1 //===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the GPU kernel-related dialect and its operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/GPU/GPUDialect.h" 14 15 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 16 #include "mlir/Dialect/MemRef/IR/MemRef.h" 17 #include "mlir/Dialect/StandardOps/IR/Ops.h" 18 #include "mlir/IR/Attributes.h" 19 #include "mlir/IR/Builders.h" 20 #include "mlir/IR/BuiltinOps.h" 21 #include "mlir/IR/BuiltinTypes.h" 22 #include "mlir/IR/DialectImplementation.h" 23 #include "mlir/IR/FunctionImplementation.h" 24 #include "mlir/IR/OpImplementation.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "mlir/IR/TypeUtilities.h" 27 #include "llvm/ADT/TypeSwitch.h" 28 29 using namespace mlir; 30 using namespace mlir::gpu; 31 32 //===----------------------------------------------------------------------===// 33 // MMAMatrixType 34 //===----------------------------------------------------------------------===// 35 36 MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType, 37 StringRef operand) { 38 return Base::get(elementType.getContext(), shape, elementType, operand); 39 } 40 41 MMAMatrixType 42 MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError, 43 ArrayRef<int64_t> shape, Type elementType, 44 StringRef operand) { 45 return Base::getChecked(emitError, elementType.getContext(), shape, 46 elementType, operand); 47 } 48 49 unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; } 50 51 ArrayRef<int64_t> MMAMatrixType::getShape() const { 52 return getImpl()->getShape(); 53 } 54 55 Type MMAMatrixType::getElementType() const { return getImpl()->elementType; } 56 57 StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); } 58 59 bool MMAMatrixType::isValidElementType(Type elementType) { 60 return elementType.isF16() || elementType.isF32(); 61 } 62 63 LogicalResult 64 MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError, 65 ArrayRef<int64_t> shape, Type elementType, 66 StringRef operand) { 67 if (!operand.equals("AOp") && !operand.equals("BOp") && 68 !operand.equals("COp")) 69 return emitError() << "operand expected to be one of AOp, BOp or COp"; 70 71 if (shape.size() != 2) 72 return emitError() << "MMAMatrixType must have exactly two dimensions"; 73 74 if (!MMAMatrixType::isValidElementType(elementType)) 75 return emitError() << "MMAMatrixType elements must be F16 or F32"; 76 77 return success(); 78 } 79 80 //===----------------------------------------------------------------------===// 81 // GPUDialect 82 //===----------------------------------------------------------------------===// 83 84 /// GPU memory space identifiers. 85 enum GPUMemorySpace { 86 /// Generic memory space identifier. 87 kGenericMemorySpace = 0, 88 89 /// Global memory space identifier. 90 kGlobalMemorySpace = 1, 91 92 /// Shared memory space identifier. 93 kSharedMemorySpace = 3 94 }; 95 96 bool GPUDialect::isKernel(Operation *op) { 97 UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName()); 98 return static_cast<bool>(isKernelAttr); 99 } 100 101 void GPUDialect::initialize() { 102 addTypes<AsyncTokenType>(); 103 addTypes<MMAMatrixType>(); 104 addOperations< 105 #define GET_OP_LIST 106 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 107 >(); 108 } 109 110 Type GPUDialect::parseType(DialectAsmParser &parser) const { 111 // Parse the main keyword for the type. 112 StringRef keyword; 113 if (parser.parseKeyword(&keyword)) 114 return Type(); 115 MLIRContext *context = getContext(); 116 117 // Handle 'async token' types. 118 if (keyword == "async.token") 119 return AsyncTokenType::get(context); 120 121 if (keyword == "mma_matrix") { 122 llvm::SMLoc beginLoc = parser.getNameLoc(); 123 124 // Parse '<'. 125 if (parser.parseLess()) 126 return nullptr; 127 128 // Parse the size and elementType. 129 SmallVector<int64_t> shape; 130 Type elementType; 131 if (parser.parseDimensionList(shape, /*allowDynamic=*/false) || 132 parser.parseType(elementType)) 133 return nullptr; 134 135 // Parse ',' 136 if (parser.parseComma()) 137 return nullptr; 138 139 // Parse operand. 140 StringRef operand; 141 if (failed(parser.parseOptionalString(&operand))) 142 return nullptr; 143 144 // Parse '>'. 145 if (parser.parseGreater()) 146 return nullptr; 147 148 return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn( 149 parser.getEncodedSourceLoc(beginLoc)), 150 shape, elementType, operand); 151 } 152 153 parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword); 154 return Type(); 155 } 156 157 void GPUDialect::printType(Type type, DialectAsmPrinter &os) const { 158 TypeSwitch<Type>(type) 159 .Case<AsyncTokenType>([&](Type) { os << "async.token"; }) 160 .Case<MMAMatrixType>([&](MMAMatrixType fragTy) { 161 os << "mma_matrix<"; 162 auto shape = fragTy.getShape(); 163 for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim) 164 os << *dim << 'x'; 165 os << shape.back() << 'x' << fragTy.getElementType(); 166 os << ", \"" << fragTy.getOperand() << "\"" << '>'; 167 }) 168 .Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); }); 169 } 170 171 LogicalResult GPUDialect::verifyOperationAttribute(Operation *op, 172 NamedAttribute attr) { 173 if (!attr.second.isa<UnitAttr>() || 174 attr.first != getContainerModuleAttrName()) 175 return success(); 176 177 auto module = dyn_cast<ModuleOp>(op); 178 if (!module) 179 return op->emitError("expected '") 180 << getContainerModuleAttrName() << "' attribute to be attached to '" 181 << ModuleOp::getOperationName() << '\''; 182 183 auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult { 184 // Ignore launches that are nested more or less deep than functions in the 185 // module we are currently checking. 186 if (!launchOp->getParentOp() || 187 launchOp->getParentOp()->getParentOp() != module) 188 return success(); 189 190 // Ignore launch ops with missing attributes here. The errors will be 191 // reported by the verifiers of those ops. 192 if (!launchOp->getAttrOfType<SymbolRefAttr>( 193 LaunchFuncOp::getKernelAttrName())) 194 return success(); 195 196 // Check that `launch_func` refers to a well-formed GPU kernel module. 197 StringRef kernelModuleName = launchOp.getKernelModuleName(); 198 auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName); 199 if (!kernelModule) 200 return launchOp.emitOpError() 201 << "kernel module '" << kernelModuleName << "' is undefined"; 202 203 // Check that `launch_func` refers to a well-formed kernel function. 204 Operation *kernelFunc = module.lookupSymbol(launchOp.kernel()); 205 auto kernelGPUFunction = dyn_cast_or_null<gpu::GPUFuncOp>(kernelFunc); 206 auto kernelLLVMFunction = dyn_cast_or_null<LLVM::LLVMFuncOp>(kernelFunc); 207 if (!kernelGPUFunction && !kernelLLVMFunction) 208 return launchOp.emitOpError("kernel function '") 209 << launchOp.kernel() << "' is undefined"; 210 if (!kernelFunc->getAttrOfType<mlir::UnitAttr>( 211 GPUDialect::getKernelFuncAttrName())) 212 return launchOp.emitOpError("kernel function is missing the '") 213 << GPUDialect::getKernelFuncAttrName() << "' attribute"; 214 215 // TODO: if the kernel function has been converted to 216 // the LLVM dialect but the caller hasn't (which happens during the 217 // separate compilation), do not check type correspondence as it would 218 // require the verifier to be aware of the LLVM type conversion. 219 if (kernelLLVMFunction) 220 return success(); 221 222 unsigned actualNumArguments = launchOp.getNumKernelOperands(); 223 unsigned expectedNumArguments = kernelGPUFunction.getNumArguments(); 224 if (expectedNumArguments != actualNumArguments) 225 return launchOp.emitOpError("got ") 226 << actualNumArguments << " kernel operands but expected " 227 << expectedNumArguments; 228 229 auto functionType = kernelGPUFunction.getType(); 230 for (unsigned i = 0; i < expectedNumArguments; ++i) { 231 if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) { 232 return launchOp.emitOpError("type of function argument ") 233 << i << " does not match"; 234 } 235 } 236 237 return success(); 238 }); 239 240 return walkResult.wasInterrupted() ? failure() : success(); 241 } 242 243 template <typename T> 244 static LogicalResult verifyIndexOp(T op) { 245 auto dimension = op.dimension(); 246 if (dimension != "x" && dimension != "y" && dimension != "z") 247 return op.emitError("dimension \"") << dimension << "\" is invalid"; 248 return success(); 249 } 250 251 static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) { 252 if (allReduce.body().empty() != allReduce.op().hasValue()) 253 return allReduce.emitError( 254 "expected either an op attribute or a non-empty body"); 255 if (!allReduce.body().empty()) { 256 if (allReduce.body().getNumArguments() != 2) 257 return allReduce.emitError("expected two region arguments"); 258 for (auto argument : allReduce.body().getArguments()) { 259 if (argument.getType() != allReduce.getType()) 260 return allReduce.emitError("incorrect region argument type"); 261 } 262 unsigned yieldCount = 0; 263 for (Block &block : allReduce.body()) { 264 if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) { 265 if (yield.getNumOperands() != 1) 266 return allReduce.emitError("expected one gpu.yield operand"); 267 if (yield.getOperand(0).getType() != allReduce.getType()) 268 return allReduce.emitError("incorrect gpu.yield type"); 269 ++yieldCount; 270 } 271 } 272 if (yieldCount == 0) 273 return allReduce.emitError("expected gpu.yield op in region"); 274 } else { 275 StringRef opName = *allReduce.op(); 276 if ((opName == "and" || opName == "or" || opName == "xor") && 277 !allReduce.getType().isa<IntegerType>()) { 278 return allReduce.emitError() 279 << '`' << opName << '`' 280 << " accumulator is only compatible with Integer type"; 281 } 282 } 283 return success(); 284 } 285 286 static LogicalResult verifyShuffleOp(gpu::ShuffleOp shuffleOp) { 287 auto type = shuffleOp.value().getType(); 288 if (shuffleOp.result().getType() != type) { 289 return shuffleOp.emitOpError() 290 << "requires the same type for value operand and result"; 291 } 292 if (!type.isSignlessIntOrFloat() || type.getIntOrFloatBitWidth() != 32) { 293 return shuffleOp.emitOpError() 294 << "requires value operand type to be f32 or i32"; 295 } 296 return success(); 297 } 298 299 static void printShuffleOp(OpAsmPrinter &p, ShuffleOp op) { 300 p << ShuffleOp::getOperationName() << ' ' << op.getOperands() << ' ' 301 << op.mode() << " : " << op.value().getType(); 302 } 303 304 static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &state) { 305 SmallVector<OpAsmParser::OperandType, 3> operandInfo; 306 if (parser.parseOperandList(operandInfo, 3)) 307 return failure(); 308 309 StringRef mode; 310 if (parser.parseKeyword(&mode)) 311 return failure(); 312 state.addAttribute("mode", parser.getBuilder().getStringAttr(mode)); 313 314 Type valueType; 315 Type int32Type = parser.getBuilder().getIntegerType(32); 316 Type int1Type = parser.getBuilder().getI1Type(); 317 if (parser.parseColonType(valueType) || 318 parser.resolveOperands(operandInfo, {valueType, int32Type, int32Type}, 319 parser.getCurrentLocation(), state.operands) || 320 parser.addTypesToList({valueType, int1Type}, state.types)) 321 return failure(); 322 return success(); 323 } 324 325 //===----------------------------------------------------------------------===// 326 // AsyncOpInterface 327 //===----------------------------------------------------------------------===// 328 329 void gpu::addAsyncDependency(Operation *op, Value token) { 330 op->insertOperands(0, {token}); 331 if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>()) 332 return; 333 auto attrName = 334 OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr(); 335 auto sizeAttr = op->template getAttrOfType<DenseIntElementsAttr>(attrName); 336 if (!sizeAttr) 337 return; // Async dependencies is the only variadic operand. 338 SmallVector<int32_t, 8> sizes; 339 for (auto size : sizeAttr.getIntValues()) 340 sizes.push_back(size.getSExtValue()); 341 ++sizes.front(); 342 op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes)); 343 } 344 345 //===----------------------------------------------------------------------===// 346 // LaunchOp 347 //===----------------------------------------------------------------------===// 348 349 void LaunchOp::build(OpBuilder &builder, OperationState &result, 350 Value gridSizeX, Value gridSizeY, Value gridSizeZ, 351 Value blockSizeX, Value blockSizeY, Value blockSizeZ) { 352 // Add grid and block sizes as op operands, followed by the data operands. 353 result.addOperands( 354 {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); 355 356 // Create a kernel body region with kNumConfigRegionAttributes + N arguments, 357 // where the first kNumConfigRegionAttributes arguments have `index` type and 358 // the rest have the same types as the data operands. 359 Region *kernelRegion = result.addRegion(); 360 Block *body = new Block(); 361 body->addArguments( 362 std::vector<Type>(kNumConfigRegionAttributes, builder.getIndexType())); 363 kernelRegion->push_back(body); 364 } 365 366 KernelDim3 LaunchOp::getBlockIds() { 367 assert(!body().empty() && "LaunchOp body must not be empty."); 368 auto args = body().getArguments(); 369 return KernelDim3{args[0], args[1], args[2]}; 370 } 371 372 KernelDim3 LaunchOp::getThreadIds() { 373 assert(!body().empty() && "LaunchOp body must not be empty."); 374 auto args = body().getArguments(); 375 return KernelDim3{args[3], args[4], args[5]}; 376 } 377 378 KernelDim3 LaunchOp::getGridSize() { 379 assert(!body().empty() && "LaunchOp body must not be empty."); 380 auto args = body().getArguments(); 381 return KernelDim3{args[6], args[7], args[8]}; 382 } 383 384 KernelDim3 LaunchOp::getBlockSize() { 385 assert(!body().empty() && "LaunchOp body must not be empty."); 386 auto args = body().getArguments(); 387 return KernelDim3{args[9], args[10], args[11]}; 388 } 389 390 KernelDim3 LaunchOp::getGridSizeOperandValues() { 391 return KernelDim3{getOperand(0), getOperand(1), getOperand(2)}; 392 } 393 394 KernelDim3 LaunchOp::getBlockSizeOperandValues() { 395 return KernelDim3{getOperand(3), getOperand(4), getOperand(5)}; 396 } 397 398 static LogicalResult verify(LaunchOp op) { 399 // Kernel launch takes kNumConfigOperands leading operands for grid/block 400 // sizes and transforms them into kNumConfigRegionAttributes region arguments 401 // for block/thread identifiers and grid/block sizes. 402 if (!op.body().empty()) { 403 if (op.body().getNumArguments() != 404 LaunchOp::kNumConfigOperands + op.getNumOperands()) 405 return op.emitOpError("unexpected number of region arguments"); 406 } 407 408 // Block terminators without successors are expected to exit the kernel region 409 // and must be `gpu.terminator`. 410 for (Block &block : op.body()) { 411 if (block.empty()) 412 continue; 413 if (block.back().getNumSuccessors() != 0) 414 continue; 415 if (!isa<gpu::TerminatorOp>(&block.back())) { 416 return block.back() 417 .emitError() 418 .append("expected '", gpu::TerminatorOp::getOperationName(), 419 "' or a terminator with successors") 420 .attachNote(op.getLoc()) 421 .append("in '", LaunchOp::getOperationName(), "' body region"); 422 } 423 } 424 425 return success(); 426 } 427 428 // Pretty-print the kernel grid/block size assignment as 429 // (%iter-x, %iter-y, %iter-z) in 430 // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use) 431 // where %size-* and %iter-* will correspond to the body region arguments. 432 static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size, 433 KernelDim3 operands, KernelDim3 ids) { 434 p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in ("; 435 p << size.x << " = " << operands.x << ", "; 436 p << size.y << " = " << operands.y << ", "; 437 p << size.z << " = " << operands.z << ')'; 438 } 439 440 static void printLaunchOp(OpAsmPrinter &p, LaunchOp op) { 441 // Print the launch configuration. 442 p << LaunchOp::getOperationName() << ' ' << op.getBlocksKeyword(); 443 printSizeAssignment(p, op.getGridSize(), op.getGridSizeOperandValues(), 444 op.getBlockIds()); 445 p << ' ' << op.getThreadsKeyword(); 446 printSizeAssignment(p, op.getBlockSize(), op.getBlockSizeOperandValues(), 447 op.getThreadIds()); 448 449 p.printRegion(op.body(), /*printEntryBlockArgs=*/false); 450 p.printOptionalAttrDict(op->getAttrs()); 451 } 452 453 // Parse the size assignment blocks for blocks and threads. These have the form 454 // (%region_arg, %region_arg, %region_arg) in 455 // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand) 456 // where %region_arg are percent-identifiers for the region arguments to be 457 // introduced further (SSA defs), and %operand are percent-identifiers for the 458 // SSA value uses. 459 static ParseResult 460 parseSizeAssignment(OpAsmParser &parser, 461 MutableArrayRef<OpAsmParser::OperandType> sizes, 462 MutableArrayRef<OpAsmParser::OperandType> regionSizes, 463 MutableArrayRef<OpAsmParser::OperandType> indices) { 464 assert(indices.size() == 3 && "space for three indices expected"); 465 SmallVector<OpAsmParser::OperandType, 3> args; 466 if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3, 467 OpAsmParser::Delimiter::Paren) || 468 parser.parseKeyword("in") || parser.parseLParen()) 469 return failure(); 470 std::move(args.begin(), args.end(), indices.begin()); 471 472 for (int i = 0; i < 3; ++i) { 473 if (i != 0 && parser.parseComma()) 474 return failure(); 475 if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() || 476 parser.parseOperand(sizes[i])) 477 return failure(); 478 } 479 480 return parser.parseRParen(); 481 } 482 483 // Parses a Launch operation. 484 // operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment 485 // `threads` `(` ssa-id-list `)` `in` ssa-reassignment 486 // region attr-dict? 487 // ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)` 488 static ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) { 489 // Sizes of the grid and block. 490 SmallVector<OpAsmParser::OperandType, LaunchOp::kNumConfigOperands> sizes( 491 LaunchOp::kNumConfigOperands); 492 MutableArrayRef<OpAsmParser::OperandType> sizesRef(sizes); 493 494 // Actual (data) operands passed to the kernel. 495 SmallVector<OpAsmParser::OperandType, 4> dataOperands; 496 497 // Region arguments to be created. 498 SmallVector<OpAsmParser::OperandType, 16> regionArgs( 499 LaunchOp::kNumConfigRegionAttributes); 500 MutableArrayRef<OpAsmParser::OperandType> regionArgsRef(regionArgs); 501 502 // Parse the size assignment segments: the first segment assigns grid sizes 503 // and defines values for block identifiers; the second segment assigns block 504 // sizes and defines values for thread identifiers. In the region argument 505 // list, identifiers precede sizes, and block-related values precede 506 // thread-related values. 507 if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) || 508 parseSizeAssignment(parser, sizesRef.take_front(3), 509 regionArgsRef.slice(6, 3), 510 regionArgsRef.slice(0, 3)) || 511 parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) || 512 parseSizeAssignment(parser, sizesRef.drop_front(3), 513 regionArgsRef.slice(9, 3), 514 regionArgsRef.slice(3, 3)) || 515 parser.resolveOperands(sizes, parser.getBuilder().getIndexType(), 516 result.operands)) 517 return failure(); 518 519 // Introduce the body region and parse it. The region has 520 // kNumConfigRegionAttributes arguments that correspond to 521 // block/thread identifiers and grid/block sizes, all of the `index` type. 522 Type index = parser.getBuilder().getIndexType(); 523 SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes( 524 LaunchOp::kNumConfigRegionAttributes, index); 525 Region *body = result.addRegion(); 526 return failure(parser.parseRegion(*body, regionArgs, dataTypes) || 527 parser.parseOptionalAttrDict(result.attributes)); 528 } 529 530 //===----------------------------------------------------------------------===// 531 // LaunchFuncOp 532 //===----------------------------------------------------------------------===// 533 534 void LaunchFuncOp::build(OpBuilder &builder, OperationState &result, 535 GPUFuncOp kernelFunc, KernelDim3 gridSize, 536 KernelDim3 blockSize, ValueRange kernelOperands) { 537 // Add grid and block sizes as op operands, followed by the data operands. 538 result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x, 539 blockSize.y, blockSize.z}); 540 result.addOperands(kernelOperands); 541 auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>(); 542 auto kernelSymbol = builder.getSymbolRefAttr( 543 kernelModule.getName(), {builder.getSymbolRefAttr(kernelFunc.getName())}); 544 result.addAttribute(getKernelAttrName(), kernelSymbol); 545 SmallVector<int32_t, 8> segmentSizes(8, 1); 546 segmentSizes.front() = 0; // Initially no async dependencies. 547 segmentSizes.back() = static_cast<int32_t>(kernelOperands.size()); 548 result.addAttribute(getOperandSegmentSizeAttr(), 549 builder.getI32VectorAttr(segmentSizes)); 550 } 551 552 unsigned LaunchFuncOp::getNumKernelOperands() { 553 return getNumOperands() - asyncDependencies().size() - kNumConfigOperands; 554 } 555 556 StringRef LaunchFuncOp::getKernelModuleName() { 557 return kernel().getRootReference(); 558 } 559 560 StringRef LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); } 561 562 Value LaunchFuncOp::getKernelOperand(unsigned i) { 563 return getOperand(asyncDependencies().size() + kNumConfigOperands + i); 564 } 565 566 KernelDim3 LaunchFuncOp::getGridSizeOperandValues() { 567 auto operands = getOperands().drop_front(asyncDependencies().size()); 568 return KernelDim3{operands[0], operands[1], operands[2]}; 569 } 570 571 KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() { 572 auto operands = getOperands().drop_front(asyncDependencies().size()); 573 return KernelDim3{operands[3], operands[4], operands[5]}; 574 } 575 576 static LogicalResult verify(LaunchFuncOp op) { 577 auto module = op->getParentOfType<ModuleOp>(); 578 if (!module) 579 return op.emitOpError("expected to belong to a module"); 580 581 if (!module->getAttrOfType<UnitAttr>( 582 GPUDialect::getContainerModuleAttrName())) 583 return op.emitOpError( 584 "expected the closest surrounding module to have the '" + 585 GPUDialect::getContainerModuleAttrName() + "' attribute"); 586 587 auto kernelAttr = op->getAttrOfType<SymbolRefAttr>(op.getKernelAttrName()); 588 if (!kernelAttr) 589 return op.emitOpError("symbol reference attribute '" + 590 op.getKernelAttrName() + "' must be specified"); 591 592 return success(); 593 } 594 595 static ParseResult 596 parseLaunchFuncOperands(OpAsmParser &parser, 597 SmallVectorImpl<OpAsmParser::OperandType> &argNames, 598 SmallVectorImpl<Type> &argTypes) { 599 if (parser.parseOptionalKeyword("args")) 600 return success(); 601 SmallVector<NamedAttrList, 4> argAttrs; 602 bool isVariadic = false; 603 return function_like_impl::parseFunctionArgumentList( 604 parser, /*allowAttributes=*/false, 605 /*allowVariadic=*/false, argNames, argTypes, argAttrs, isVariadic); 606 } 607 608 static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *, 609 OperandRange operands, TypeRange types) { 610 if (operands.empty()) 611 return; 612 printer << "args("; 613 llvm::interleaveComma(llvm::zip(operands, types), printer, 614 [&](const auto &pair) { 615 printer.printOperand(std::get<0>(pair)); 616 printer << " : "; 617 printer.printType(std::get<1>(pair)); 618 }); 619 printer << ")"; 620 } 621 622 //===----------------------------------------------------------------------===// 623 // GPUFuncOp 624 //===----------------------------------------------------------------------===// 625 626 /// Adds a new block argument that corresponds to buffers located in 627 /// workgroup memory. 628 BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type) { 629 auto attrName = getNumWorkgroupAttributionsAttrName(); 630 auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName); 631 (*this)->setAttr(attrName, 632 IntegerAttr::get(attr.getType(), attr.getValue() + 1)); 633 return getBody().insertArgument(getType().getNumInputs() + attr.getInt(), 634 type); 635 } 636 637 /// Adds a new block argument that corresponds to buffers located in 638 /// private memory. 639 BlockArgument GPUFuncOp::addPrivateAttribution(Type type) { 640 // Buffers on the private memory always come after buffers on the workgroup 641 // memory. 642 return getBody().addArgument(type); 643 } 644 645 void GPUFuncOp::build(OpBuilder &builder, OperationState &result, 646 StringRef name, FunctionType type, 647 TypeRange workgroupAttributions, 648 TypeRange privateAttributions, 649 ArrayRef<NamedAttribute> attrs) { 650 result.addAttribute(SymbolTable::getSymbolAttrName(), 651 builder.getStringAttr(name)); 652 result.addAttribute(getTypeAttrName(), TypeAttr::get(type)); 653 result.addAttribute(getNumWorkgroupAttributionsAttrName(), 654 builder.getI64IntegerAttr(workgroupAttributions.size())); 655 result.addAttributes(attrs); 656 Region *body = result.addRegion(); 657 Block *entryBlock = new Block; 658 entryBlock->addArguments(type.getInputs()); 659 entryBlock->addArguments(workgroupAttributions); 660 entryBlock->addArguments(privateAttributions); 661 662 body->getBlocks().push_back(entryBlock); 663 } 664 665 /// Parses a GPU function memory attribution. 666 /// 667 /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)? 668 /// (`private` `(` ssa-id-and-type-list `)`)? 669 /// 670 /// Note that this function parses only one of the two similar parts, with the 671 /// keyword provided as argument. 672 static ParseResult 673 parseAttributions(OpAsmParser &parser, StringRef keyword, 674 SmallVectorImpl<OpAsmParser::OperandType> &args, 675 SmallVectorImpl<Type> &argTypes) { 676 // If we could not parse the keyword, just assume empty list and succeed. 677 if (failed(parser.parseOptionalKeyword(keyword))) 678 return success(); 679 680 if (failed(parser.parseLParen())) 681 return failure(); 682 683 // Early exit for an empty list. 684 if (succeeded(parser.parseOptionalRParen())) 685 return success(); 686 687 do { 688 OpAsmParser::OperandType arg; 689 Type type; 690 691 if (parser.parseRegionArgument(arg) || parser.parseColonType(type)) 692 return failure(); 693 694 args.push_back(arg); 695 argTypes.push_back(type); 696 } while (succeeded(parser.parseOptionalComma())); 697 698 return parser.parseRParen(); 699 } 700 701 /// Parses a GPU function. 702 /// 703 /// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)` 704 /// (`->` function-result-list)? memory-attribution `kernel`? 705 /// function-attributes? region 706 static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) { 707 SmallVector<OpAsmParser::OperandType, 8> entryArgs; 708 SmallVector<NamedAttrList, 1> argAttrs; 709 SmallVector<NamedAttrList, 1> resultAttrs; 710 SmallVector<Type, 8> argTypes; 711 SmallVector<Type, 4> resultTypes; 712 bool isVariadic; 713 714 // Parse the function name. 715 StringAttr nameAttr; 716 if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), 717 result.attributes)) 718 return failure(); 719 720 auto signatureLocation = parser.getCurrentLocation(); 721 if (failed(function_like_impl::parseFunctionSignature( 722 parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs, 723 isVariadic, resultTypes, resultAttrs))) 724 return failure(); 725 726 if (entryArgs.empty() && !argTypes.empty()) 727 return parser.emitError(signatureLocation) 728 << "gpu.func requires named arguments"; 729 730 // Construct the function type. More types will be added to the region, but 731 // not to the function type. 732 Builder &builder = parser.getBuilder(); 733 auto type = builder.getFunctionType(argTypes, resultTypes); 734 result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type)); 735 736 // Parse workgroup memory attributions. 737 if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(), 738 entryArgs, argTypes))) 739 return failure(); 740 741 // Store the number of operands we just parsed as the number of workgroup 742 // memory attributions. 743 unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs(); 744 result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(), 745 builder.getI64IntegerAttr(numWorkgroupAttrs)); 746 747 // Parse private memory attributions. 748 if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), 749 entryArgs, argTypes))) 750 return failure(); 751 752 // Parse the kernel attribute if present. 753 if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword()))) 754 result.addAttribute(GPUDialect::getKernelFuncAttrName(), 755 builder.getUnitAttr()); 756 757 // Parse attributes. 758 if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) 759 return failure(); 760 function_like_impl::addArgAndResultAttrs(builder, result, argAttrs, 761 resultAttrs); 762 763 // Parse the region. If no argument names were provided, take all names 764 // (including those of attributions) from the entry block. 765 auto *body = result.addRegion(); 766 return parser.parseRegion(*body, entryArgs, argTypes); 767 } 768 769 static void printAttributions(OpAsmPrinter &p, StringRef keyword, 770 ArrayRef<BlockArgument> values) { 771 if (values.empty()) 772 return; 773 774 p << ' ' << keyword << '('; 775 llvm::interleaveComma( 776 values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); }); 777 p << ')'; 778 } 779 780 /// Prints a GPU Func op. 781 static void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) { 782 p << GPUFuncOp::getOperationName() << ' '; 783 p.printSymbolName(op.getName()); 784 785 FunctionType type = op.getType(); 786 function_like_impl::printFunctionSignature( 787 p, op.getOperation(), type.getInputs(), 788 /*isVariadic=*/false, type.getResults()); 789 790 printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions()); 791 printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions()); 792 if (op.isKernel()) 793 p << ' ' << op.getKernelKeyword(); 794 795 function_like_impl::printFunctionAttributes( 796 p, op.getOperation(), type.getNumInputs(), type.getNumResults(), 797 {op.getNumWorkgroupAttributionsAttrName(), 798 GPUDialect::getKernelFuncAttrName()}); 799 p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false); 800 } 801 802 /// Hook for FunctionLike verifier. 803 LogicalResult GPUFuncOp::verifyType() { 804 Type type = getTypeAttr().getValue(); 805 if (!type.isa<FunctionType>()) 806 return emitOpError("requires '" + getTypeAttrName() + 807 "' attribute of function type"); 808 809 if (isKernel() && getType().getNumResults() != 0) 810 return emitOpError() << "expected void return type for kernel function"; 811 812 return success(); 813 } 814 815 static LogicalResult verifyAttributions(Operation *op, 816 ArrayRef<BlockArgument> attributions, 817 unsigned memorySpace) { 818 for (Value v : attributions) { 819 auto type = v.getType().dyn_cast<MemRefType>(); 820 if (!type) 821 return op->emitOpError() << "expected memref type in attribution"; 822 823 if (type.getMemorySpaceAsInt() != memorySpace) { 824 return op->emitOpError() 825 << "expected memory space " << memorySpace << " in attribution"; 826 } 827 } 828 return success(); 829 } 830 831 /// Verifies the body of the function. 832 LogicalResult GPUFuncOp::verifyBody() { 833 unsigned numFuncArguments = getNumArguments(); 834 unsigned numWorkgroupAttributions = getNumWorkgroupAttributions(); 835 unsigned numBlockArguments = front().getNumArguments(); 836 if (numBlockArguments < numFuncArguments + numWorkgroupAttributions) 837 return emitOpError() << "expected at least " 838 << numFuncArguments + numWorkgroupAttributions 839 << " arguments to body region"; 840 841 ArrayRef<Type> funcArgTypes = getType().getInputs(); 842 for (unsigned i = 0; i < numFuncArguments; ++i) { 843 Type blockArgType = front().getArgument(i).getType(); 844 if (funcArgTypes[i] != blockArgType) 845 return emitOpError() << "expected body region argument #" << i 846 << " to be of type " << funcArgTypes[i] << ", got " 847 << blockArgType; 848 } 849 850 if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(), 851 GPUDialect::getWorkgroupAddressSpace())) || 852 failed(verifyAttributions(getOperation(), getPrivateAttributions(), 853 GPUDialect::getPrivateAddressSpace()))) 854 return failure(); 855 856 return success(); 857 } 858 859 //===----------------------------------------------------------------------===// 860 // ReturnOp 861 //===----------------------------------------------------------------------===// 862 863 static ParseResult parseReturnOp(OpAsmParser &parser, OperationState &result) { 864 llvm::SmallVector<OpAsmParser::OperandType, 4> operands; 865 llvm::SmallVector<Type, 4> types; 866 if (parser.parseOperandList(operands) || 867 parser.parseOptionalColonTypeList(types) || 868 parser.resolveOperands(operands, types, parser.getCurrentLocation(), 869 result.operands)) 870 return failure(); 871 872 return success(); 873 } 874 875 static LogicalResult verify(gpu::ReturnOp returnOp) { 876 GPUFuncOp function = returnOp->getParentOfType<GPUFuncOp>(); 877 878 FunctionType funType = function.getType(); 879 880 if (funType.getNumResults() != returnOp.operands().size()) 881 return returnOp.emitOpError() 882 .append("expected ", funType.getNumResults(), " result operands") 883 .attachNote(function.getLoc()) 884 .append("return type declared here"); 885 886 for (auto pair : llvm::enumerate( 887 llvm::zip(function.getType().getResults(), returnOp.operands()))) { 888 Type type; 889 Value operand; 890 std::tie(type, operand) = pair.value(); 891 if (type != operand.getType()) 892 return returnOp.emitOpError() << "unexpected type `" << operand.getType() 893 << "' for operand #" << pair.index(); 894 } 895 return success(); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // GPUModuleOp 900 //===----------------------------------------------------------------------===// 901 902 void GPUModuleOp::build(OpBuilder &builder, OperationState &result, 903 StringRef name) { 904 ensureTerminator(*result.addRegion(), builder, result.location); 905 result.attributes.push_back(builder.getNamedAttr( 906 ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); 907 } 908 909 static ParseResult parseGPUModuleOp(OpAsmParser &parser, 910 OperationState &result) { 911 StringAttr nameAttr; 912 if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(), 913 result.attributes)) 914 return failure(); 915 916 // If module attributes are present, parse them. 917 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 918 return failure(); 919 920 // Parse the module body. 921 auto *body = result.addRegion(); 922 if (parser.parseRegion(*body, None, None)) 923 return failure(); 924 925 // Ensure that this module has a valid terminator. 926 GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location); 927 return success(); 928 } 929 930 static void print(OpAsmPrinter &p, GPUModuleOp op) { 931 p << op.getOperationName() << ' '; 932 p.printSymbolName(op.getName()); 933 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 934 {SymbolTable::getSymbolAttrName()}); 935 p.printRegion(op->getRegion(0), /*printEntryBlockArgs=*/false, 936 /*printBlockTerminators=*/false); 937 } 938 939 //===----------------------------------------------------------------------===// 940 // GPUMemcpyOp 941 //===----------------------------------------------------------------------===// 942 943 static LogicalResult verify(MemcpyOp op) { 944 auto srcType = op.src().getType(); 945 auto dstType = op.dst().getType(); 946 947 if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType)) 948 return op.emitOpError("arguments have incompatible element type"); 949 950 if (failed(verifyCompatibleShape(srcType, dstType))) 951 return op.emitOpError("arguments have incompatible shape"); 952 953 return success(); 954 } 955 956 static ParseResult parseAsyncDependencies( 957 OpAsmParser &parser, Type &asyncTokenType, 958 SmallVectorImpl<OpAsmParser::OperandType> &asyncDependencies) { 959 auto loc = parser.getCurrentLocation(); 960 if (succeeded(parser.parseOptionalKeyword("async"))) { 961 if (parser.getNumResults() == 0) 962 return parser.emitError(loc, "needs to be named when marked 'async'"); 963 asyncTokenType = parser.getBuilder().getType<AsyncTokenType>(); 964 } 965 return parser.parseOperandList(asyncDependencies, 966 OpAsmParser::Delimiter::OptionalSquare); 967 } 968 969 static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op, 970 Type asyncTokenType, 971 OperandRange asyncDependencies) { 972 if (asyncTokenType) 973 printer << "async "; 974 if (asyncDependencies.empty()) 975 return; 976 printer << "["; 977 llvm::interleaveComma(asyncDependencies, printer); 978 printer << "]"; 979 } 980 981 //===----------------------------------------------------------------------===// 982 // GPU_SubgroupMmaLoadMatrixOp 983 //===----------------------------------------------------------------------===// 984 985 static LogicalResult verify(SubgroupMmaLoadMatrixOp op) { 986 auto srcType = op.srcMemref().getType(); 987 auto resType = op.res().getType(); 988 auto resMatrixType = resType.cast<gpu::MMAMatrixType>(); 989 auto operand = resMatrixType.getOperand(); 990 auto srcMemrefType = srcType.cast<MemRefType>(); 991 auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt(); 992 993 if (!srcMemrefType.getAffineMaps().empty() && 994 !srcMemrefType.getAffineMaps().front().isIdentity()) 995 return op.emitError("expected identity layout map for source memref"); 996 997 if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace && 998 srcMemSpace != kGlobalMemorySpace) 999 return op.emitError( 1000 "source memorySpace kGenericMemorySpace, kSharedMemorySpace or " 1001 "kGlobalMemorySpace only allowed"); 1002 1003 if (!operand.equals("AOp") && !operand.equals("BOp") && 1004 !operand.equals("COp")) 1005 return op.emitError("only AOp, BOp and COp can be loaded"); 1006 1007 return success(); 1008 } 1009 1010 //===----------------------------------------------------------------------===// 1011 // GPU_SubgroupMmaStoreMatrixOp 1012 //===----------------------------------------------------------------------===// 1013 1014 static LogicalResult verify(SubgroupMmaStoreMatrixOp op) { 1015 auto srcType = op.src().getType(); 1016 auto dstType = op.dstMemref().getType(); 1017 auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>(); 1018 auto dstMemrefType = dstType.cast<MemRefType>(); 1019 auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt(); 1020 1021 if (!dstMemrefType.getAffineMaps().empty() && 1022 !dstMemrefType.getAffineMaps().front().isIdentity()) 1023 return op.emitError("expected identity layout map for destination memref"); 1024 1025 if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace && 1026 dstMemSpace != kGlobalMemorySpace) 1027 return op.emitError( 1028 "destination memorySpace of kGenericMemorySpace, " 1029 "kGlobalMemorySpace or kSharedMemorySpace only allowed"); 1030 1031 if (!srcMatrixType.getOperand().equals("COp")) 1032 return op.emitError( 1033 "expected the operand matrix being stored to have 'COp' operand type"); 1034 1035 return success(); 1036 } 1037 1038 //===----------------------------------------------------------------------===// 1039 // GPU_SubgroupMmaComputeOp 1040 //===----------------------------------------------------------------------===// 1041 1042 static LogicalResult verify(SubgroupMmaComputeOp op) { 1043 enum OperandMap { A, B, C }; 1044 SmallVector<MMAMatrixType, 3> opTypes; 1045 1046 auto populateOpInfo = [&opTypes, &op]() { 1047 opTypes.push_back(op.opA().getType().cast<MMAMatrixType>()); 1048 opTypes.push_back(op.opB().getType().cast<MMAMatrixType>()); 1049 opTypes.push_back(op.opC().getType().cast<MMAMatrixType>()); 1050 }; 1051 populateOpInfo(); 1052 1053 if (!opTypes[A].getOperand().equals("AOp") || 1054 !opTypes[B].getOperand().equals("BOp") || 1055 !opTypes[C].getOperand().equals("COp")) 1056 return op.emitError("operands must be in the order AOp, BOp, COp"); 1057 1058 ArrayRef<int64_t> aShape, bShape, cShape; 1059 aShape = opTypes[A].getShape(); 1060 bShape = opTypes[B].getShape(); 1061 cShape = opTypes[C].getShape(); 1062 1063 if (aShape[1] != bShape[0] || aShape[0] != cShape[0] || 1064 bShape[1] != cShape[1]) 1065 return op.emitError("operand shapes do not satisfy matmul constraints"); 1066 1067 return success(); 1068 } 1069 1070 /// This is a common class used for patterns of the form 1071 /// "someop(memrefcast) -> someop". It folds the source of any memref.cast 1072 /// into the root operation directly. 1073 static LogicalResult foldMemRefCast(Operation *op) { 1074 bool folded = false; 1075 for (OpOperand &operand : op->getOpOperands()) { 1076 auto cast = operand.get().getDefiningOp<mlir::memref::CastOp>(); 1077 if (cast) { 1078 operand.set(cast.getOperand()); 1079 folded = true; 1080 } 1081 } 1082 return success(folded); 1083 } 1084 1085 LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands, 1086 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1087 return foldMemRefCast(*this); 1088 } 1089 1090 #include "mlir/Dialect/GPU/GPUOpInterfaces.cpp.inc" 1091 1092 #define GET_OP_CLASSES 1093 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 1094