1 //===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the GPU kernel-related dialect and its operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/GPU/GPUDialect.h" 14 15 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 16 #include "mlir/Dialect/MemRef/IR/MemRef.h" 17 #include "mlir/Dialect/StandardOps/IR/Ops.h" 18 #include "mlir/IR/Attributes.h" 19 #include "mlir/IR/Builders.h" 20 #include "mlir/IR/BuiltinOps.h" 21 #include "mlir/IR/BuiltinTypes.h" 22 #include "mlir/IR/DialectImplementation.h" 23 #include "mlir/IR/FunctionImplementation.h" 24 #include "mlir/IR/OpImplementation.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "mlir/IR/TypeUtilities.h" 27 #include "llvm/ADT/TypeSwitch.h" 28 29 using namespace mlir; 30 using namespace mlir::gpu; 31 32 #include "mlir/Dialect/GPU/GPUOpsDialect.cpp.inc" 33 34 //===----------------------------------------------------------------------===// 35 // MMAMatrixType 36 //===----------------------------------------------------------------------===// 37 38 MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType, 39 StringRef operand) { 40 return Base::get(elementType.getContext(), shape, elementType, operand); 41 } 42 43 MMAMatrixType 44 MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError, 45 ArrayRef<int64_t> shape, Type elementType, 46 StringRef operand) { 47 return Base::getChecked(emitError, elementType.getContext(), shape, 48 elementType, operand); 49 } 50 51 unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; } 52 53 ArrayRef<int64_t> MMAMatrixType::getShape() const { 54 return getImpl()->getShape(); 55 } 56 57 Type MMAMatrixType::getElementType() const { return getImpl()->elementType; } 58 59 StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); } 60 61 bool MMAMatrixType::isValidElementType(Type elementType) { 62 return elementType.isF16() || elementType.isF32(); 63 } 64 65 LogicalResult 66 MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError, 67 ArrayRef<int64_t> shape, Type elementType, 68 StringRef operand) { 69 if (!operand.equals("AOp") && !operand.equals("BOp") && 70 !operand.equals("COp")) 71 return emitError() << "operand expected to be one of AOp, BOp or COp"; 72 73 if (shape.size() != 2) 74 return emitError() << "MMAMatrixType must have exactly two dimensions"; 75 76 if (!MMAMatrixType::isValidElementType(elementType)) 77 return emitError() << "MMAMatrixType elements must be F16 or F32"; 78 79 return success(); 80 } 81 82 //===----------------------------------------------------------------------===// 83 // GPUDialect 84 //===----------------------------------------------------------------------===// 85 86 /// GPU memory space identifiers. 87 enum GPUMemorySpace { 88 /// Generic memory space identifier. 89 kGenericMemorySpace = 0, 90 91 /// Global memory space identifier. 92 kGlobalMemorySpace = 1, 93 94 /// Shared memory space identifier. 95 kSharedMemorySpace = 3 96 }; 97 98 bool GPUDialect::isKernel(Operation *op) { 99 UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName()); 100 return static_cast<bool>(isKernelAttr); 101 } 102 103 void GPUDialect::initialize() { 104 addTypes<AsyncTokenType>(); 105 addTypes<MMAMatrixType>(); 106 addOperations< 107 #define GET_OP_LIST 108 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 109 >(); 110 } 111 112 Type GPUDialect::parseType(DialectAsmParser &parser) const { 113 // Parse the main keyword for the type. 114 StringRef keyword; 115 if (parser.parseKeyword(&keyword)) 116 return Type(); 117 MLIRContext *context = getContext(); 118 119 // Handle 'async token' types. 120 if (keyword == "async.token") 121 return AsyncTokenType::get(context); 122 123 if (keyword == "mma_matrix") { 124 llvm::SMLoc beginLoc = parser.getNameLoc(); 125 126 // Parse '<'. 127 if (parser.parseLess()) 128 return nullptr; 129 130 // Parse the size and elementType. 131 SmallVector<int64_t> shape; 132 Type elementType; 133 if (parser.parseDimensionList(shape, /*allowDynamic=*/false) || 134 parser.parseType(elementType)) 135 return nullptr; 136 137 // Parse ',' 138 if (parser.parseComma()) 139 return nullptr; 140 141 // Parse operand. 142 StringRef operand; 143 if (failed(parser.parseOptionalString(&operand))) 144 return nullptr; 145 146 // Parse '>'. 147 if (parser.parseGreater()) 148 return nullptr; 149 150 return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn( 151 parser.getEncodedSourceLoc(beginLoc)), 152 shape, elementType, operand); 153 } 154 155 parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword); 156 return Type(); 157 } 158 159 void GPUDialect::printType(Type type, DialectAsmPrinter &os) const { 160 TypeSwitch<Type>(type) 161 .Case<AsyncTokenType>([&](Type) { os << "async.token"; }) 162 .Case<MMAMatrixType>([&](MMAMatrixType fragTy) { 163 os << "mma_matrix<"; 164 auto shape = fragTy.getShape(); 165 for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim) 166 os << *dim << 'x'; 167 os << shape.back() << 'x' << fragTy.getElementType(); 168 os << ", \"" << fragTy.getOperand() << "\"" << '>'; 169 }) 170 .Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); }); 171 } 172 173 LogicalResult GPUDialect::verifyOperationAttribute(Operation *op, 174 NamedAttribute attr) { 175 if (!attr.second.isa<UnitAttr>() || 176 attr.first != getContainerModuleAttrName()) 177 return success(); 178 179 auto module = dyn_cast<ModuleOp>(op); 180 if (!module) 181 return op->emitError("expected '") 182 << getContainerModuleAttrName() << "' attribute to be attached to '" 183 << ModuleOp::getOperationName() << '\''; 184 185 auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult { 186 // Ignore launches that are nested more or less deep than functions in the 187 // module we are currently checking. 188 if (!launchOp->getParentOp() || 189 launchOp->getParentOp()->getParentOp() != module) 190 return success(); 191 192 // Ignore launch ops with missing attributes here. The errors will be 193 // reported by the verifiers of those ops. 194 if (!launchOp->getAttrOfType<SymbolRefAttr>( 195 LaunchFuncOp::getKernelAttrName())) 196 return success(); 197 198 // Check that `launch_func` refers to a well-formed GPU kernel module. 199 StringRef kernelModuleName = launchOp.getKernelModuleName(); 200 auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName); 201 if (!kernelModule) 202 return launchOp.emitOpError() 203 << "kernel module '" << kernelModuleName << "' is undefined"; 204 205 // Check that `launch_func` refers to a well-formed kernel function. 206 Operation *kernelFunc = module.lookupSymbol(launchOp.kernel()); 207 auto kernelGPUFunction = dyn_cast_or_null<gpu::GPUFuncOp>(kernelFunc); 208 auto kernelLLVMFunction = dyn_cast_or_null<LLVM::LLVMFuncOp>(kernelFunc); 209 if (!kernelGPUFunction && !kernelLLVMFunction) 210 return launchOp.emitOpError("kernel function '") 211 << launchOp.kernel() << "' is undefined"; 212 if (!kernelFunc->getAttrOfType<mlir::UnitAttr>( 213 GPUDialect::getKernelFuncAttrName())) 214 return launchOp.emitOpError("kernel function is missing the '") 215 << GPUDialect::getKernelFuncAttrName() << "' attribute"; 216 217 // TODO: if the kernel function has been converted to 218 // the LLVM dialect but the caller hasn't (which happens during the 219 // separate compilation), do not check type correspondence as it would 220 // require the verifier to be aware of the LLVM type conversion. 221 if (kernelLLVMFunction) 222 return success(); 223 224 unsigned actualNumArguments = launchOp.getNumKernelOperands(); 225 unsigned expectedNumArguments = kernelGPUFunction.getNumArguments(); 226 if (expectedNumArguments != actualNumArguments) 227 return launchOp.emitOpError("got ") 228 << actualNumArguments << " kernel operands but expected " 229 << expectedNumArguments; 230 231 auto functionType = kernelGPUFunction.getType(); 232 for (unsigned i = 0; i < expectedNumArguments; ++i) { 233 if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) { 234 return launchOp.emitOpError("type of function argument ") 235 << i << " does not match"; 236 } 237 } 238 239 return success(); 240 }); 241 242 return walkResult.wasInterrupted() ? failure() : success(); 243 } 244 245 template <typename T> 246 static LogicalResult verifyIndexOp(T op) { 247 auto dimension = op.dimension(); 248 if (dimension != "x" && dimension != "y" && dimension != "z") 249 return op.emitError("dimension \"") << dimension << "\" is invalid"; 250 return success(); 251 } 252 253 static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) { 254 if (allReduce.body().empty() != allReduce.op().hasValue()) 255 return allReduce.emitError( 256 "expected either an op attribute or a non-empty body"); 257 if (!allReduce.body().empty()) { 258 if (allReduce.body().getNumArguments() != 2) 259 return allReduce.emitError("expected two region arguments"); 260 for (auto argument : allReduce.body().getArguments()) { 261 if (argument.getType() != allReduce.getType()) 262 return allReduce.emitError("incorrect region argument type"); 263 } 264 unsigned yieldCount = 0; 265 for (Block &block : allReduce.body()) { 266 if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) { 267 if (yield.getNumOperands() != 1) 268 return allReduce.emitError("expected one gpu.yield operand"); 269 if (yield.getOperand(0).getType() != allReduce.getType()) 270 return allReduce.emitError("incorrect gpu.yield type"); 271 ++yieldCount; 272 } 273 } 274 if (yieldCount == 0) 275 return allReduce.emitError("expected gpu.yield op in region"); 276 } else { 277 StringRef opName = *allReduce.op(); 278 if ((opName == "and" || opName == "or" || opName == "xor") && 279 !allReduce.getType().isa<IntegerType>()) { 280 return allReduce.emitError() 281 << '`' << opName << '`' 282 << " accumulator is only compatible with Integer type"; 283 } 284 } 285 return success(); 286 } 287 288 static LogicalResult verifyShuffleOp(gpu::ShuffleOp shuffleOp) { 289 auto type = shuffleOp.value().getType(); 290 if (shuffleOp.result().getType() != type) { 291 return shuffleOp.emitOpError() 292 << "requires the same type for value operand and result"; 293 } 294 if (!type.isSignlessIntOrFloat() || type.getIntOrFloatBitWidth() != 32) { 295 return shuffleOp.emitOpError() 296 << "requires value operand type to be f32 or i32"; 297 } 298 return success(); 299 } 300 301 static void printShuffleOp(OpAsmPrinter &p, ShuffleOp op) { 302 p << ShuffleOp::getOperationName() << ' ' << op.getOperands() << ' ' 303 << op.mode() << " : " << op.value().getType(); 304 } 305 306 static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &state) { 307 SmallVector<OpAsmParser::OperandType, 3> operandInfo; 308 if (parser.parseOperandList(operandInfo, 3)) 309 return failure(); 310 311 StringRef mode; 312 if (parser.parseKeyword(&mode)) 313 return failure(); 314 state.addAttribute("mode", parser.getBuilder().getStringAttr(mode)); 315 316 Type valueType; 317 Type int32Type = parser.getBuilder().getIntegerType(32); 318 Type int1Type = parser.getBuilder().getI1Type(); 319 if (parser.parseColonType(valueType) || 320 parser.resolveOperands(operandInfo, {valueType, int32Type, int32Type}, 321 parser.getCurrentLocation(), state.operands) || 322 parser.addTypesToList({valueType, int1Type}, state.types)) 323 return failure(); 324 return success(); 325 } 326 327 //===----------------------------------------------------------------------===// 328 // AsyncOpInterface 329 //===----------------------------------------------------------------------===// 330 331 void gpu::addAsyncDependency(Operation *op, Value token) { 332 op->insertOperands(0, {token}); 333 if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>()) 334 return; 335 auto attrName = 336 OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr(); 337 auto sizeAttr = op->template getAttrOfType<DenseIntElementsAttr>(attrName); 338 if (!sizeAttr) 339 return; // Async dependencies is the only variadic operand. 340 SmallVector<int32_t, 8> sizes; 341 for (auto size : sizeAttr.getIntValues()) 342 sizes.push_back(size.getSExtValue()); 343 ++sizes.front(); 344 op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes)); 345 } 346 347 //===----------------------------------------------------------------------===// 348 // LaunchOp 349 //===----------------------------------------------------------------------===// 350 351 void LaunchOp::build(OpBuilder &builder, OperationState &result, 352 Value gridSizeX, Value gridSizeY, Value gridSizeZ, 353 Value blockSizeX, Value blockSizeY, Value blockSizeZ) { 354 // Add grid and block sizes as op operands, followed by the data operands. 355 result.addOperands( 356 {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); 357 358 // Create a kernel body region with kNumConfigRegionAttributes + N arguments, 359 // where the first kNumConfigRegionAttributes arguments have `index` type and 360 // the rest have the same types as the data operands. 361 Region *kernelRegion = result.addRegion(); 362 Block *body = new Block(); 363 body->addArguments( 364 std::vector<Type>(kNumConfigRegionAttributes, builder.getIndexType())); 365 kernelRegion->push_back(body); 366 } 367 368 KernelDim3 LaunchOp::getBlockIds() { 369 assert(!body().empty() && "LaunchOp body must not be empty."); 370 auto args = body().getArguments(); 371 return KernelDim3{args[0], args[1], args[2]}; 372 } 373 374 KernelDim3 LaunchOp::getThreadIds() { 375 assert(!body().empty() && "LaunchOp body must not be empty."); 376 auto args = body().getArguments(); 377 return KernelDim3{args[3], args[4], args[5]}; 378 } 379 380 KernelDim3 LaunchOp::getGridSize() { 381 assert(!body().empty() && "LaunchOp body must not be empty."); 382 auto args = body().getArguments(); 383 return KernelDim3{args[6], args[7], args[8]}; 384 } 385 386 KernelDim3 LaunchOp::getBlockSize() { 387 assert(!body().empty() && "LaunchOp body must not be empty."); 388 auto args = body().getArguments(); 389 return KernelDim3{args[9], args[10], args[11]}; 390 } 391 392 KernelDim3 LaunchOp::getGridSizeOperandValues() { 393 return KernelDim3{getOperand(0), getOperand(1), getOperand(2)}; 394 } 395 396 KernelDim3 LaunchOp::getBlockSizeOperandValues() { 397 return KernelDim3{getOperand(3), getOperand(4), getOperand(5)}; 398 } 399 400 static LogicalResult verify(LaunchOp op) { 401 // Kernel launch takes kNumConfigOperands leading operands for grid/block 402 // sizes and transforms them into kNumConfigRegionAttributes region arguments 403 // for block/thread identifiers and grid/block sizes. 404 if (!op.body().empty()) { 405 if (op.body().getNumArguments() != 406 LaunchOp::kNumConfigOperands + op.getNumOperands()) 407 return op.emitOpError("unexpected number of region arguments"); 408 } 409 410 // Block terminators without successors are expected to exit the kernel region 411 // and must be `gpu.terminator`. 412 for (Block &block : op.body()) { 413 if (block.empty()) 414 continue; 415 if (block.back().getNumSuccessors() != 0) 416 continue; 417 if (!isa<gpu::TerminatorOp>(&block.back())) { 418 return block.back() 419 .emitError() 420 .append("expected '", gpu::TerminatorOp::getOperationName(), 421 "' or a terminator with successors") 422 .attachNote(op.getLoc()) 423 .append("in '", LaunchOp::getOperationName(), "' body region"); 424 } 425 } 426 427 return success(); 428 } 429 430 // Pretty-print the kernel grid/block size assignment as 431 // (%iter-x, %iter-y, %iter-z) in 432 // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use) 433 // where %size-* and %iter-* will correspond to the body region arguments. 434 static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size, 435 KernelDim3 operands, KernelDim3 ids) { 436 p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in ("; 437 p << size.x << " = " << operands.x << ", "; 438 p << size.y << " = " << operands.y << ", "; 439 p << size.z << " = " << operands.z << ')'; 440 } 441 442 static void printLaunchOp(OpAsmPrinter &p, LaunchOp op) { 443 // Print the launch configuration. 444 p << LaunchOp::getOperationName() << ' ' << op.getBlocksKeyword(); 445 printSizeAssignment(p, op.getGridSize(), op.getGridSizeOperandValues(), 446 op.getBlockIds()); 447 p << ' ' << op.getThreadsKeyword(); 448 printSizeAssignment(p, op.getBlockSize(), op.getBlockSizeOperandValues(), 449 op.getThreadIds()); 450 451 p.printRegion(op.body(), /*printEntryBlockArgs=*/false); 452 p.printOptionalAttrDict(op->getAttrs()); 453 } 454 455 // Parse the size assignment blocks for blocks and threads. These have the form 456 // (%region_arg, %region_arg, %region_arg) in 457 // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand) 458 // where %region_arg are percent-identifiers for the region arguments to be 459 // introduced further (SSA defs), and %operand are percent-identifiers for the 460 // SSA value uses. 461 static ParseResult 462 parseSizeAssignment(OpAsmParser &parser, 463 MutableArrayRef<OpAsmParser::OperandType> sizes, 464 MutableArrayRef<OpAsmParser::OperandType> regionSizes, 465 MutableArrayRef<OpAsmParser::OperandType> indices) { 466 assert(indices.size() == 3 && "space for three indices expected"); 467 SmallVector<OpAsmParser::OperandType, 3> args; 468 if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3, 469 OpAsmParser::Delimiter::Paren) || 470 parser.parseKeyword("in") || parser.parseLParen()) 471 return failure(); 472 std::move(args.begin(), args.end(), indices.begin()); 473 474 for (int i = 0; i < 3; ++i) { 475 if (i != 0 && parser.parseComma()) 476 return failure(); 477 if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() || 478 parser.parseOperand(sizes[i])) 479 return failure(); 480 } 481 482 return parser.parseRParen(); 483 } 484 485 // Parses a Launch operation. 486 // operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment 487 // `threads` `(` ssa-id-list `)` `in` ssa-reassignment 488 // region attr-dict? 489 // ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)` 490 static ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) { 491 // Sizes of the grid and block. 492 SmallVector<OpAsmParser::OperandType, LaunchOp::kNumConfigOperands> sizes( 493 LaunchOp::kNumConfigOperands); 494 MutableArrayRef<OpAsmParser::OperandType> sizesRef(sizes); 495 496 // Actual (data) operands passed to the kernel. 497 SmallVector<OpAsmParser::OperandType, 4> dataOperands; 498 499 // Region arguments to be created. 500 SmallVector<OpAsmParser::OperandType, 16> regionArgs( 501 LaunchOp::kNumConfigRegionAttributes); 502 MutableArrayRef<OpAsmParser::OperandType> regionArgsRef(regionArgs); 503 504 // Parse the size assignment segments: the first segment assigns grid sizes 505 // and defines values for block identifiers; the second segment assigns block 506 // sizes and defines values for thread identifiers. In the region argument 507 // list, identifiers precede sizes, and block-related values precede 508 // thread-related values. 509 if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) || 510 parseSizeAssignment(parser, sizesRef.take_front(3), 511 regionArgsRef.slice(6, 3), 512 regionArgsRef.slice(0, 3)) || 513 parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) || 514 parseSizeAssignment(parser, sizesRef.drop_front(3), 515 regionArgsRef.slice(9, 3), 516 regionArgsRef.slice(3, 3)) || 517 parser.resolveOperands(sizes, parser.getBuilder().getIndexType(), 518 result.operands)) 519 return failure(); 520 521 // Introduce the body region and parse it. The region has 522 // kNumConfigRegionAttributes arguments that correspond to 523 // block/thread identifiers and grid/block sizes, all of the `index` type. 524 Type index = parser.getBuilder().getIndexType(); 525 SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes( 526 LaunchOp::kNumConfigRegionAttributes, index); 527 Region *body = result.addRegion(); 528 return failure(parser.parseRegion(*body, regionArgs, dataTypes) || 529 parser.parseOptionalAttrDict(result.attributes)); 530 } 531 532 //===----------------------------------------------------------------------===// 533 // LaunchFuncOp 534 //===----------------------------------------------------------------------===// 535 536 void LaunchFuncOp::build(OpBuilder &builder, OperationState &result, 537 GPUFuncOp kernelFunc, KernelDim3 gridSize, 538 KernelDim3 blockSize, ValueRange kernelOperands) { 539 // Add grid and block sizes as op operands, followed by the data operands. 540 result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x, 541 blockSize.y, blockSize.z}); 542 result.addOperands(kernelOperands); 543 auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>(); 544 auto kernelSymbol = builder.getSymbolRefAttr( 545 kernelModule.getName(), {builder.getSymbolRefAttr(kernelFunc.getName())}); 546 result.addAttribute(getKernelAttrName(), kernelSymbol); 547 SmallVector<int32_t, 8> segmentSizes(8, 1); 548 segmentSizes.front() = 0; // Initially no async dependencies. 549 segmentSizes.back() = static_cast<int32_t>(kernelOperands.size()); 550 result.addAttribute(getOperandSegmentSizeAttr(), 551 builder.getI32VectorAttr(segmentSizes)); 552 } 553 554 unsigned LaunchFuncOp::getNumKernelOperands() { 555 return getNumOperands() - asyncDependencies().size() - kNumConfigOperands; 556 } 557 558 StringRef LaunchFuncOp::getKernelModuleName() { 559 return kernel().getRootReference(); 560 } 561 562 StringRef LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); } 563 564 Value LaunchFuncOp::getKernelOperand(unsigned i) { 565 return getOperand(asyncDependencies().size() + kNumConfigOperands + i); 566 } 567 568 KernelDim3 LaunchFuncOp::getGridSizeOperandValues() { 569 auto operands = getOperands().drop_front(asyncDependencies().size()); 570 return KernelDim3{operands[0], operands[1], operands[2]}; 571 } 572 573 KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() { 574 auto operands = getOperands().drop_front(asyncDependencies().size()); 575 return KernelDim3{operands[3], operands[4], operands[5]}; 576 } 577 578 static LogicalResult verify(LaunchFuncOp op) { 579 auto module = op->getParentOfType<ModuleOp>(); 580 if (!module) 581 return op.emitOpError("expected to belong to a module"); 582 583 if (!module->getAttrOfType<UnitAttr>( 584 GPUDialect::getContainerModuleAttrName())) 585 return op.emitOpError( 586 "expected the closest surrounding module to have the '" + 587 GPUDialect::getContainerModuleAttrName() + "' attribute"); 588 589 auto kernelAttr = op->getAttrOfType<SymbolRefAttr>(op.getKernelAttrName()); 590 if (!kernelAttr) 591 return op.emitOpError("symbol reference attribute '" + 592 op.getKernelAttrName() + "' must be specified"); 593 594 return success(); 595 } 596 597 static ParseResult 598 parseLaunchFuncOperands(OpAsmParser &parser, 599 SmallVectorImpl<OpAsmParser::OperandType> &argNames, 600 SmallVectorImpl<Type> &argTypes) { 601 if (parser.parseOptionalKeyword("args")) 602 return success(); 603 SmallVector<NamedAttrList, 4> argAttrs; 604 bool isVariadic = false; 605 return function_like_impl::parseFunctionArgumentList( 606 parser, /*allowAttributes=*/false, 607 /*allowVariadic=*/false, argNames, argTypes, argAttrs, isVariadic); 608 } 609 610 static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *, 611 OperandRange operands, TypeRange types) { 612 if (operands.empty()) 613 return; 614 printer << "args("; 615 llvm::interleaveComma(llvm::zip(operands, types), printer, 616 [&](const auto &pair) { 617 printer.printOperand(std::get<0>(pair)); 618 printer << " : "; 619 printer.printType(std::get<1>(pair)); 620 }); 621 printer << ")"; 622 } 623 624 //===----------------------------------------------------------------------===// 625 // GPUFuncOp 626 //===----------------------------------------------------------------------===// 627 628 /// Adds a new block argument that corresponds to buffers located in 629 /// workgroup memory. 630 BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type) { 631 auto attrName = getNumWorkgroupAttributionsAttrName(); 632 auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName); 633 (*this)->setAttr(attrName, 634 IntegerAttr::get(attr.getType(), attr.getValue() + 1)); 635 return getBody().insertArgument(getType().getNumInputs() + attr.getInt(), 636 type); 637 } 638 639 /// Adds a new block argument that corresponds to buffers located in 640 /// private memory. 641 BlockArgument GPUFuncOp::addPrivateAttribution(Type type) { 642 // Buffers on the private memory always come after buffers on the workgroup 643 // memory. 644 return getBody().addArgument(type); 645 } 646 647 void GPUFuncOp::build(OpBuilder &builder, OperationState &result, 648 StringRef name, FunctionType type, 649 TypeRange workgroupAttributions, 650 TypeRange privateAttributions, 651 ArrayRef<NamedAttribute> attrs) { 652 result.addAttribute(SymbolTable::getSymbolAttrName(), 653 builder.getStringAttr(name)); 654 result.addAttribute(getTypeAttrName(), TypeAttr::get(type)); 655 result.addAttribute(getNumWorkgroupAttributionsAttrName(), 656 builder.getI64IntegerAttr(workgroupAttributions.size())); 657 result.addAttributes(attrs); 658 Region *body = result.addRegion(); 659 Block *entryBlock = new Block; 660 entryBlock->addArguments(type.getInputs()); 661 entryBlock->addArguments(workgroupAttributions); 662 entryBlock->addArguments(privateAttributions); 663 664 body->getBlocks().push_back(entryBlock); 665 } 666 667 /// Parses a GPU function memory attribution. 668 /// 669 /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)? 670 /// (`private` `(` ssa-id-and-type-list `)`)? 671 /// 672 /// Note that this function parses only one of the two similar parts, with the 673 /// keyword provided as argument. 674 static ParseResult 675 parseAttributions(OpAsmParser &parser, StringRef keyword, 676 SmallVectorImpl<OpAsmParser::OperandType> &args, 677 SmallVectorImpl<Type> &argTypes) { 678 // If we could not parse the keyword, just assume empty list and succeed. 679 if (failed(parser.parseOptionalKeyword(keyword))) 680 return success(); 681 682 if (failed(parser.parseLParen())) 683 return failure(); 684 685 // Early exit for an empty list. 686 if (succeeded(parser.parseOptionalRParen())) 687 return success(); 688 689 do { 690 OpAsmParser::OperandType arg; 691 Type type; 692 693 if (parser.parseRegionArgument(arg) || parser.parseColonType(type)) 694 return failure(); 695 696 args.push_back(arg); 697 argTypes.push_back(type); 698 } while (succeeded(parser.parseOptionalComma())); 699 700 return parser.parseRParen(); 701 } 702 703 /// Parses a GPU function. 704 /// 705 /// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)` 706 /// (`->` function-result-list)? memory-attribution `kernel`? 707 /// function-attributes? region 708 static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) { 709 SmallVector<OpAsmParser::OperandType, 8> entryArgs; 710 SmallVector<NamedAttrList, 1> argAttrs; 711 SmallVector<NamedAttrList, 1> resultAttrs; 712 SmallVector<Type, 8> argTypes; 713 SmallVector<Type, 4> resultTypes; 714 bool isVariadic; 715 716 // Parse the function name. 717 StringAttr nameAttr; 718 if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), 719 result.attributes)) 720 return failure(); 721 722 auto signatureLocation = parser.getCurrentLocation(); 723 if (failed(function_like_impl::parseFunctionSignature( 724 parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs, 725 isVariadic, resultTypes, resultAttrs))) 726 return failure(); 727 728 if (entryArgs.empty() && !argTypes.empty()) 729 return parser.emitError(signatureLocation) 730 << "gpu.func requires named arguments"; 731 732 // Construct the function type. More types will be added to the region, but 733 // not to the function type. 734 Builder &builder = parser.getBuilder(); 735 auto type = builder.getFunctionType(argTypes, resultTypes); 736 result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type)); 737 738 // Parse workgroup memory attributions. 739 if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(), 740 entryArgs, argTypes))) 741 return failure(); 742 743 // Store the number of operands we just parsed as the number of workgroup 744 // memory attributions. 745 unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs(); 746 result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(), 747 builder.getI64IntegerAttr(numWorkgroupAttrs)); 748 749 // Parse private memory attributions. 750 if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), 751 entryArgs, argTypes))) 752 return failure(); 753 754 // Parse the kernel attribute if present. 755 if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword()))) 756 result.addAttribute(GPUDialect::getKernelFuncAttrName(), 757 builder.getUnitAttr()); 758 759 // Parse attributes. 760 if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) 761 return failure(); 762 function_like_impl::addArgAndResultAttrs(builder, result, argAttrs, 763 resultAttrs); 764 765 // Parse the region. If no argument names were provided, take all names 766 // (including those of attributions) from the entry block. 767 auto *body = result.addRegion(); 768 return parser.parseRegion(*body, entryArgs, argTypes); 769 } 770 771 static void printAttributions(OpAsmPrinter &p, StringRef keyword, 772 ArrayRef<BlockArgument> values) { 773 if (values.empty()) 774 return; 775 776 p << ' ' << keyword << '('; 777 llvm::interleaveComma( 778 values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); }); 779 p << ')'; 780 } 781 782 /// Prints a GPU Func op. 783 static void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) { 784 p << GPUFuncOp::getOperationName() << ' '; 785 p.printSymbolName(op.getName()); 786 787 FunctionType type = op.getType(); 788 function_like_impl::printFunctionSignature( 789 p, op.getOperation(), type.getInputs(), 790 /*isVariadic=*/false, type.getResults()); 791 792 printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions()); 793 printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions()); 794 if (op.isKernel()) 795 p << ' ' << op.getKernelKeyword(); 796 797 function_like_impl::printFunctionAttributes( 798 p, op.getOperation(), type.getNumInputs(), type.getNumResults(), 799 {op.getNumWorkgroupAttributionsAttrName(), 800 GPUDialect::getKernelFuncAttrName()}); 801 p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false); 802 } 803 804 /// Hook for FunctionLike verifier. 805 LogicalResult GPUFuncOp::verifyType() { 806 Type type = getTypeAttr().getValue(); 807 if (!type.isa<FunctionType>()) 808 return emitOpError("requires '" + getTypeAttrName() + 809 "' attribute of function type"); 810 811 if (isKernel() && getType().getNumResults() != 0) 812 return emitOpError() << "expected void return type for kernel function"; 813 814 return success(); 815 } 816 817 static LogicalResult verifyAttributions(Operation *op, 818 ArrayRef<BlockArgument> attributions, 819 unsigned memorySpace) { 820 for (Value v : attributions) { 821 auto type = v.getType().dyn_cast<MemRefType>(); 822 if (!type) 823 return op->emitOpError() << "expected memref type in attribution"; 824 825 if (type.getMemorySpaceAsInt() != memorySpace) { 826 return op->emitOpError() 827 << "expected memory space " << memorySpace << " in attribution"; 828 } 829 } 830 return success(); 831 } 832 833 /// Verifies the body of the function. 834 LogicalResult GPUFuncOp::verifyBody() { 835 unsigned numFuncArguments = getNumArguments(); 836 unsigned numWorkgroupAttributions = getNumWorkgroupAttributions(); 837 unsigned numBlockArguments = front().getNumArguments(); 838 if (numBlockArguments < numFuncArguments + numWorkgroupAttributions) 839 return emitOpError() << "expected at least " 840 << numFuncArguments + numWorkgroupAttributions 841 << " arguments to body region"; 842 843 ArrayRef<Type> funcArgTypes = getType().getInputs(); 844 for (unsigned i = 0; i < numFuncArguments; ++i) { 845 Type blockArgType = front().getArgument(i).getType(); 846 if (funcArgTypes[i] != blockArgType) 847 return emitOpError() << "expected body region argument #" << i 848 << " to be of type " << funcArgTypes[i] << ", got " 849 << blockArgType; 850 } 851 852 if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(), 853 GPUDialect::getWorkgroupAddressSpace())) || 854 failed(verifyAttributions(getOperation(), getPrivateAttributions(), 855 GPUDialect::getPrivateAddressSpace()))) 856 return failure(); 857 858 return success(); 859 } 860 861 //===----------------------------------------------------------------------===// 862 // ReturnOp 863 //===----------------------------------------------------------------------===// 864 865 static ParseResult parseReturnOp(OpAsmParser &parser, OperationState &result) { 866 llvm::SmallVector<OpAsmParser::OperandType, 4> operands; 867 llvm::SmallVector<Type, 4> types; 868 if (parser.parseOperandList(operands) || 869 parser.parseOptionalColonTypeList(types) || 870 parser.resolveOperands(operands, types, parser.getCurrentLocation(), 871 result.operands)) 872 return failure(); 873 874 return success(); 875 } 876 877 static LogicalResult verify(gpu::ReturnOp returnOp) { 878 GPUFuncOp function = returnOp->getParentOfType<GPUFuncOp>(); 879 880 FunctionType funType = function.getType(); 881 882 if (funType.getNumResults() != returnOp.operands().size()) 883 return returnOp.emitOpError() 884 .append("expected ", funType.getNumResults(), " result operands") 885 .attachNote(function.getLoc()) 886 .append("return type declared here"); 887 888 for (auto pair : llvm::enumerate( 889 llvm::zip(function.getType().getResults(), returnOp.operands()))) { 890 Type type; 891 Value operand; 892 std::tie(type, operand) = pair.value(); 893 if (type != operand.getType()) 894 return returnOp.emitOpError() << "unexpected type `" << operand.getType() 895 << "' for operand #" << pair.index(); 896 } 897 return success(); 898 } 899 900 //===----------------------------------------------------------------------===// 901 // GPUModuleOp 902 //===----------------------------------------------------------------------===// 903 904 void GPUModuleOp::build(OpBuilder &builder, OperationState &result, 905 StringRef name) { 906 ensureTerminator(*result.addRegion(), builder, result.location); 907 result.attributes.push_back(builder.getNamedAttr( 908 ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); 909 } 910 911 static ParseResult parseGPUModuleOp(OpAsmParser &parser, 912 OperationState &result) { 913 StringAttr nameAttr; 914 if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(), 915 result.attributes)) 916 return failure(); 917 918 // If module attributes are present, parse them. 919 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 920 return failure(); 921 922 // Parse the module body. 923 auto *body = result.addRegion(); 924 if (parser.parseRegion(*body, None, None)) 925 return failure(); 926 927 // Ensure that this module has a valid terminator. 928 GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location); 929 return success(); 930 } 931 932 static void print(OpAsmPrinter &p, GPUModuleOp op) { 933 p << op.getOperationName() << ' '; 934 p.printSymbolName(op.getName()); 935 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 936 {SymbolTable::getSymbolAttrName()}); 937 p.printRegion(op->getRegion(0), /*printEntryBlockArgs=*/false, 938 /*printBlockTerminators=*/false); 939 } 940 941 //===----------------------------------------------------------------------===// 942 // GPUMemcpyOp 943 //===----------------------------------------------------------------------===// 944 945 static LogicalResult verify(MemcpyOp op) { 946 auto srcType = op.src().getType(); 947 auto dstType = op.dst().getType(); 948 949 if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType)) 950 return op.emitOpError("arguments have incompatible element type"); 951 952 if (failed(verifyCompatibleShape(srcType, dstType))) 953 return op.emitOpError("arguments have incompatible shape"); 954 955 return success(); 956 } 957 958 static ParseResult parseAsyncDependencies( 959 OpAsmParser &parser, Type &asyncTokenType, 960 SmallVectorImpl<OpAsmParser::OperandType> &asyncDependencies) { 961 auto loc = parser.getCurrentLocation(); 962 if (succeeded(parser.parseOptionalKeyword("async"))) { 963 if (parser.getNumResults() == 0) 964 return parser.emitError(loc, "needs to be named when marked 'async'"); 965 asyncTokenType = parser.getBuilder().getType<AsyncTokenType>(); 966 } 967 return parser.parseOperandList(asyncDependencies, 968 OpAsmParser::Delimiter::OptionalSquare); 969 } 970 971 static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op, 972 Type asyncTokenType, 973 OperandRange asyncDependencies) { 974 if (asyncTokenType) 975 printer << "async "; 976 if (asyncDependencies.empty()) 977 return; 978 printer << "["; 979 llvm::interleaveComma(asyncDependencies, printer); 980 printer << "]"; 981 } 982 983 //===----------------------------------------------------------------------===// 984 // GPU_SubgroupMmaLoadMatrixOp 985 //===----------------------------------------------------------------------===// 986 987 static LogicalResult verify(SubgroupMmaLoadMatrixOp op) { 988 auto srcType = op.srcMemref().getType(); 989 auto resType = op.res().getType(); 990 auto resMatrixType = resType.cast<gpu::MMAMatrixType>(); 991 auto operand = resMatrixType.getOperand(); 992 auto srcMemrefType = srcType.cast<MemRefType>(); 993 auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt(); 994 995 if (!srcMemrefType.getAffineMaps().empty() && 996 !srcMemrefType.getAffineMaps().front().isIdentity()) 997 return op.emitError("expected identity layout map for source memref"); 998 999 if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace && 1000 srcMemSpace != kGlobalMemorySpace) 1001 return op.emitError( 1002 "source memorySpace kGenericMemorySpace, kSharedMemorySpace or " 1003 "kGlobalMemorySpace only allowed"); 1004 1005 if (!operand.equals("AOp") && !operand.equals("BOp") && 1006 !operand.equals("COp")) 1007 return op.emitError("only AOp, BOp and COp can be loaded"); 1008 1009 return success(); 1010 } 1011 1012 //===----------------------------------------------------------------------===// 1013 // GPU_SubgroupMmaStoreMatrixOp 1014 //===----------------------------------------------------------------------===// 1015 1016 static LogicalResult verify(SubgroupMmaStoreMatrixOp op) { 1017 auto srcType = op.src().getType(); 1018 auto dstType = op.dstMemref().getType(); 1019 auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>(); 1020 auto dstMemrefType = dstType.cast<MemRefType>(); 1021 auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt(); 1022 1023 if (!dstMemrefType.getAffineMaps().empty() && 1024 !dstMemrefType.getAffineMaps().front().isIdentity()) 1025 return op.emitError("expected identity layout map for destination memref"); 1026 1027 if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace && 1028 dstMemSpace != kGlobalMemorySpace) 1029 return op.emitError( 1030 "destination memorySpace of kGenericMemorySpace, " 1031 "kGlobalMemorySpace or kSharedMemorySpace only allowed"); 1032 1033 if (!srcMatrixType.getOperand().equals("COp")) 1034 return op.emitError( 1035 "expected the operand matrix being stored to have 'COp' operand type"); 1036 1037 return success(); 1038 } 1039 1040 //===----------------------------------------------------------------------===// 1041 // GPU_SubgroupMmaComputeOp 1042 //===----------------------------------------------------------------------===// 1043 1044 static LogicalResult verify(SubgroupMmaComputeOp op) { 1045 enum OperandMap { A, B, C }; 1046 SmallVector<MMAMatrixType, 3> opTypes; 1047 1048 auto populateOpInfo = [&opTypes, &op]() { 1049 opTypes.push_back(op.opA().getType().cast<MMAMatrixType>()); 1050 opTypes.push_back(op.opB().getType().cast<MMAMatrixType>()); 1051 opTypes.push_back(op.opC().getType().cast<MMAMatrixType>()); 1052 }; 1053 populateOpInfo(); 1054 1055 if (!opTypes[A].getOperand().equals("AOp") || 1056 !opTypes[B].getOperand().equals("BOp") || 1057 !opTypes[C].getOperand().equals("COp")) 1058 return op.emitError("operands must be in the order AOp, BOp, COp"); 1059 1060 ArrayRef<int64_t> aShape, bShape, cShape; 1061 aShape = opTypes[A].getShape(); 1062 bShape = opTypes[B].getShape(); 1063 cShape = opTypes[C].getShape(); 1064 1065 if (aShape[1] != bShape[0] || aShape[0] != cShape[0] || 1066 bShape[1] != cShape[1]) 1067 return op.emitError("operand shapes do not satisfy matmul constraints"); 1068 1069 return success(); 1070 } 1071 1072 /// This is a common class used for patterns of the form 1073 /// "someop(memrefcast) -> someop". It folds the source of any memref.cast 1074 /// into the root operation directly. 1075 static LogicalResult foldMemRefCast(Operation *op) { 1076 bool folded = false; 1077 for (OpOperand &operand : op->getOpOperands()) { 1078 auto cast = operand.get().getDefiningOp<mlir::memref::CastOp>(); 1079 if (cast) { 1080 operand.set(cast.getOperand()); 1081 folded = true; 1082 } 1083 } 1084 return success(folded); 1085 } 1086 1087 LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands, 1088 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1089 return foldMemRefCast(*this); 1090 } 1091 1092 #include "mlir/Dialect/GPU/GPUOpInterfaces.cpp.inc" 1093 1094 #define GET_OP_CLASSES 1095 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 1096