } 51 52 unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; } 53 54 ArrayRef<int64_t> MMAMatrixType::getShape() const { 55 return getImpl()->getShape(); 56 } 57 58 Type MMAMatrixType::getElementType() const { return getImpl()->elementType; } 59 60 StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); } 61 62 bool MMAMatrixType::isValidElementType(Type elementType) { 63 return elementType.isF16() || elementType.isF32(); 64 } 65 66 LogicalResult 67 MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError, 68 ArrayRef<int64_t> shape, Type elementType, 69 StringRef operand) { 70 if (!operand.equals("AOp") && !operand.equals("BOp") && 71 !operand.equals("COp")) 72 return emitError() << "operand expected to be one of AOp, BOp or COp"; 73 74 if (shape.size() != 2) 75 return emitError() << "MMAMatrixType must have exactly two dimensions"; 76 77 if (!MMAMatrixType::isValidElementType(elementType)) 78 return emitError() << "MMAMatrixType elements must be F16 or F32"; 79 80 return success(); 81 } 82 83 //===----------------------------------------------------------------------===// 84 // GPUDialect 85 //===----------------------------------------------------------------------===// 86 87 /// GPU memory space identifiers. 88 enum GPUMemorySpace { 89 /// Generic memory space identifier. 90 kGenericMemorySpace = 0, 91 92 /// Global memory space identifier. 93 kGlobalMemorySpace = 1, 94 95 /// Shared memory space identifier. 96 kSharedMemorySpace = 3 97 }; 98 99 bool GPUDialect::isKernel(Operation *op) { 100 UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName()); 101 return static_cast<bool>(isKernelAttr); 102 } 103 104 void GPUDialect::initialize() { 105 addTypes<AsyncTokenType>(); 106 addTypes<MMAMatrixType>(); 107 addOperations< 108 #define GET_OP_LIST 109 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 110 >(); 111 } 112 113 Type GPUDialect::parseType(DialectAsmParser &parser) const { 114 // Parse the main keyword for the type. 115 StringRef keyword; 116 if (parser.parseKeyword(&keyword)) 117 return Type(); 118 MLIRContext *context = getContext(); 119 120 // Handle 'async token' types. 121 if (keyword == "async.token") 122 return AsyncTokenType::get(context); 123 124 if (keyword == "mma_matrix") { 125 llvm::SMLoc beginLoc = parser.getNameLoc(); 126 127 // Parse '<'. 128 if (parser.parseLess()) 129 return nullptr; 130 131 // Parse the size and elementType. 132 SmallVector<int64_t> shape; 133 Type elementType; 134 if (parser.parseDimensionList(shape, /*allowDynamic=*/false) || 135 parser.parseType(elementType)) 136 return nullptr; 137 138 // Parse ',' 139 if (parser.parseComma()) 140 return nullptr; 141 142 // Parse operand. 143 std::string operand; 144 if (failed(parser.parseOptionalString(&operand))) 145 return nullptr; 146 147 // Parse '>'. 148 if (parser.parseGreater()) 149 return nullptr; 150 151 return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn( 152 parser.getEncodedSourceLoc(beginLoc)), 153 shape, elementType, operand); 154 } 155 156 parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword); 157 return Type(); 158 } 159 160 void GPUDialect::printType(Type type, DialectAsmPrinter &os) const { 161 TypeSwitch<Type>(type) 162 .Case<AsyncTokenType>([&](Type) { os << "async.token"; }) 163 .Case<MMAMatrixType>([&](MMAMatrixType fragTy) { 164 os << "mma_matrix<"; 165 auto shape = fragTy.getShape(); 166 for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim) 167 os << *dim << 'x'; 168 os << shape.back() << 'x' << fragTy.getElementType(); 169 os << ", \"" << fragTy.getOperand() << "\"" << '>'; 170 }) 171 .Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); }); 172 } 173 174 LogicalResult GPUDialect::verifyOperationAttribute(Operation *op, 175 NamedAttribute attr) { 176 if (!attr.second.isa<UnitAttr>() || 177 attr.first != getContainerModuleAttrName()) 178 return success(); 179 180 auto module = dyn_cast<ModuleOp>(op); 181 if (!module) 182 return op->emitError("expected '") 183 << getContainerModuleAttrName() << "' attribute to be attached to '" 184 << ModuleOp::getOperationName() << '\''; 185 186 auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult { 187 // Ignore launches that are nested more or less deep than functions in the 188 // module we are currently checking. 189 if (!launchOp->getParentOp() || 190 launchOp->getParentOp()->getParentOp() != module) 191 return success(); 192 193 // Ignore launch ops with missing attributes here. The errors will be 194 // reported by the verifiers of those ops. 195 if (!launchOp->getAttrOfType<SymbolRefAttr>( 196 LaunchFuncOp::getKernelAttrName())) 197 return success(); 198 199 // Check that `launch_func` refers to a well-formed GPU kernel module. 200 StringAttr kernelModuleName = launchOp.getKernelModuleName(); 201 auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName); 202 if (!kernelModule) 203 return launchOp.emitOpError() 204 << "kernel module '" << kernelModuleName.getValue() 205 << "' is undefined"; 206 207 // Check that `launch_func` refers to a well-formed kernel function. 208 Operation *kernelFunc = module.lookupSymbol(launchOp.kernelAttr()); 209 auto kernelGPUFunction = dyn_cast_or_null<gpu::GPUFuncOp>(kernelFunc); 210 auto kernelLLVMFunction = dyn_cast_or_null<LLVM::LLVMFuncOp>(kernelFunc); 211 if (!kernelGPUFunction && !kernelLLVMFunction) 212 return launchOp.emitOpError("kernel function '") 213 << launchOp.kernel() << "' is undefined"; 214 if (!kernelFunc->getAttrOfType<mlir::UnitAttr>( 215 GPUDialect::getKernelFuncAttrName())) 216 return launchOp.emitOpError("kernel function is missing the '") 217 << GPUDialect::getKernelFuncAttrName() << "' attribute"; 218 219 // TODO: if the kernel function has been converted to 220 // the LLVM dialect but the caller hasn't (which happens during the 221 // separate compilation), do not check type correspondence as it would 222 // require the verifier to be aware of the LLVM type conversion. 223 if (kernelLLVMFunction) 224 return success(); 225 226 unsigned actualNumArguments = launchOp.getNumKernelOperands(); 227 unsigned expectedNumArguments = kernelGPUFunction.getNumArguments(); 228 if (expectedNumArguments != actualNumArguments) 229 return launchOp.emitOpError("got ") 230 << actualNumArguments << " kernel operands but expected " 231 << expectedNumArguments; 232 233 auto functionType = kernelGPUFunction.getType(); 234 for (unsigned i = 0; i < expectedNumArguments; ++i) { 235 if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) { 236 return launchOp.emitOpError("type of function argument ") 237 << i << " does not match"; 238 } 239 } 240 241 return success(); 242 }); 243 244 return walkResult.wasInterrupted() ? failure() : success(); 245 } 246 247 template <typename T> 248 static LogicalResult verifyIndexOp(T op) { 249 auto dimension = op.dimension(); 250 if (dimension != "x" && dimension != "y" && dimension != "z") 251 return op.emitError("dimension \"") << dimension << "\" is invalid"; 252 return success(); 253 } 254 255 static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) { 256 if (allReduce.body().empty() != allReduce.op().hasValue()) 257 return allReduce.emitError( 258 "expected either an op attribute or a non-empty body"); 259 if (!allReduce.body().empty()) { 260 if (allReduce.body().getNumArguments() != 2) 261 return allReduce.emitError("expected two region arguments"); 262 for (auto argument : allReduce.body().getArguments()) { 263 if (argument.getType() != allReduce.getType()) 264 return allReduce.emitError("incorrect region argument type"); 265 } 266 unsigned yieldCount = 0; 267 for (Block &block : allReduce.body()) { 268 if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) { 269 if (yield.getNumOperands() != 1) 270 return allReduce.emitError("expected one gpu.yield operand"); 271 if (yield.getOperand(0).getType() != allReduce.getType()) 272 return allReduce.emitError("incorrect gpu.yield type"); 273 ++yieldCount; 274 } 275 } 276 if (yieldCount == 0) 277 return allReduce.emitError("expected gpu.yield op in region"); 278 } else { 279 StringRef opName = *allReduce.op(); 280 if ((opName == "and" || opName == "or" || opName == "xor") && 281 !allReduce.getType().isa<IntegerType>()) { 282 return allReduce.emitError() 283 << '`' << opName << '`' 284 << " accumulator is only compatible with Integer type"; 285 } 286 } 287 return success(); 288 } 289 290 static LogicalResult verifyShuffleOp(gpu::ShuffleOp shuffleOp) { 291 auto type = shuffleOp.value().getType(); 292 if (shuffleOp.result().getType() != type) { 293 return shuffleOp.emitOpError() 294 << "requires the same type for value operand and result"; 295 } 296 if (!type.isSignlessIntOrFloat() || type.getIntOrFloatBitWidth() != 32) { 297 return shuffleOp.emitOpError() 298 << "requires value operand type to be f32 or i32"; 299 } 300 return success(); 301 } 302 303 static void printShuffleOp(OpAsmPrinter &p, ShuffleOp op) { 304 p << ' ' << op.getOperands() << ' ' << op.mode() << " : " 305 << op.value().getType(); 306 } 307 308 static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &state) { 309 SmallVector<OpAsmParser::OperandType, 3> operandInfo; 310 if (parser.parseOperandList(operandInfo, 3)) 311 return failure(); 312 313 StringRef mode; 314 if (parser.parseKeyword(&mode)) 315 return failure(); 316 state.addAttribute("mode", parser.getBuilder().getStringAttr(mode)); 317 318 Type valueType; 319 Type int32Type = parser.getBuilder().getIntegerType(32); 320 Type int1Type = parser.getBuilder().getI1Type(); 321 if (parser.parseColonType(valueType) || 322 parser.resolveOperands(operandInfo, {valueType, int32Type, int32Type}, 323 parser.getCurrentLocation(), state.operands) || 324 parser.addTypesToList({valueType, int1Type}, state.types)) 325 return failure(); 326 return success(); 327 } 328 329 //===----------------------------------------------------------------------===// 330 // AsyncOpInterface 331 //===----------------------------------------------------------------------===// 332 333 void gpu::addAsyncDependency(Operation *op, Value token) { 334 op->insertOperands(0, {token}); 335 if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>()) 336 return; 337 auto attrName = 338 OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr(); 339 auto sizeAttr = op->template getAttrOfType<DenseIntElementsAttr>(attrName); 340 if (!sizeAttr) 341 return; // Async dependencies is the only variadic operand. 342 SmallVector<int32_t, 8> sizes; 343 for (auto size : sizeAttr.getIntValues()) 344 sizes.push_back(size.getSExtValue()); 345 ++sizes.front(); 346 op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes)); 347 } 348 349 //===----------------------------------------------------------------------===// 350 // LaunchOp 351 //===----------------------------------------------------------------------===// 352 353 void LaunchOp::build(OpBuilder &builder, OperationState &result, 354 Value gridSizeX, Value gridSizeY, Value gridSizeZ, 355 Value blockSizeX, Value blockSizeY, Value blockSizeZ) { 356 // Add grid and block sizes as op operands, followed by the data operands. 357 result.addOperands( 358 {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); 359 360 // Create a kernel body region with kNumConfigRegionAttributes + N arguments, 361 // where the first kNumConfigRegionAttributes arguments have `index` type and 362 // the rest have the same types as the data operands. 363 Region *kernelRegion = result.addRegion(); 364 Block *body = new Block(); 365 body->addArguments( 366 std::vector<Type>(kNumConfigRegionAttributes, builder.getIndexType())); 367 kernelRegion->push_back(body); 368 } 369 370 KernelDim3 LaunchOp::getBlockIds() { 371 assert(!body().empty() && "LaunchOp body must not be empty."); 372 auto args = body().getArguments(); 373 return KernelDim3{args[0], args[1], args[2]}; 374 } 375 376 KernelDim3 LaunchOp::getThreadIds() { 377 assert(!body().empty() && "LaunchOp body must not be empty."); 378 auto args = body().getArguments(); 379 return KernelDim3{args[3], args[4], args[5]}; 380 } 381 382 KernelDim3 LaunchOp::getGridSize() { 383 assert(!body().empty() && "LaunchOp body must not be empty."); 384 auto args = body().getArguments(); 385 return KernelDim3{args[6], args[7], args[8]}; 386 } 387 388 KernelDim3 LaunchOp::getBlockSize() { 389 assert(!body().empty() && "LaunchOp body must not be empty."); 390 auto args = body().getArguments(); 391 return KernelDim3{args[9], args[10], args[11]}; 392 } 393 394 KernelDim3 LaunchOp::getGridSizeOperandValues() { 395 return KernelDim3{getOperand(0), getOperand(1), getOperand(2)}; 396 } 397 398 KernelDim3 LaunchOp::getBlockSizeOperandValues() { 399 return KernelDim3{getOperand(3), getOperand(4), getOperand(5)}; 400 } 401 402 static LogicalResult verify(LaunchOp op) { 403 // Kernel launch takes kNumConfigOperands leading operands for grid/block 404 // sizes and transforms them into kNumConfigRegionAttributes region arguments 405 // for block/thread identifiers and grid/block sizes. 406 if (!op.body().empty()) { 407 if (op.body().getNumArguments() != 408 LaunchOp::kNumConfigOperands + op.getNumOperands()) 409 return op.emitOpError("unexpected number of region arguments"); 410 } 411 412 // Block terminators without successors are expected to exit the kernel region 413 // and must be `gpu.terminator`. 414 for (Block &block : op.body()) { 415 if (block.empty()) 416 continue; 417 if (block.back().getNumSuccessors() != 0) 418 continue; 419 if (!isa<gpu::TerminatorOp>(&block.back())) { 420 return block.back() 421 .emitError() 422 .append("expected '", gpu::TerminatorOp::getOperationName(), 423 "' or a terminator with successors") 424 .attachNote(op.getLoc()) 425 .append("in '", LaunchOp::getOperationName(), "' body region"); 426 } 427 } 428 429 return success(); 430 } 431 432 // Pretty-print the kernel grid/block size assignment as 433 // (%iter-x, %iter-y, %iter-z) in 434 // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use) 435 // where %size-* and %iter-* will correspond to the body region arguments. 436 static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size, 437 KernelDim3 operands, KernelDim3 ids) { 438 p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in ("; 439 p << size.x << " = " << operands.x << ", "; 440 p << size.y << " = " << operands.y << ", "; 441 p << size.z << " = " << operands.z << ')'; 442 } 443 444 static void printLaunchOp(OpAsmPrinter &p, LaunchOp op) { 445 // Print the launch configuration. 446 p << ' ' << op.getBlocksKeyword(); 447 printSizeAssignment(p, op.getGridSize(), op.getGridSizeOperandValues(), 448 op.getBlockIds()); 449 p << ' ' << op.getThreadsKeyword(); 450 printSizeAssignment(p, op.getBlockSize(), op.getBlockSizeOperandValues(), 451 op.getThreadIds()); 452 453 p.printRegion(op.body(), /*printEntryBlockArgs=*/false); 454 p.printOptionalAttrDict(op->getAttrs()); 455 } 456 457 // Parse the size assignment blocks for blocks and threads. These have the form 458 // (%region_arg, %region_arg, %region_arg) in 459 // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand) 460 // where %region_arg are percent-identifiers for the region arguments to be 461 // introduced further (SSA defs), and %operand are percent-identifiers for the 462 // SSA value uses. 463 static ParseResult 464 parseSizeAssignment(OpAsmParser &parser, 465 MutableArrayRef<OpAsmParser::OperandType> sizes, 466 MutableArrayRef<OpAsmParser::OperandType> regionSizes, 467 MutableArrayRef<OpAsmParser::OperandType> indices) { 468 assert(indices.size() == 3 && "space for three indices expected"); 469 SmallVector<OpAsmParser::OperandType, 3> args; 470 if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3, 471 OpAsmParser::Delimiter::Paren) || 472 parser.parseKeyword("in") || parser.parseLParen()) 473 return failure(); 474 std::move(args.begin(), args.end(), indices.begin()); 475 476 for (int i = 0; i < 3; ++i) { 477 if (i != 0 && parser.parseComma()) 478 return failure(); 479 if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() || 480 parser.parseOperand(sizes[i])) 481 return failure(); 482 } 483 484 return parser.parseRParen(); 485 } 486 487 // Parses a Launch operation. 488 // operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment 489 // `threads` `(` ssa-id-list `)` `in` ssa-reassignment 490 // region attr-dict? 491 // ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)` 492 static ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) { 493 // Sizes of the grid and block. 494 SmallVector<OpAsmParser::OperandType, LaunchOp::kNumConfigOperands> sizes( 495 LaunchOp::kNumConfigOperands); 496 MutableArrayRef<OpAsmParser::OperandType> sizesRef(sizes); 497 498 // Actual (data) operands passed to the kernel. 499 SmallVector<OpAsmParser::OperandType, 4> dataOperands; 500 501 // Region arguments to be created. 502 SmallVector<OpAsmParser::OperandType, 16> regionArgs( 503 LaunchOp::kNumConfigRegionAttributes); 504 MutableArrayRef<OpAsmParser::OperandType> regionArgsRef(regionArgs); 505 506 // Parse the size assignment segments: the first segment assigns grid sizes 507 // and defines values for block identifiers; the second segment assigns block 508 // sizes and defines values for thread identifiers. In the region argument 509 // list, identifiers precede sizes, and block-related values precede 510 // thread-related values. 511 if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) || 512 parseSizeAssignment(parser, sizesRef.take_front(3), 513 regionArgsRef.slice(6, 3), 514 regionArgsRef.slice(0, 3)) || 515 parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) || 516 parseSizeAssignment(parser, sizesRef.drop_front(3), 517 regionArgsRef.slice(9, 3), 518 regionArgsRef.slice(3, 3)) || 519 parser.resolveOperands(sizes, parser.getBuilder().getIndexType(), 520 result.operands)) 521 return failure(); 522 523 // Introduce the body region and parse it. The region has 524 // kNumConfigRegionAttributes arguments that correspond to 525 // block/thread identifiers and grid/block sizes, all of the `index` type. 526 Type index = parser.getBuilder().getIndexType(); 527 SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes( 528 LaunchOp::kNumConfigRegionAttributes, index); 529 Region *body = result.addRegion(); 530 return failure(parser.parseRegion(*body, regionArgs, dataTypes) || 531 parser.parseOptionalAttrDict(result.attributes)); 532 } 533 534 /// Simplify the gpu.launch when the range of the thread and block IDs is 535 /// trivially known to be one. 536 struct FoldLaunchArguments : public OpRewritePattern<LaunchOp> { 537 using OpRewritePattern<LaunchOp>::OpRewritePattern; 538 LogicalResult matchAndRewrite(LaunchOp op, 539 PatternRewriter &rewriter) const override { 540 auto isTriviallyOne = [](Value size) { 541 IntegerAttr cst; 542 return matchPattern(size, m_Constant(&cst)) && cst.getInt() == 1; 543 }; 544 545 // If the range implies a single value for `id`, replace `id`'s uses by 546 // zero. 547 Value zero; 548 bool simplified = false; 549 auto constPropIdUses = [&](Value id, Value size) { 550 if (!isTriviallyOne(size)) 551 return; 552 if (!simplified) { 553 // Create a zero value the first time. 554 OpBuilder::InsertionGuard guard(rewriter); 555 rewriter.setInsertionPointToStart(&op.body().front()); 556 zero = rewriter.create<ConstantIndexOp>(op.getLoc(), /*value=*/0); 557 } 558 id.replaceAllUsesWith(zero); 559 simplified = true; 560 }; 561 constPropIdUses(op.getBlockIds().x, op.gridSizeX()); 562 constPropIdUses(op.getBlockIds().y, op.gridSizeY()); 563 constPropIdUses(op.getBlockIds().z, op.gridSizeZ()); 564 constPropIdUses(op.getThreadIds().x, op.blockSizeX()); 565 constPropIdUses(op.getThreadIds().y, op.blockSizeY()); 566 constPropIdUses(op.getThreadIds().z, op.blockSizeZ()); 567 568 return success(simplified); 569 } 570 }; 571 572 void LaunchOp::getCanonicalizationPatterns(RewritePatternSet &rewrites, 573 MLIRContext *context) { 574 rewrites.add<FoldLaunchArguments>(context); 575 } 576 577 //===----------------------------------------------------------------------===// 578 // LaunchFuncOp 579 //===----------------------------------------------------------------------===// 580 581 void LaunchFuncOp::build(OpBuilder &builder, OperationState &result, 582 GPUFuncOp kernelFunc, KernelDim3 gridSize, 583 KernelDim3 blockSize, ValueRange kernelOperands) { 584 // Add grid and block sizes as op operands, followed by the data operands. 585 result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x, 586 blockSize.y, blockSize.z}); 587 result.addOperands(kernelOperands); 588 auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>(); 589 auto kernelSymbol = 590 SymbolRefAttr::get(kernelModule.getNameAttr(), 591 {SymbolRefAttr::get(kernelFunc.getNameAttr())}); 592 result.addAttribute(getKernelAttrName(), kernelSymbol); 593 SmallVector<int32_t, 8> segmentSizes(8, 1); 594 segmentSizes.front() = 0; // Initially no async dependencies. 595 segmentSizes.back() = static_cast<int32_t>(kernelOperands.size()); 596 result.addAttribute(getOperandSegmentSizeAttr(), 597 builder.getI32VectorAttr(segmentSizes)); 598 } 599 600 unsigned LaunchFuncOp::getNumKernelOperands() { 601 return getNumOperands() - asyncDependencies().size() - kNumConfigOperands; 602 } 603 604 StringAttr LaunchFuncOp::getKernelModuleName() { 605 return kernel().getRootReference(); 606 } 607 608 StringAttr LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); } 609 610 Value LaunchFuncOp::getKernelOperand(unsigned i) { 611 return getOperand(asyncDependencies().size() + kNumConfigOperands + i); 612 } 613 614 KernelDim3 LaunchFuncOp::getGridSizeOperandValues() { 615 auto operands = getOperands().drop_front(asyncDependencies().size()); 616 return KernelDim3{operands[0], operands[1], operands[2]}; 617 } 618 619 KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() { 620 auto operands = getOperands().drop_front(asyncDependencies().size()); 621 return KernelDim3{operands[3], operands[4], operands[5]}; 622 } 623 624 static LogicalResult verify(LaunchFuncOp op) { 625 auto module = op->getParentOfType<ModuleOp>(); 626 if (!module) 627 return op.emitOpError("expected to belong to a module"); 628 629 if (!module->getAttrOfType<UnitAttr>( 630 GPUDialect::getContainerModuleAttrName())) 631 return op.emitOpError( 632 "expected the closest surrounding module to have the '" + 633 GPUDialect::getContainerModuleAttrName() + "' attribute"); 634 635 auto kernelAttr = op->getAttrOfType<SymbolRefAttr>(op.getKernelAttrName()); 636 if (!kernelAttr) 637 return op.emitOpError("symbol reference attribute '" + 638 op.getKernelAttrName() + "' must be specified"); 639 640 return success(); 641 } 642 643 static ParseResult 644 parseLaunchFuncOperands(OpAsmParser &parser, 645 SmallVectorImpl<OpAsmParser::OperandType> &argNames, 646 SmallVectorImpl<Type> &argTypes) { 647 if (parser.parseOptionalKeyword("args")) 648 return success(); 649 SmallVector<NamedAttrList, 4> argAttrs; 650 bool isVariadic = false; 651 return function_like_impl::parseFunctionArgumentList( 652 parser, /*allowAttributes=*/false, 653 /*allowVariadic=*/false, argNames, argTypes, argAttrs, isVariadic); 654 } 655 656 static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *, 657 OperandRange operands, TypeRange types) { 658 if (operands.empty()) 659 return; 660 printer << "args("; 661 llvm::interleaveComma(llvm::zip(operands, types), printer, 662 [&](const auto &pair) { 663 printer.printOperand(std::get<0>(pair)); 664 printer << " : "; 665 printer.printType(std::get<1>(pair)); 666 }); 667 printer << ")"; 668 } 669 670 //===----------------------------------------------------------------------===// 671 // GPUFuncOp 672 //===----------------------------------------------------------------------===// 673 674 /// Adds a new block argument that corresponds to buffers located in 675 /// workgroup memory. 676 BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type) { 677 auto attrName = getNumWorkgroupAttributionsAttrName(); 678 auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName); 679 (*this)->setAttr(attrName, 680 IntegerAttr::get(attr.getType(), attr.getValue() + 1)); 681 return getBody().insertArgument(getType().getNumInputs() + attr.getInt(), 682 type); 683 } 684 685 /// Adds a new block argument that corresponds to buffers located in 686 /// private memory. 687 BlockArgument GPUFuncOp::addPrivateAttribution(Type type) { 688 // Buffers on the private memory always come after buffers on the workgroup 689 // memory. 690 return getBody().addArgument(type); 691 } 692 693 void GPUFuncOp::build(OpBuilder &builder, OperationState &result, 694 StringRef name, FunctionType type, 695 TypeRange workgroupAttributions, 696 TypeRange privateAttributions, 697 ArrayRef<NamedAttribute> attrs) { 698 result.addAttribute(SymbolTable::getSymbolAttrName(), 699 builder.getStringAttr(name)); 700 result.addAttribute(getTypeAttrName(), TypeAttr::get(type)); 701 result.addAttribute(getNumWorkgroupAttributionsAttrName(), 702 builder.getI64IntegerAttr(workgroupAttributions.size())); 703 result.addAttributes(attrs); 704 Region *body = result.addRegion(); 705 Block *entryBlock = new Block; 706 entryBlock->addArguments(type.getInputs()); 707 entryBlock->addArguments(workgroupAttributions); 708 entryBlock->addArguments(privateAttributions); 709 710 body->getBlocks().push_back(entryBlock); 711 } 712 713 /// Parses a GPU function memory attribution. 714 /// 715 /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)? 716 /// (`private` `(` ssa-id-and-type-list `)`)? 717 /// 718 /// Note that this function parses only one of the two similar parts, with the 719 /// keyword provided as argument. 720 static ParseResult 721 parseAttributions(OpAsmParser &parser, StringRef keyword, 722 SmallVectorImpl<OpAsmParser::OperandType> &args, 723 SmallVectorImpl<Type> &argTypes) { 724 // If we could not parse the keyword, just assume empty list and succeed. 725 if (failed(parser.parseOptionalKeyword(keyword))) 726 return success(); 727 728 if (failed(parser.parseLParen())) 729 return failure(); 730 731 // Early exit for an empty list. 732 if (succeeded(parser.parseOptionalRParen())) 733 return success(); 734 735 do { 736 OpAsmParser::OperandType arg; 737 Type type; 738 739 if (parser.parseRegionArgument(arg) || parser.parseColonType(type)) 740 return failure(); 741 742 args.push_back(arg); 743 argTypes.push_back(type); 744 } while (succeeded(parser.parseOptionalComma())); 745 746 return parser.parseRParen(); 747 } 748 749 /// Parses a GPU function. 750 /// 751 /// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)` 752 /// (`->` function-result-list)? memory-attribution `kernel`? 753 /// function-attributes? region 754 static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) { 755 SmallVector<OpAsmParser::OperandType, 8> entryArgs; 756 SmallVector<NamedAttrList, 1> argAttrs; 757 SmallVector<NamedAttrList, 1> resultAttrs; 758 SmallVector<Type, 8> argTypes; 759 SmallVector<Type, 4> resultTypes; 760 bool isVariadic; 761 762 // Parse the function name. 763 StringAttr nameAttr; 764 if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), 765 result.attributes)) 766 return failure(); 767 768 auto signatureLocation = parser.getCurrentLocation(); 769 if (failed(function_like_impl::parseFunctionSignature( 770 parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs, 771 isVariadic, resultTypes, resultAttrs))) 772 return failure(); 773 774 if (entryArgs.empty() && !argTypes.empty()) 775 return parser.emitError(signatureLocation) 776 << "gpu.func requires named arguments"; 777 778 // Construct the function type. More types will be added to the region, but 779 // not to the function type. 780 Builder &builder = parser.getBuilder(); 781 auto type = builder.getFunctionType(argTypes, resultTypes); 782 result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type)); 783 784 // Parse workgroup memory attributions. 785 if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(), 786 entryArgs, argTypes))) 787 return failure(); 788 789 // Store the number of operands we just parsed as the number of workgroup 790 // memory attributions. 791 unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs(); 792 result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(), 793 builder.getI64IntegerAttr(numWorkgroupAttrs)); 794 795 // Parse private memory attributions. 796 if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), 797 entryArgs, argTypes))) 798 return failure(); 799 800 // Parse the kernel attribute if present. 801 if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword()))) 802 result.addAttribute(GPUDialect::getKernelFuncAttrName(), 803 builder.getUnitAttr()); 804 805 // Parse attributes. 806 if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) 807 return failure(); 808 function_like_impl::addArgAndResultAttrs(builder, result, argAttrs, 809 resultAttrs); 810 811 // Parse the region. If no argument names were provided, take all names 812 // (including those of attributions) from the entry block. 813 auto *body = result.addRegion(); 814 return parser.parseRegion(*body, entryArgs, argTypes); 815 } 816 817 static void printAttributions(OpAsmPrinter &p, StringRef keyword, 818 ArrayRef<BlockArgument> values) { 819 if (values.empty()) 820 return; 821 822 p << ' ' << keyword << '('; 823 llvm::interleaveComma( 824 values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); }); 825 p << ')'; 826 } 827 828 /// Prints a GPU Func op. 829 static void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) { 830 p << ' '; 831 p.printSymbolName(op.getName()); 832 833 FunctionType type = op.getType(); 834 function_like_impl::printFunctionSignature( 835 p, op.getOperation(), type.getInputs(), 836 /*isVariadic=*/false, type.getResults()); 837 838 printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions()); 839 printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions()); 840 if (op.isKernel()) 841 p << ' ' << op.getKernelKeyword(); 842 843 function_like_impl::printFunctionAttributes( 844 p, op.getOperation(), type.getNumInputs(), type.getNumResults(), 845 {op.getNumWorkgroupAttributionsAttrName(), 846 GPUDialect::getKernelFuncAttrName()}); 847 p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false); 848 } 849 850 /// Hook for FunctionLike verifier. 851 LogicalResult GPUFuncOp::verifyType() { 852 Type type = getTypeAttr().getValue(); 853 if (!type.isa<FunctionType>()) 854 return emitOpError("requires '" + getTypeAttrName() + 855 "' attribute of function type"); 856 857 if (isKernel() && getType().getNumResults() != 0) 858 return emitOpError() << "expected void return type for kernel function"; 859 860 return success(); 861 } 862 863 static LogicalResult verifyAttributions(Operation *op, 864 ArrayRef<BlockArgument> attributions, 865 unsigned memorySpace) { 866 for (Value v : attributions) { 867 auto type = v.getType().dyn_cast<MemRefType>(); 868 if (!type) 869 return op->emitOpError() << "expected memref type in attribution"; 870 871 if (type.getMemorySpaceAsInt() != memorySpace) { 872 return op->emitOpError() 873 << "expected memory space " << memorySpace << " in attribution"; 874 } 875 } 876 return success(); 877 } 878 879 /// Verifies the body of the function. 880 LogicalResult GPUFuncOp::verifyBody() { 881 unsigned numFuncArguments = getNumArguments(); 882 unsigned numWorkgroupAttributions = getNumWorkgroupAttributions(); 883 unsigned numBlockArguments = front().getNumArguments(); 884 if (numBlockArguments < numFuncArguments + numWorkgroupAttributions) 885 return emitOpError() << "expected at least " 886 << numFuncArguments + numWorkgroupAttributions 887 << " arguments to body region"; 888 889 ArrayRef<Type> funcArgTypes = getType().getInputs(); 890 for (unsigned i = 0; i < numFuncArguments; ++i) { 891 Type blockArgType = front().getArgument(i).getType(); 892 if (funcArgTypes[i] != blockArgType) 893 return emitOpError() << "expected body region argument #" << i 894 << " to be of type " << funcArgTypes[i] << ", got " 895 << blockArgType; 896 } 897 898 if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(), 899 GPUDialect::getWorkgroupAddressSpace())) || 900 failed(verifyAttributions(getOperation(), getPrivateAttributions(), 901 GPUDialect::getPrivateAddressSpace()))) 902 return failure(); 903 904 return success(); 905 } 906 907 //===----------------------------------------------------------------------===// 908 // ReturnOp 909 //===----------------------------------------------------------------------===// 910 911 static LogicalResult verify(gpu::ReturnOp returnOp) { 912 GPUFuncOp function = returnOp->getParentOfType<GPUFuncOp>(); 913 914 FunctionType funType = function.getType(); 915 916 if (funType.getNumResults() != returnOp.operands().size()) 917 return returnOp.emitOpError() 918 .append("expected ", funType.getNumResults(), " result operands") 919 .attachNote(function.getLoc()) 920 .append("return type declared here"); 921 922 for (auto pair : llvm::enumerate( 923 llvm::zip(function.getType().getResults(), returnOp.operands()))) { 924 Type type; 925 Value operand; 926 std::tie(type, operand) = pair.value(); 927 if (type != operand.getType()) 928 return returnOp.emitOpError() << "unexpected type `" << operand.getType() 929 << "' for operand #" << pair.index(); 930 } 931 return success(); 932 } 933 934 //===----------------------------------------------------------------------===// 935 // GPUModuleOp 936 //===----------------------------------------------------------------------===// 937 938 void GPUModuleOp::build(OpBuilder &builder, OperationState &result, 939 StringRef name) { 940 ensureTerminator(*result.addRegion(), builder, result.location); 941 result.attributes.push_back(builder.getNamedAttr( 942 ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); 943 } 944 945 static ParseResult parseGPUModuleOp(OpAsmParser &parser, 946 OperationState &result) { 947 StringAttr nameAttr; 948 if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(), 949 result.attributes)) 950 return failure(); 951 952 // If module attributes are present, parse them. 953 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 954 return failure(); 955 956 // Parse the module body. 957 auto *body = result.addRegion(); 958 if (parser.parseRegion(*body, None, None)) 959 return failure(); 960 961 // Ensure that this module has a valid terminator. 962 GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location); 963 return success(); 964 } 965 966 static void print(OpAsmPrinter &p, GPUModuleOp op) { 967 p << ' '; 968 p.printSymbolName(op.getName()); 969 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 970 {SymbolTable::getSymbolAttrName()}); 971 p.printRegion(op->getRegion(0), /*printEntryBlockArgs=*/false, 972 /*printBlockTerminators=*/false); 973 } 974 975 //===----------------------------------------------------------------------===// 976 // GPUMemcpyOp 977 //===----------------------------------------------------------------------===// 978 979 static LogicalResult verify(MemcpyOp op) { 980 auto srcType = op.src().getType(); 981 auto dstType = op.dst().getType(); 982 983 if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType)) 984 return op.emitOpError("arguments have incompatible element type"); 985 986 if (failed(verifyCompatibleShape(srcType, dstType))) 987 return op.emitOpError("arguments have incompatible shape"); 988 989 return success(); 990 } 991 992 static ParseResult parseAsyncDependencies( 993 OpAsmParser &parser, Type &asyncTokenType, 994 SmallVectorImpl<OpAsmParser::OperandType> &asyncDependencies) { 995 auto loc = parser.getCurrentLocation(); 996 if (succeeded(parser.parseOptionalKeyword("async"))) { 997 if (parser.getNumResults() == 0) 998 return parser.emitError(loc, "needs to be named when marked 'async'"); 999 asyncTokenType = parser.getBuilder().getType<AsyncTokenType>(); 1000 } 1001 return parser.parseOperandList(asyncDependencies, 1002 OpAsmParser::Delimiter::OptionalSquare); 1003 } 1004 1005 static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op, 1006 Type asyncTokenType, 1007 OperandRange asyncDependencies) { 1008 if (asyncTokenType) 1009 printer << "async "; 1010 if (asyncDependencies.empty()) 1011 return; 1012 printer << "["; 1013 llvm::interleaveComma(asyncDependencies, printer); 1014 printer << "]"; 1015 } 1016 1017 //===----------------------------------------------------------------------===// 1018 // GPU_SubgroupMmaLoadMatrixOp 1019 //===----------------------------------------------------------------------===// 1020 1021 static LogicalResult verify(SubgroupMmaLoadMatrixOp op) { 1022 auto srcType = op.srcMemref().getType(); 1023 auto resType = op.res().getType(); 1024 auto resMatrixType = resType.cast<gpu::MMAMatrixType>(); 1025 auto operand = resMatrixType.getOperand(); 1026 auto srcMemrefType = srcType.cast<MemRefType>(); 1027 auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt(); 1028 1029 if (!srcMemrefType.getAffineMaps().empty() && 1030 !srcMemrefType.getAffineMaps().front().isIdentity()) 1031 return op.emitError("expected identity layout map for source memref"); 1032 1033 if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace && 1034 srcMemSpace != kGlobalMemorySpace) 1035 return op.emitError( 1036 "source memorySpace kGenericMemorySpace, kSharedMemorySpace or " 1037 "kGlobalMemorySpace only allowed"); 1038 1039 if (!operand.equals("AOp") && !operand.equals("BOp") && 1040 !operand.equals("COp")) 1041 return op.emitError("only AOp, BOp and COp can be loaded"); 1042 1043 return success(); 1044 } 1045 1046 //===----------------------------------------------------------------------===// 1047 // GPU_SubgroupMmaStoreMatrixOp 1048 //===----------------------------------------------------------------------===// 1049 1050 static LogicalResult verify(SubgroupMmaStoreMatrixOp op) { 1051 auto srcType = op.src().getType(); 1052 auto dstType = op.dstMemref().getType(); 1053 auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>(); 1054 auto dstMemrefType = dstType.cast<MemRefType>(); 1055 auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt(); 1056 1057 if (!dstMemrefType.getAffineMaps().empty() && 1058 !dstMemrefType.getAffineMaps().front().isIdentity()) 1059 return op.emitError("expected identity layout map for destination memref"); 1060 1061 if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace && 1062 dstMemSpace != kGlobalMemorySpace) 1063 return op.emitError( 1064 "destination memorySpace of kGenericMemorySpace, " 1065 "kGlobalMemorySpace or kSharedMemorySpace only allowed"); 1066 1067 if (!srcMatrixType.getOperand().equals("COp")) 1068 return op.emitError( 1069 "expected the operand matrix being stored to have 'COp' operand type"); 1070 1071 return success(); 1072 } 1073 1074 //===----------------------------------------------------------------------===// 1075 // GPU_SubgroupMmaComputeOp 1076 //===----------------------------------------------------------------------===// 1077 1078 static LogicalResult verify(SubgroupMmaComputeOp op) { 1079 enum OperandMap { A, B, C }; 1080 SmallVector<MMAMatrixType, 3> opTypes; 1081 1082 auto populateOpInfo = [&opTypes, &op]() { 1083 opTypes.push_back(op.opA().getType().cast<MMAMatrixType>()); 1084 opTypes.push_back(op.opB().getType().cast<MMAMatrixType>()); 1085 opTypes.push_back(op.opC().getType().cast<MMAMatrixType>()); 1086 }; 1087 populateOpInfo(); 1088 1089 if (!opTypes[A].getOperand().equals("AOp") || 1090 !opTypes[B].getOperand().equals("BOp") || 1091 !opTypes[C].getOperand().equals("COp")) 1092 return op.emitError("operands must be in the order AOp, BOp, COp"); 1093 1094 ArrayRef<int64_t> aShape, bShape, cShape; 1095 aShape = opTypes[A].getShape(); 1096 bShape = opTypes[B].getShape(); 1097 cShape = opTypes[C].getShape(); 1098 1099 if (aShape[1] != bShape[0] || aShape[0] != cShape[0] || 1100 bShape[1] != cShape[1]) 1101 return op.emitError("operand shapes do not satisfy matmul constraints"); 1102 1103 return success(); 1104 } 1105 1106 /// This is a common class used for patterns of the form 1107 /// "someop(memrefcast) -> someop". It folds the source of any memref.cast 1108 /// into the root operation directly. 1109 static LogicalResult foldMemRefCast(Operation *op) { 1110 bool folded = false; 1111 for (OpOperand &operand : op->getOpOperands()) { 1112 auto cast = operand.get().getDefiningOp<mlir::memref::CastOp>(); 1113 if (cast) { 1114 operand.set(cast.getOperand()); 1115 folded = true; 1116 } 1117 } 1118 return success(folded); 1119 } 1120 1121 LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands, 1122 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1123 return foldMemRefCast(*this); 1124 } 1125 1126 LogicalResult MemsetOp::fold(ArrayRef<Attribute> operands, 1127 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1128 return foldMemRefCast(*this); 1129 } 1130 1131 //===----------------------------------------------------------------------===// 1132 // GPU_AllocOp 1133 //===----------------------------------------------------------------------===// 1134 namespace { 1135 1136 /// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to 1137 /// `memref::AllocOp`. 1138 struct SimplifyDimOfAllocOp : public OpRewritePattern<memref::DimOp> { 1139 using OpRewritePattern<memref::DimOp>::OpRewritePattern; 1140 1141 LogicalResult matchAndRewrite(memref::DimOp dimOp, 1142 PatternRewriter &rewriter) const override { 1143 auto index = dimOp.index().getDefiningOp<ConstantIndexOp>(); 1144 if (!index) 1145 return failure(); 1146 1147 auto memrefType = dimOp.source().getType().dyn_cast<MemRefType>(); 1148 if (!memrefType || !memrefType.isDynamicDim(index.getValue())) 1149 return failure(); 1150 1151 auto alloc = dimOp.source().getDefiningOp<AllocOp>(); 1152 if (!alloc) 1153 return failure(); 1154 1155 Value substituteOp = *(alloc.dynamicSizes().begin() + 1156 memrefType.getDynamicDimIndex(index.getValue())); 1157 rewriter.replaceOp(dimOp, substituteOp); 1158 return success(); 1159 } 1160 }; 1161 1162 } // end anonymous namespace. 1163 1164 void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results, 1165 MLIRContext *context) { 1166 results.add<SimplifyDimOfAllocOp>(context); 1167 } 1168 1169 #include "mlir/Dialect/GPU/GPUOpInterfaces.cpp.inc" 1170 1171 #define GET_OP_CLASSES 1172 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 1173