1 //===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the GPU kernel-related dialect and its operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/GPU/GPUDialect.h" 14 15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 16 #include "mlir/Dialect/MemRef/IR/MemRef.h" 17 #include "mlir/IR/Attributes.h" 18 #include "mlir/IR/Builders.h" 19 #include "mlir/IR/BuiltinOps.h" 20 #include "mlir/IR/BuiltinTypes.h" 21 #include "mlir/IR/DialectImplementation.h" 22 #include "mlir/IR/FunctionImplementation.h" 23 #include "mlir/IR/Matchers.h" 24 #include "mlir/IR/OpImplementation.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "mlir/IR/TypeUtilities.h" 27 #include "mlir/Transforms/InliningUtils.h" 28 #include "llvm/ADT/TypeSwitch.h" 29 30 using namespace mlir; 31 using namespace mlir::gpu; 32 33 #include "mlir/Dialect/GPU/GPUOpsDialect.cpp.inc" 34 35 //===----------------------------------------------------------------------===// 36 // MMAMatrixType 37 //===----------------------------------------------------------------------===// 38 39 MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType, 40 StringRef operand) { 41 return Base::get(elementType.getContext(), shape, elementType, operand); 42 } 43 44 MMAMatrixType 45 MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError, 46 ArrayRef<int64_t> shape, Type elementType, 47 StringRef operand) { 48 return Base::getChecked(emitError, elementType.getContext(), shape, 49 elementType, operand); 50 } 51 52 unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; } 53 54 ArrayRef<int64_t> MMAMatrixType::getShape() const { 55 return getImpl()->getShape(); 56 } 57 58 Type MMAMatrixType::getElementType() const { return getImpl()->elementType; } 59 60 StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); } 61 62 bool MMAMatrixType::isValidElementType(Type elementType) { 63 return elementType.isF16() || elementType.isF32(); 64 } 65 66 LogicalResult 67 MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError, 68 ArrayRef<int64_t> shape, Type elementType, 69 StringRef operand) { 70 if (!operand.equals("AOp") && !operand.equals("BOp") && 71 !operand.equals("COp")) 72 return emitError() << "operand expected to be one of AOp, BOp or COp"; 73 74 if (shape.size() != 2) 75 return emitError() << "MMAMatrixType must have exactly two dimensions"; 76 77 if (!MMAMatrixType::isValidElementType(elementType)) 78 return emitError() << "MMAMatrixType elements must be F16 or F32"; 79 80 return success(); 81 } 82 83 //===----------------------------------------------------------------------===// 84 // GPUDialect 85 //===----------------------------------------------------------------------===// 86 87 /// GPU memory space identifiers. 88 enum GPUMemorySpace { 89 /// Generic memory space identifier. 90 kGenericMemorySpace = 0, 91 92 /// Global memory space identifier. 93 kGlobalMemorySpace = 1, 94 95 /// Shared memory space identifier. 96 kSharedMemorySpace = 3 97 }; 98 99 bool GPUDialect::isKernel(Operation *op) { 100 UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName()); 101 return static_cast<bool>(isKernelAttr); 102 } 103 104 namespace { 105 /// This class defines the interface for handling inlining with gpu 106 /// operations. 107 struct GPUInlinerInterface : public DialectInlinerInterface { 108 using DialectInlinerInterface::DialectInlinerInterface; 109 110 /// All gpu dialect ops can be inlined. 111 bool isLegalToInline(Operation *, Region *, bool, 112 BlockAndValueMapping &) const final { 113 return true; 114 } 115 }; 116 } // namespace 117 118 void GPUDialect::initialize() { 119 addTypes<AsyncTokenType>(); 120 addTypes<DeviceAsyncTokenType>(); 121 addTypes<MMAMatrixType>(); 122 addOperations< 123 #define GET_OP_LIST 124 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 125 >(); 126 addAttributes< 127 #define GET_ATTRDEF_LIST 128 #include "mlir/Dialect/GPU/GPUOpsAttributes.cpp.inc" 129 >(); 130 addInterfaces<GPUInlinerInterface>(); 131 } 132 133 Type GPUDialect::parseType(DialectAsmParser &parser) const { 134 // Parse the main keyword for the type. 135 StringRef keyword; 136 if (parser.parseKeyword(&keyword)) 137 return Type(); 138 MLIRContext *context = getContext(); 139 140 // Handle 'async token' types. 141 if (keyword == "async.token") 142 return AsyncTokenType::get(context); 143 // Handle 'device async token' types. 144 if (keyword == "device.async.token") 145 return DeviceAsyncTokenType::get(context); 146 147 if (keyword == "mma_matrix") { 148 SMLoc beginLoc = parser.getNameLoc(); 149 150 // Parse '<'. 151 if (parser.parseLess()) 152 return nullptr; 153 154 // Parse the size and elementType. 155 SmallVector<int64_t> shape; 156 Type elementType; 157 if (parser.parseDimensionList(shape, /*allowDynamic=*/false) || 158 parser.parseType(elementType)) 159 return nullptr; 160 161 // Parse ',' 162 if (parser.parseComma()) 163 return nullptr; 164 165 // Parse operand. 166 std::string operand; 167 if (failed(parser.parseOptionalString(&operand))) 168 return nullptr; 169 170 // Parse '>'. 171 if (parser.parseGreater()) 172 return nullptr; 173 174 return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn( 175 parser.getEncodedSourceLoc(beginLoc)), 176 shape, elementType, operand); 177 } 178 179 parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword); 180 return Type(); 181 } 182 183 void GPUDialect::printType(Type type, DialectAsmPrinter &os) const { 184 TypeSwitch<Type>(type) 185 .Case<AsyncTokenType>([&](Type) { os << "async.token"; }) 186 .Case<DeviceAsyncTokenType>([&](Type) { os << "device.async.token"; }) 187 .Case<MMAMatrixType>([&](MMAMatrixType fragTy) { 188 os << "mma_matrix<"; 189 auto shape = fragTy.getShape(); 190 for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim) 191 os << *dim << 'x'; 192 os << shape.back() << 'x' << fragTy.getElementType(); 193 os << ", \"" << fragTy.getOperand() << "\"" << '>'; 194 }) 195 .Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); }); 196 } 197 198 LogicalResult GPUDialect::verifyOperationAttribute(Operation *op, 199 NamedAttribute attr) { 200 if (!attr.getValue().isa<UnitAttr>() || 201 attr.getName() != getContainerModuleAttrName()) 202 return success(); 203 204 auto module = dyn_cast<ModuleOp>(op); 205 if (!module) 206 return op->emitError("expected '") 207 << getContainerModuleAttrName() << "' attribute to be attached to '" 208 << ModuleOp::getOperationName() << '\''; 209 210 auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult { 211 // Ignore launches that are nested more or less deep than functions in the 212 // module we are currently checking. 213 if (!launchOp->getParentOp() || 214 launchOp->getParentOp()->getParentOp() != module) 215 return success(); 216 217 // Ignore launch ops with missing attributes here. The errors will be 218 // reported by the verifiers of those ops. 219 if (!launchOp->getAttrOfType<SymbolRefAttr>( 220 LaunchFuncOp::getKernelAttrName())) 221 return success(); 222 223 // Check that `launch_func` refers to a well-formed GPU kernel module. 224 StringAttr kernelModuleName = launchOp.getKernelModuleName(); 225 auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName); 226 if (!kernelModule) 227 return launchOp.emitOpError() 228 << "kernel module '" << kernelModuleName.getValue() 229 << "' is undefined"; 230 231 // Check that `launch_func` refers to a well-formed kernel function. 232 Operation *kernelFunc = module.lookupSymbol(launchOp.kernelAttr()); 233 if (!kernelFunc) 234 return launchOp.emitOpError("kernel function '") 235 << launchOp.kernel() << "' is undefined"; 236 auto kernelConvertedFunction = dyn_cast<FunctionOpInterface>(kernelFunc); 237 if (!kernelConvertedFunction) { 238 InFlightDiagnostic diag = launchOp.emitOpError() 239 << "referenced kernel '" << launchOp.kernel() 240 << "' is not a function"; 241 diag.attachNote(kernelFunc->getLoc()) << "see the kernel definition here"; 242 return diag; 243 } 244 245 if (!kernelFunc->getAttrOfType<mlir::UnitAttr>( 246 GPUDialect::getKernelFuncAttrName())) 247 return launchOp.emitOpError("kernel function is missing the '") 248 << GPUDialect::getKernelFuncAttrName() << "' attribute"; 249 250 // TODO: If the kernel isn't a GPU function (which happens during separate 251 // compilation), do not check type correspondence as it would require the 252 // verifier to be aware of the type conversion. 253 auto kernelGPUFunction = dyn_cast<gpu::GPUFuncOp>(kernelFunc); 254 if (!kernelGPUFunction) 255 return success(); 256 257 unsigned actualNumArguments = launchOp.getNumKernelOperands(); 258 unsigned expectedNumArguments = kernelGPUFunction.getNumArguments(); 259 if (expectedNumArguments != actualNumArguments) 260 return launchOp.emitOpError("got ") 261 << actualNumArguments << " kernel operands but expected " 262 << expectedNumArguments; 263 264 auto functionType = kernelGPUFunction.getFunctionType(); 265 for (unsigned i = 0; i < expectedNumArguments; ++i) { 266 if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) { 267 return launchOp.emitOpError("type of function argument ") 268 << i << " does not match"; 269 } 270 } 271 272 return success(); 273 }); 274 275 return walkResult.wasInterrupted() ? failure() : success(); 276 } 277 278 /// Parses an optional list of async operands with an optional leading keyword. 279 /// (`async`)? (`[` ssa-id-list `]`)? 280 /// 281 /// This method is used by the tablegen assembly format for async ops as well. 282 static ParseResult parseAsyncDependencies( 283 OpAsmParser &parser, Type &asyncTokenType, 284 SmallVectorImpl<OpAsmParser::UnresolvedOperand> &asyncDependencies) { 285 auto loc = parser.getCurrentLocation(); 286 if (succeeded(parser.parseOptionalKeyword("async"))) { 287 if (parser.getNumResults() == 0) 288 return parser.emitError(loc, "needs to be named when marked 'async'"); 289 asyncTokenType = parser.getBuilder().getType<AsyncTokenType>(); 290 } 291 return parser.parseOperandList(asyncDependencies, 292 OpAsmParser::Delimiter::OptionalSquare); 293 } 294 295 /// Prints optional async dependencies with its leading keyword. 296 /// (`async`)? (`[` ssa-id-list `]`)? 297 // Used by the tablegen assembly format for several async ops. 298 static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op, 299 Type asyncTokenType, 300 OperandRange asyncDependencies) { 301 if (asyncTokenType) 302 printer << "async"; 303 if (asyncDependencies.empty()) 304 return; 305 if (asyncTokenType) 306 printer << ' '; 307 printer << '['; 308 llvm::interleaveComma(asyncDependencies, printer); 309 printer << ']'; 310 } 311 312 //===----------------------------------------------------------------------===// 313 // AllReduceOp 314 //===----------------------------------------------------------------------===// 315 316 LogicalResult gpu::AllReduceOp::verifyRegions() { 317 if (body().empty() != op().hasValue()) 318 return emitError("expected either an op attribute or a non-empty body"); 319 if (!body().empty()) { 320 if (body().getNumArguments() != 2) 321 return emitError("expected two region arguments"); 322 for (auto argument : body().getArguments()) { 323 if (argument.getType() != getType()) 324 return emitError("incorrect region argument type"); 325 } 326 unsigned yieldCount = 0; 327 for (Block &block : body()) { 328 if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) { 329 if (yield.getNumOperands() != 1) 330 return emitError("expected one gpu.yield operand"); 331 if (yield.getOperand(0).getType() != getType()) 332 return emitError("incorrect gpu.yield type"); 333 ++yieldCount; 334 } 335 } 336 if (yieldCount == 0) 337 return emitError("expected gpu.yield op in region"); 338 } else { 339 gpu::AllReduceOperation opName = *op(); 340 if ((opName == gpu::AllReduceOperation::AND || 341 opName == gpu::AllReduceOperation::OR || 342 opName == gpu::AllReduceOperation::XOR) && 343 !getType().isa<IntegerType>()) { 344 return emitError() 345 << '`' << gpu::stringifyAllReduceOperation(opName) 346 << "` accumulator is only compatible with Integer type"; 347 } 348 } 349 return success(); 350 } 351 352 // TODO: Support optional custom attributes (without dialect prefix). 353 static ParseResult parseAllReduceOperation(AsmParser &parser, 354 AllReduceOperationAttr &attr) { 355 StringRef enumStr; 356 if (!parser.parseOptionalKeyword(&enumStr)) { 357 Optional<AllReduceOperation> op = gpu::symbolizeAllReduceOperation(enumStr); 358 if (!op) 359 return parser.emitError(parser.getCurrentLocation(), "invalid op kind"); 360 attr = AllReduceOperationAttr::get(parser.getContext(), *op); 361 } 362 return success(); 363 } 364 365 static void printAllReduceOperation(AsmPrinter &printer, Operation *op, 366 AllReduceOperationAttr attr) { 367 if (attr) 368 attr.print(printer); 369 } 370 371 //===----------------------------------------------------------------------===// 372 // AsyncOpInterface 373 //===----------------------------------------------------------------------===// 374 375 void gpu::addAsyncDependency(Operation *op, Value token) { 376 op->insertOperands(0, {token}); 377 if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>()) 378 return; 379 auto attrName = 380 OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr(); 381 auto sizeAttr = op->template getAttrOfType<DenseIntElementsAttr>(attrName); 382 383 // Async dependencies is the only variadic operand. 384 if (!sizeAttr) 385 return; 386 387 SmallVector<int32_t, 8> sizes(sizeAttr.getValues<int32_t>()); 388 ++sizes.front(); 389 op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes)); 390 } 391 392 //===----------------------------------------------------------------------===// 393 // LaunchOp 394 //===----------------------------------------------------------------------===// 395 396 void LaunchOp::build(OpBuilder &builder, OperationState &result, 397 Value gridSizeX, Value gridSizeY, Value gridSizeZ, 398 Value blockSizeX, Value blockSizeY, Value blockSizeZ, 399 Value dynamicSharedMemorySize, Type asyncTokenType, 400 ValueRange asyncDependencies) { 401 result.addOperands(asyncDependencies); 402 if (asyncTokenType) 403 result.types.push_back(builder.getType<AsyncTokenType>()); 404 405 // Add grid and block sizes as op operands, followed by the data operands. 406 result.addOperands( 407 {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); 408 if (dynamicSharedMemorySize) 409 result.addOperands(dynamicSharedMemorySize); 410 411 // Create a kernel body region with kNumConfigRegionAttributes + N arguments, 412 // where the first kNumConfigRegionAttributes arguments have `index` type and 413 // the rest have the same types as the data operands. 414 Region *kernelRegion = result.addRegion(); 415 Block *body = new Block(); 416 for (unsigned i = 0; i < kNumConfigRegionAttributes; ++i) 417 body->addArgument(builder.getIndexType(), result.location); 418 kernelRegion->push_back(body); 419 SmallVector<int32_t, 8> segmentSizes(8, 1); 420 segmentSizes.front() = asyncDependencies.size(); 421 segmentSizes.back() = dynamicSharedMemorySize ? 1 : 0; 422 result.addAttribute(getOperandSegmentSizeAttr(), 423 builder.getI32VectorAttr(segmentSizes)); 424 } 425 426 KernelDim3 LaunchOp::getBlockIds() { 427 assert(!body().empty() && "LaunchOp body must not be empty."); 428 auto args = body().getArguments(); 429 return KernelDim3{args[0], args[1], args[2]}; 430 } 431 432 KernelDim3 LaunchOp::getThreadIds() { 433 assert(!body().empty() && "LaunchOp body must not be empty."); 434 auto args = body().getArguments(); 435 return KernelDim3{args[3], args[4], args[5]}; 436 } 437 438 KernelDim3 LaunchOp::getGridSize() { 439 assert(!body().empty() && "LaunchOp body must not be empty."); 440 auto args = body().getArguments(); 441 return KernelDim3{args[6], args[7], args[8]}; 442 } 443 444 KernelDim3 LaunchOp::getBlockSize() { 445 assert(!body().empty() && "LaunchOp body must not be empty."); 446 auto args = body().getArguments(); 447 return KernelDim3{args[9], args[10], args[11]}; 448 } 449 450 KernelDim3 LaunchOp::getGridSizeOperandValues() { 451 auto operands = getOperands().drop_front(asyncDependencies().size()); 452 return KernelDim3{operands[0], operands[1], operands[2]}; 453 } 454 455 KernelDim3 LaunchOp::getBlockSizeOperandValues() { 456 auto operands = getOperands().drop_front(asyncDependencies().size()); 457 return KernelDim3{operands[3], operands[4], operands[5]}; 458 } 459 460 LogicalResult LaunchOp::verifyRegions() { 461 // Kernel launch takes kNumConfigOperands leading operands for grid/block 462 // sizes and transforms them into kNumConfigRegionAttributes region arguments 463 // for block/thread identifiers and grid/block sizes. 464 if (!body().empty()) { 465 if (body().getNumArguments() != 466 LaunchOp::kNumConfigOperands + getNumOperands() - 467 (dynamicSharedMemorySize() ? 1 : 0) - asyncDependencies().size()) 468 return emitOpError("unexpected number of region arguments"); 469 } 470 471 // Block terminators without successors are expected to exit the kernel region 472 // and must be `gpu.terminator`. 473 for (Block &block : body()) { 474 if (block.empty()) 475 continue; 476 if (block.back().getNumSuccessors() != 0) 477 continue; 478 if (!isa<gpu::TerminatorOp>(&block.back())) { 479 return block.back() 480 .emitError() 481 .append("expected '", gpu::TerminatorOp::getOperationName(), 482 "' or a terminator with successors") 483 .attachNote(getLoc()) 484 .append("in '", LaunchOp::getOperationName(), "' body region"); 485 } 486 } 487 488 if (getNumResults() == 0 && asyncToken()) 489 return emitOpError("needs to be named when async keyword is specified"); 490 491 return success(); 492 } 493 494 // Pretty-print the kernel grid/block size assignment as 495 // (%iter-x, %iter-y, %iter-z) in 496 // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use) 497 // where %size-* and %iter-* will correspond to the body region arguments. 498 static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size, 499 KernelDim3 operands, KernelDim3 ids) { 500 p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in ("; 501 p << size.x << " = " << operands.x << ", "; 502 p << size.y << " = " << operands.y << ", "; 503 p << size.z << " = " << operands.z << ')'; 504 } 505 506 void LaunchOp::print(OpAsmPrinter &p) { 507 if (asyncToken()) { 508 p << " async"; 509 if (!asyncDependencies().empty()) 510 p << " [" << asyncDependencies() << ']'; 511 } 512 // Print the launch configuration. 513 p << ' ' << getBlocksKeyword(); 514 printSizeAssignment(p, getGridSize(), getGridSizeOperandValues(), 515 getBlockIds()); 516 p << ' ' << getThreadsKeyword(); 517 printSizeAssignment(p, getBlockSize(), getBlockSizeOperandValues(), 518 getThreadIds()); 519 if (dynamicSharedMemorySize()) 520 p << ' ' << getDynamicSharedMemorySizeKeyword() << ' ' 521 << dynamicSharedMemorySize(); 522 523 p << ' '; 524 p.printRegion(body(), /*printEntryBlockArgs=*/false); 525 p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{ 526 LaunchOp::getOperandSegmentSizeAttr()}); 527 } 528 529 // Parse the size assignment blocks for blocks and threads. These have the form 530 // (%region_arg, %region_arg, %region_arg) in 531 // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand) 532 // where %region_arg are percent-identifiers for the region arguments to be 533 // introduced further (SSA defs), and %operand are percent-identifiers for the 534 // SSA value uses. 535 static ParseResult 536 parseSizeAssignment(OpAsmParser &parser, 537 MutableArrayRef<OpAsmParser::UnresolvedOperand> sizes, 538 MutableArrayRef<OpAsmParser::UnresolvedOperand> regionSizes, 539 MutableArrayRef<OpAsmParser::UnresolvedOperand> indices) { 540 assert(indices.size() == 3 && "space for three indices expected"); 541 SmallVector<OpAsmParser::UnresolvedOperand, 3> args; 542 if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3, 543 OpAsmParser::Delimiter::Paren) || 544 parser.parseKeyword("in") || parser.parseLParen()) 545 return failure(); 546 std::move(args.begin(), args.end(), indices.begin()); 547 548 for (int i = 0; i < 3; ++i) { 549 if (i != 0 && parser.parseComma()) 550 return failure(); 551 if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() || 552 parser.parseOperand(sizes[i])) 553 return failure(); 554 } 555 556 return parser.parseRParen(); 557 } 558 559 /// Parses a Launch operation. 560 /// operation ::= `gpu.launch` (`async` `[` ssa-id-list `]`)? 561 // `blocks` `(` ssa-id-list `)` `in` ssa-reassignment 562 /// `threads` `(` ssa-id-list `)` `in` ssa-reassignment 563 /// region attr-dict? 564 /// ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)` 565 ParseResult LaunchOp::parse(OpAsmParser &parser, OperationState &result) { 566 // Sizes of the grid and block. 567 SmallVector<OpAsmParser::UnresolvedOperand, LaunchOp::kNumConfigOperands> 568 sizes(LaunchOp::kNumConfigOperands); 569 MutableArrayRef<OpAsmParser::UnresolvedOperand> sizesRef(sizes); 570 571 // Actual (data) operands passed to the kernel. 572 SmallVector<OpAsmParser::UnresolvedOperand, 4> dataOperands; 573 574 // Region arguments to be created. 575 SmallVector<OpAsmParser::UnresolvedOperand, 16> regionArgs( 576 LaunchOp::kNumConfigRegionAttributes); 577 MutableArrayRef<OpAsmParser::UnresolvedOperand> regionArgsRef(regionArgs); 578 579 // Parse optional async dependencies. 580 SmallVector<OpAsmParser::UnresolvedOperand, 4> asyncDependencies; 581 Type asyncTokenType; 582 if (failed( 583 parseAsyncDependencies(parser, asyncTokenType, asyncDependencies)) || 584 parser.resolveOperands(asyncDependencies, asyncTokenType, 585 result.operands)) 586 return failure(); 587 if (parser.getNumResults() > 0) 588 result.types.push_back(asyncTokenType); 589 590 // Parse the size assignment segments: the first segment assigns grid sizes 591 // and defines values for block identifiers; the second segment assigns block 592 // sizes and defines values for thread identifiers. In the region argument 593 // list, identifiers precede sizes, and block-related values precede 594 // thread-related values. 595 if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) || 596 parseSizeAssignment(parser, sizesRef.take_front(3), 597 regionArgsRef.slice(6, 3), 598 regionArgsRef.slice(0, 3)) || 599 parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) || 600 parseSizeAssignment(parser, sizesRef.drop_front(3), 601 regionArgsRef.slice(9, 3), 602 regionArgsRef.slice(3, 3)) || 603 parser.resolveOperands(sizes, parser.getBuilder().getIndexType(), 604 result.operands)) 605 return failure(); 606 607 OpAsmParser::UnresolvedOperand dynamicSharedMemorySize; 608 bool hasDynamicSharedMemorySize = false; 609 if (!parser.parseOptionalKeyword( 610 LaunchOp::getDynamicSharedMemorySizeKeyword())) { 611 hasDynamicSharedMemorySize = true; 612 if (parser.parseOperand(dynamicSharedMemorySize) || 613 parser.resolveOperand(dynamicSharedMemorySize, 614 parser.getBuilder().getI32Type(), 615 result.operands)) 616 return failure(); 617 } 618 619 // Introduce the body region and parse it. The region has 620 // kNumConfigRegionAttributes arguments that correspond to 621 // block/thread identifiers and grid/block sizes, all of the `index` type. 622 Type index = parser.getBuilder().getIndexType(); 623 SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes( 624 LaunchOp::kNumConfigRegionAttributes, index); 625 Region *body = result.addRegion(); 626 if (parser.parseRegion(*body, regionArgs, dataTypes) || 627 parser.parseOptionalAttrDict(result.attributes)) 628 return failure(); 629 630 SmallVector<int32_t, 8> segmentSizes(8, 1); 631 segmentSizes.front() = asyncDependencies.size(); 632 segmentSizes.back() = hasDynamicSharedMemorySize ? 1 : 0; 633 result.addAttribute(LaunchOp::getOperandSegmentSizeAttr(), 634 parser.getBuilder().getI32VectorAttr(segmentSizes)); 635 return success(); 636 } 637 638 /// Simplify the gpu.launch when the range of a thread or block ID is 639 /// trivially known to be one. 640 struct FoldLaunchArguments : public OpRewritePattern<LaunchOp> { 641 using OpRewritePattern<LaunchOp>::OpRewritePattern; 642 LogicalResult matchAndRewrite(LaunchOp op, 643 PatternRewriter &rewriter) const override { 644 // If the range implies a single value for `id`, replace `id`'s uses by 645 // zero. 646 Value zero; 647 bool simplified = false; 648 auto constPropIdUses = [&](Value id, Value size) { 649 // Check if size is trivially one. 650 if (!matchPattern(size, m_One())) 651 return; 652 if (!simplified) { 653 // Create a zero value the first time. 654 OpBuilder::InsertionGuard guard(rewriter); 655 rewriter.setInsertionPointToStart(&op.body().front()); 656 zero = 657 rewriter.create<arith::ConstantIndexOp>(op.getLoc(), /*value=*/0); 658 } 659 id.replaceAllUsesWith(zero); 660 simplified = true; 661 }; 662 constPropIdUses(op.getBlockIds().x, op.gridSizeX()); 663 constPropIdUses(op.getBlockIds().y, op.gridSizeY()); 664 constPropIdUses(op.getBlockIds().z, op.gridSizeZ()); 665 constPropIdUses(op.getThreadIds().x, op.blockSizeX()); 666 constPropIdUses(op.getThreadIds().y, op.blockSizeY()); 667 constPropIdUses(op.getThreadIds().z, op.blockSizeZ()); 668 669 return success(simplified); 670 } 671 }; 672 673 void LaunchOp::getCanonicalizationPatterns(RewritePatternSet &rewrites, 674 MLIRContext *context) { 675 rewrites.add<FoldLaunchArguments>(context); 676 } 677 678 //===----------------------------------------------------------------------===// 679 // LaunchFuncOp 680 //===----------------------------------------------------------------------===// 681 682 void LaunchFuncOp::build(OpBuilder &builder, OperationState &result, 683 GPUFuncOp kernelFunc, KernelDim3 gridSize, 684 KernelDim3 blockSize, Value dynamicSharedMemorySize, 685 ValueRange kernelOperands, Type asyncTokenType, 686 ValueRange asyncDependencies) { 687 result.addOperands(asyncDependencies); 688 if (asyncTokenType) 689 result.types.push_back(builder.getType<AsyncTokenType>()); 690 691 // Add grid and block sizes as op operands, followed by the data operands. 692 result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x, 693 blockSize.y, blockSize.z}); 694 if (dynamicSharedMemorySize) 695 result.addOperands(dynamicSharedMemorySize); 696 result.addOperands(kernelOperands); 697 auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>(); 698 auto kernelSymbol = 699 SymbolRefAttr::get(kernelModule.getNameAttr(), 700 {SymbolRefAttr::get(kernelFunc.getNameAttr())}); 701 result.addAttribute(getKernelAttrName(), kernelSymbol); 702 SmallVector<int32_t, 9> segmentSizes(9, 1); 703 segmentSizes.front() = asyncDependencies.size(); 704 segmentSizes[segmentSizes.size() - 2] = dynamicSharedMemorySize ? 1 : 0; 705 segmentSizes.back() = static_cast<int32_t>(kernelOperands.size()); 706 result.addAttribute(getOperandSegmentSizeAttr(), 707 builder.getI32VectorAttr(segmentSizes)); 708 } 709 710 unsigned LaunchFuncOp::getNumKernelOperands() { 711 return getNumOperands() - asyncDependencies().size() - kNumConfigOperands - 712 (dynamicSharedMemorySize() ? 1 : 0); 713 } 714 715 StringAttr LaunchFuncOp::getKernelModuleName() { 716 return kernel().getRootReference(); 717 } 718 719 StringAttr LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); } 720 721 Value LaunchFuncOp::getKernelOperand(unsigned i) { 722 return getOperand(asyncDependencies().size() + kNumConfigOperands + 723 (dynamicSharedMemorySize() ? 1 : 0) + i); 724 } 725 726 KernelDim3 LaunchFuncOp::getGridSizeOperandValues() { 727 auto operands = getOperands().drop_front(asyncDependencies().size()); 728 return KernelDim3{operands[0], operands[1], operands[2]}; 729 } 730 731 KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() { 732 auto operands = getOperands().drop_front(asyncDependencies().size()); 733 return KernelDim3{operands[3], operands[4], operands[5]}; 734 } 735 736 LogicalResult LaunchFuncOp::verify() { 737 auto module = (*this)->getParentOfType<ModuleOp>(); 738 if (!module) 739 return emitOpError("expected to belong to a module"); 740 741 if (!module->getAttrOfType<UnitAttr>( 742 GPUDialect::getContainerModuleAttrName())) 743 return emitOpError("expected the closest surrounding module to have the '" + 744 GPUDialect::getContainerModuleAttrName() + 745 "' attribute"); 746 747 auto kernelAttr = (*this)->getAttrOfType<SymbolRefAttr>(getKernelAttrName()); 748 if (!kernelAttr) 749 return emitOpError("symbol reference attribute '" + getKernelAttrName() + 750 "' must be specified"); 751 752 return success(); 753 } 754 755 static ParseResult parseLaunchFuncOperands( 756 OpAsmParser &parser, 757 SmallVectorImpl<OpAsmParser::UnresolvedOperand> &argNames, 758 SmallVectorImpl<Type> &argTypes) { 759 if (parser.parseOptionalKeyword("args")) 760 return success(); 761 SmallVector<NamedAttrList> argAttrs; 762 bool isVariadic = false; 763 return function_interface_impl::parseFunctionArgumentList( 764 parser, /*allowAttributes=*/false, 765 /*allowVariadic=*/false, argNames, argTypes, argAttrs, isVariadic); 766 } 767 768 static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *, 769 OperandRange operands, TypeRange types) { 770 if (operands.empty()) 771 return; 772 printer << "args("; 773 llvm::interleaveComma(llvm::zip(operands, types), printer, 774 [&](const auto &pair) { 775 printer.printOperand(std::get<0>(pair)); 776 printer << " : "; 777 printer.printType(std::get<1>(pair)); 778 }); 779 printer << ")"; 780 } 781 782 // 783 784 //===----------------------------------------------------------------------===// 785 // ShuffleOp 786 //===----------------------------------------------------------------------===// 787 788 void ShuffleOp::build(OpBuilder &builder, OperationState &result, Value value, 789 int32_t offset, int32_t width, ShuffleMode mode) { 790 build(builder, result, value, 791 builder.create<arith::ConstantOp>(result.location, 792 builder.getI32IntegerAttr(offset)), 793 builder.create<arith::ConstantOp>(result.location, 794 builder.getI32IntegerAttr(width)), 795 mode); 796 } 797 798 //===----------------------------------------------------------------------===// 799 // GPUFuncOp 800 //===----------------------------------------------------------------------===// 801 802 /// Adds a new block argument that corresponds to buffers located in 803 /// workgroup memory. 804 BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type, Location loc) { 805 auto attrName = getNumWorkgroupAttributionsAttrName(); 806 auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName); 807 (*this)->setAttr(attrName, 808 IntegerAttr::get(attr.getType(), attr.getValue() + 1)); 809 return getBody().insertArgument( 810 getFunctionType().getNumInputs() + attr.getInt(), type, loc); 811 } 812 813 /// Adds a new block argument that corresponds to buffers located in 814 /// private memory. 815 BlockArgument GPUFuncOp::addPrivateAttribution(Type type, Location loc) { 816 // Buffers on the private memory always come after buffers on the workgroup 817 // memory. 818 return getBody().addArgument(type, loc); 819 } 820 821 void GPUFuncOp::build(OpBuilder &builder, OperationState &result, 822 StringRef name, FunctionType type, 823 TypeRange workgroupAttributions, 824 TypeRange privateAttributions, 825 ArrayRef<NamedAttribute> attrs) { 826 result.addAttribute(SymbolTable::getSymbolAttrName(), 827 builder.getStringAttr(name)); 828 result.addAttribute(getTypeAttrName(), TypeAttr::get(type)); 829 result.addAttribute(getNumWorkgroupAttributionsAttrName(), 830 builder.getI64IntegerAttr(workgroupAttributions.size())); 831 result.addAttributes(attrs); 832 Region *body = result.addRegion(); 833 Block *entryBlock = new Block; 834 835 // TODO: Allow passing in proper locations here. 836 for (Type argTy : type.getInputs()) 837 entryBlock->addArgument(argTy, result.location); 838 for (Type argTy : workgroupAttributions) 839 entryBlock->addArgument(argTy, result.location); 840 for (Type argTy : privateAttributions) 841 entryBlock->addArgument(argTy, result.location); 842 843 body->getBlocks().push_back(entryBlock); 844 } 845 846 /// Parses a GPU function memory attribution. 847 /// 848 /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)? 849 /// (`private` `(` ssa-id-and-type-list `)`)? 850 /// 851 /// Note that this function parses only one of the two similar parts, with the 852 /// keyword provided as argument. 853 static ParseResult 854 parseAttributions(OpAsmParser &parser, StringRef keyword, 855 SmallVectorImpl<OpAsmParser::UnresolvedOperand> &args, 856 SmallVectorImpl<Type> &argTypes) { 857 // If we could not parse the keyword, just assume empty list and succeed. 858 if (failed(parser.parseOptionalKeyword(keyword))) 859 return success(); 860 861 if (failed(parser.parseLParen())) 862 return failure(); 863 864 // Early exit for an empty list. 865 if (succeeded(parser.parseOptionalRParen())) 866 return success(); 867 868 do { 869 OpAsmParser::UnresolvedOperand arg; 870 Type type; 871 872 if (parser.parseRegionArgument(arg) || parser.parseColonType(type)) 873 return failure(); 874 875 args.push_back(arg); 876 argTypes.push_back(type); 877 } while (succeeded(parser.parseOptionalComma())); 878 879 return parser.parseRParen(); 880 } 881 882 /// Parses a GPU function. 883 /// 884 /// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)` 885 /// (`->` function-result-list)? memory-attribution `kernel`? 886 /// function-attributes? region 887 ParseResult GPUFuncOp::parse(OpAsmParser &parser, OperationState &result) { 888 SmallVector<OpAsmParser::UnresolvedOperand> entryArgs; 889 SmallVector<NamedAttrList> argAttrs; 890 SmallVector<NamedAttrList> resultAttrs; 891 SmallVector<Type> argTypes; 892 SmallVector<Type> resultTypes; 893 bool isVariadic; 894 895 // Parse the function name. 896 StringAttr nameAttr; 897 if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), 898 result.attributes)) 899 return failure(); 900 901 auto signatureLocation = parser.getCurrentLocation(); 902 if (failed(function_interface_impl::parseFunctionSignature( 903 parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs, 904 isVariadic, resultTypes, resultAttrs))) 905 return failure(); 906 907 if (entryArgs.empty() && !argTypes.empty()) 908 return parser.emitError(signatureLocation) 909 << "gpu.func requires named arguments"; 910 911 // Construct the function type. More types will be added to the region, but 912 // not to the function type. 913 Builder &builder = parser.getBuilder(); 914 auto type = builder.getFunctionType(argTypes, resultTypes); 915 result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type)); 916 917 // Parse workgroup memory attributions. 918 if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(), 919 entryArgs, argTypes))) 920 return failure(); 921 922 // Store the number of operands we just parsed as the number of workgroup 923 // memory attributions. 924 unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs(); 925 result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(), 926 builder.getI64IntegerAttr(numWorkgroupAttrs)); 927 928 // Parse private memory attributions. 929 if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), 930 entryArgs, argTypes))) 931 return failure(); 932 933 // Parse the kernel attribute if present. 934 if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword()))) 935 result.addAttribute(GPUDialect::getKernelFuncAttrName(), 936 builder.getUnitAttr()); 937 938 // Parse attributes. 939 if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) 940 return failure(); 941 function_interface_impl::addArgAndResultAttrs(builder, result, argAttrs, 942 resultAttrs); 943 944 // Parse the region. If no argument names were provided, take all names 945 // (including those of attributions) from the entry block. 946 auto *body = result.addRegion(); 947 return parser.parseRegion(*body, entryArgs, argTypes); 948 } 949 950 static void printAttributions(OpAsmPrinter &p, StringRef keyword, 951 ArrayRef<BlockArgument> values) { 952 if (values.empty()) 953 return; 954 955 p << ' ' << keyword << '('; 956 llvm::interleaveComma( 957 values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); }); 958 p << ')'; 959 } 960 961 void GPUFuncOp::print(OpAsmPrinter &p) { 962 p << ' '; 963 p.printSymbolName(getName()); 964 965 FunctionType type = getFunctionType(); 966 function_interface_impl::printFunctionSignature(p, *this, type.getInputs(), 967 /*isVariadic=*/false, 968 type.getResults()); 969 970 printAttributions(p, getWorkgroupKeyword(), getWorkgroupAttributions()); 971 printAttributions(p, getPrivateKeyword(), getPrivateAttributions()); 972 if (isKernel()) 973 p << ' ' << getKernelKeyword(); 974 975 function_interface_impl::printFunctionAttributes( 976 p, *this, type.getNumInputs(), type.getNumResults(), 977 {getNumWorkgroupAttributionsAttrName(), 978 GPUDialect::getKernelFuncAttrName()}); 979 p << ' '; 980 p.printRegion(getBody(), /*printEntryBlockArgs=*/false); 981 } 982 983 LogicalResult GPUFuncOp::verifyType() { 984 Type type = getFunctionTypeAttr().getValue(); 985 if (!type.isa<FunctionType>()) 986 return emitOpError("requires '" + getTypeAttrName() + 987 "' attribute of function type"); 988 989 if (isKernel() && getFunctionType().getNumResults() != 0) 990 return emitOpError() << "expected void return type for kernel function"; 991 992 return success(); 993 } 994 995 static LogicalResult verifyAttributions(Operation *op, 996 ArrayRef<BlockArgument> attributions, 997 unsigned memorySpace) { 998 for (Value v : attributions) { 999 auto type = v.getType().dyn_cast<MemRefType>(); 1000 if (!type) 1001 return op->emitOpError() << "expected memref type in attribution"; 1002 1003 if (type.getMemorySpaceAsInt() != memorySpace) { 1004 return op->emitOpError() 1005 << "expected memory space " << memorySpace << " in attribution"; 1006 } 1007 } 1008 return success(); 1009 } 1010 1011 /// Verifies the body of the function. 1012 LogicalResult GPUFuncOp::verifyBody() { 1013 unsigned numFuncArguments = getNumArguments(); 1014 unsigned numWorkgroupAttributions = getNumWorkgroupAttributions(); 1015 unsigned numBlockArguments = front().getNumArguments(); 1016 if (numBlockArguments < numFuncArguments + numWorkgroupAttributions) 1017 return emitOpError() << "expected at least " 1018 << numFuncArguments + numWorkgroupAttributions 1019 << " arguments to body region"; 1020 1021 ArrayRef<Type> funcArgTypes = getFunctionType().getInputs(); 1022 for (unsigned i = 0; i < numFuncArguments; ++i) { 1023 Type blockArgType = front().getArgument(i).getType(); 1024 if (funcArgTypes[i] != blockArgType) 1025 return emitOpError() << "expected body region argument #" << i 1026 << " to be of type " << funcArgTypes[i] << ", got " 1027 << blockArgType; 1028 } 1029 1030 if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(), 1031 GPUDialect::getWorkgroupAddressSpace())) || 1032 failed(verifyAttributions(getOperation(), getPrivateAttributions(), 1033 GPUDialect::getPrivateAddressSpace()))) 1034 return failure(); 1035 1036 return success(); 1037 } 1038 1039 //===----------------------------------------------------------------------===// 1040 // ReturnOp 1041 //===----------------------------------------------------------------------===// 1042 1043 LogicalResult gpu::ReturnOp::verify() { 1044 GPUFuncOp function = (*this)->getParentOfType<GPUFuncOp>(); 1045 1046 FunctionType funType = function.getFunctionType(); 1047 1048 if (funType.getNumResults() != operands().size()) 1049 return emitOpError() 1050 .append("expected ", funType.getNumResults(), " result operands") 1051 .attachNote(function.getLoc()) 1052 .append("return type declared here"); 1053 1054 for (const auto &pair : llvm::enumerate( 1055 llvm::zip(function.getFunctionType().getResults(), operands()))) { 1056 Type type; 1057 Value operand; 1058 std::tie(type, operand) = pair.value(); 1059 if (type != operand.getType()) 1060 return emitOpError() << "unexpected type `" << operand.getType() 1061 << "' for operand #" << pair.index(); 1062 } 1063 return success(); 1064 } 1065 1066 //===----------------------------------------------------------------------===// 1067 // GPUModuleOp 1068 //===----------------------------------------------------------------------===// 1069 1070 void GPUModuleOp::build(OpBuilder &builder, OperationState &result, 1071 StringRef name) { 1072 ensureTerminator(*result.addRegion(), builder, result.location); 1073 result.attributes.push_back(builder.getNamedAttr( 1074 ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); 1075 } 1076 1077 ParseResult GPUModuleOp::parse(OpAsmParser &parser, OperationState &result) { 1078 StringAttr nameAttr; 1079 if (parser.parseSymbolName(nameAttr, mlir::SymbolTable::getSymbolAttrName(), 1080 result.attributes)) 1081 return failure(); 1082 1083 // If module attributes are present, parse them. 1084 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 1085 return failure(); 1086 1087 // Parse the module body. 1088 auto *body = result.addRegion(); 1089 if (parser.parseRegion(*body, None, None)) 1090 return failure(); 1091 1092 // Ensure that this module has a valid terminator. 1093 GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location); 1094 return success(); 1095 } 1096 1097 void GPUModuleOp::print(OpAsmPrinter &p) { 1098 p << ' '; 1099 p.printSymbolName(getName()); 1100 p.printOptionalAttrDictWithKeyword((*this)->getAttrs(), 1101 {mlir::SymbolTable::getSymbolAttrName()}); 1102 p << ' '; 1103 p.printRegion(getRegion(), /*printEntryBlockArgs=*/false, 1104 /*printBlockTerminators=*/false); 1105 } 1106 1107 //===----------------------------------------------------------------------===// 1108 // GPUMemcpyOp 1109 //===----------------------------------------------------------------------===// 1110 1111 LogicalResult MemcpyOp::verify() { 1112 auto srcType = src().getType(); 1113 auto dstType = dst().getType(); 1114 1115 if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType)) 1116 return emitOpError("arguments have incompatible element type"); 1117 1118 if (failed(verifyCompatibleShape(srcType, dstType))) 1119 return emitOpError("arguments have incompatible shape"); 1120 1121 return success(); 1122 } 1123 1124 //===----------------------------------------------------------------------===// 1125 // GPU_SubgroupMmaLoadMatrixOp 1126 //===----------------------------------------------------------------------===// 1127 1128 /// Return true if the last dimension of the MemRefType has unit stride. Also 1129 /// return true for memrefs with no strides. 1130 static bool isLastMemrefDimUnitStride(MemRefType type) { 1131 int64_t offset; 1132 SmallVector<int64_t> strides; 1133 if (failed(getStridesAndOffset(type, strides, offset))) { 1134 return false; 1135 } 1136 return strides.back() == 1; 1137 } 1138 1139 LogicalResult SubgroupMmaLoadMatrixOp::verify() { 1140 auto srcType = srcMemref().getType(); 1141 auto resType = res().getType(); 1142 auto resMatrixType = resType.cast<gpu::MMAMatrixType>(); 1143 auto operand = resMatrixType.getOperand(); 1144 auto srcMemrefType = srcType.cast<MemRefType>(); 1145 auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt(); 1146 1147 if (!isLastMemrefDimUnitStride(srcMemrefType)) 1148 return emitError( 1149 "expected source memref most minor dim must have unit stride"); 1150 1151 if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace && 1152 srcMemSpace != kGlobalMemorySpace) 1153 return emitError( 1154 "source memorySpace kGenericMemorySpace, kSharedMemorySpace or " 1155 "kGlobalMemorySpace only allowed"); 1156 1157 if (!operand.equals("AOp") && !operand.equals("BOp") && 1158 !operand.equals("COp")) 1159 return emitError("only AOp, BOp and COp can be loaded"); 1160 1161 return success(); 1162 } 1163 1164 //===----------------------------------------------------------------------===// 1165 // GPU_SubgroupMmaStoreMatrixOp 1166 //===----------------------------------------------------------------------===// 1167 1168 LogicalResult SubgroupMmaStoreMatrixOp::verify() { 1169 auto srcType = src().getType(); 1170 auto dstType = dstMemref().getType(); 1171 auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>(); 1172 auto dstMemrefType = dstType.cast<MemRefType>(); 1173 auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt(); 1174 1175 if (!isLastMemrefDimUnitStride(dstMemrefType)) 1176 return emitError( 1177 "expected destination memref most minor dim must have unit stride"); 1178 1179 if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace && 1180 dstMemSpace != kGlobalMemorySpace) 1181 return emitError("destination memorySpace of kGenericMemorySpace, " 1182 "kGlobalMemorySpace or kSharedMemorySpace only allowed"); 1183 1184 if (!srcMatrixType.getOperand().equals("COp")) 1185 return emitError( 1186 "expected the operand matrix being stored to have 'COp' operand type"); 1187 1188 return success(); 1189 } 1190 1191 //===----------------------------------------------------------------------===// 1192 // GPU_SubgroupMmaComputeOp 1193 //===----------------------------------------------------------------------===// 1194 1195 LogicalResult SubgroupMmaComputeOp::verify() { 1196 enum OperandMap { A, B, C }; 1197 SmallVector<MMAMatrixType, 3> opTypes; 1198 opTypes.push_back(opA().getType().cast<MMAMatrixType>()); 1199 opTypes.push_back(opB().getType().cast<MMAMatrixType>()); 1200 opTypes.push_back(opC().getType().cast<MMAMatrixType>()); 1201 1202 if (!opTypes[A].getOperand().equals("AOp") || 1203 !opTypes[B].getOperand().equals("BOp") || 1204 !opTypes[C].getOperand().equals("COp")) 1205 return emitError("operands must be in the order AOp, BOp, COp"); 1206 1207 ArrayRef<int64_t> aShape, bShape, cShape; 1208 aShape = opTypes[A].getShape(); 1209 bShape = opTypes[B].getShape(); 1210 cShape = opTypes[C].getShape(); 1211 1212 if (aShape[1] != bShape[0] || aShape[0] != cShape[0] || 1213 bShape[1] != cShape[1]) 1214 return emitError("operand shapes do not satisfy matmul constraints"); 1215 1216 return success(); 1217 } 1218 1219 /// This is a common class used for patterns of the form 1220 /// "someop(memrefcast) -> someop". It folds the source of any memref.cast 1221 /// into the root operation directly. 1222 static LogicalResult foldMemRefCast(Operation *op) { 1223 bool folded = false; 1224 for (OpOperand &operand : op->getOpOperands()) { 1225 auto cast = operand.get().getDefiningOp<mlir::memref::CastOp>(); 1226 if (cast) { 1227 operand.set(cast.getOperand()); 1228 folded = true; 1229 } 1230 } 1231 return success(folded); 1232 } 1233 1234 LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands, 1235 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1236 return foldMemRefCast(*this); 1237 } 1238 1239 LogicalResult MemsetOp::fold(ArrayRef<Attribute> operands, 1240 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1241 return foldMemRefCast(*this); 1242 } 1243 1244 //===----------------------------------------------------------------------===// 1245 // GPU_WaitOp 1246 //===----------------------------------------------------------------------===// 1247 1248 namespace { 1249 1250 /// Remove gpu.wait op use of gpu.wait op def without async dependencies. 1251 /// %t = gpu.wait async [] // No async dependencies. 1252 /// ... gpu.wait ... [%t, ...] // %t can be removed. 1253 struct EraseRedundantGpuWaitOpPairs : public OpRewritePattern<WaitOp> { 1254 public: 1255 using OpRewritePattern::OpRewritePattern; 1256 1257 LogicalResult matchAndRewrite(WaitOp op, 1258 PatternRewriter &rewriter) const final { 1259 auto predicate = [](Value value) { 1260 auto waitOp = value.getDefiningOp<WaitOp>(); 1261 return waitOp && waitOp->getNumOperands() == 0; 1262 }; 1263 if (llvm::none_of(op.asyncDependencies(), predicate)) 1264 return failure(); 1265 SmallVector<Value> validOperands; 1266 for (Value operand : op->getOperands()) { 1267 if (predicate(operand)) 1268 continue; 1269 validOperands.push_back(operand); 1270 } 1271 op->setOperands(validOperands); 1272 return success(); 1273 } 1274 }; 1275 1276 /// Simplify trivial gpu.wait ops for the following patterns. 1277 /// 1. %t = gpu.wait async ... ops, where %t has no uses (regardless of async 1278 /// dependencies). 1279 /// 2. %t1 = gpu.wait async [%t0], in this case, we can replace uses of %t1 with 1280 /// %t0. 1281 /// 3. gpu.wait [] ops, i.e gpu.wait ops that neither have any async 1282 /// dependencies nor return any token. 1283 struct SimplifyGpuWaitOp : public OpRewritePattern<WaitOp> { 1284 public: 1285 using OpRewritePattern::OpRewritePattern; 1286 1287 LogicalResult matchAndRewrite(WaitOp op, 1288 PatternRewriter &rewriter) const final { 1289 // Erase gpu.wait ops that neither have any async dependencies nor return 1290 // any async token. 1291 if (op.asyncDependencies().empty() && !op.asyncToken()) { 1292 rewriter.eraseOp(op); 1293 return success(); 1294 } 1295 // Replace uses of %t1 = gpu.wait async [%t0] ops with %t0 and erase the op. 1296 if (llvm::hasSingleElement(op.asyncDependencies()) && op.asyncToken()) { 1297 rewriter.replaceOp(op, op.asyncDependencies()); 1298 return success(); 1299 } 1300 // Erase %t = gpu.wait async ... ops, where %t has no uses. 1301 if (op.asyncToken() && op.asyncToken().use_empty()) { 1302 rewriter.eraseOp(op); 1303 return success(); 1304 } 1305 return failure(); 1306 } 1307 }; 1308 1309 } // end anonymous namespace 1310 1311 void WaitOp::getCanonicalizationPatterns(RewritePatternSet &results, 1312 MLIRContext *context) { 1313 results.add<EraseRedundantGpuWaitOpPairs, SimplifyGpuWaitOp>(context); 1314 } 1315 1316 //===----------------------------------------------------------------------===// 1317 // GPU_AllocOp 1318 //===----------------------------------------------------------------------===// 1319 1320 LogicalResult AllocOp::verify() { 1321 auto memRefType = memref().getType().cast<MemRefType>(); 1322 1323 if (static_cast<int64_t>(dynamicSizes().size()) != 1324 memRefType.getNumDynamicDims()) 1325 return emitOpError("dimension operand count does not equal memref " 1326 "dynamic dimension count"); 1327 1328 unsigned numSymbols = 0; 1329 if (!memRefType.getLayout().isIdentity()) 1330 numSymbols = memRefType.getLayout().getAffineMap().getNumSymbols(); 1331 if (symbolOperands().size() != numSymbols) { 1332 return emitOpError( 1333 "symbol operand count does not equal memref symbol count"); 1334 } 1335 1336 return success(); 1337 } 1338 1339 namespace { 1340 1341 /// Folding of memref.dim(gpu.alloc(%size), %idx) -> %size similar to 1342 /// `memref::AllocOp`. 1343 struct SimplifyDimOfAllocOp : public OpRewritePattern<memref::DimOp> { 1344 using OpRewritePattern<memref::DimOp>::OpRewritePattern; 1345 1346 LogicalResult matchAndRewrite(memref::DimOp dimOp, 1347 PatternRewriter &rewriter) const override { 1348 auto index = dimOp.index().getDefiningOp<arith::ConstantIndexOp>(); 1349 if (!index) 1350 return failure(); 1351 1352 auto memrefType = dimOp.source().getType().dyn_cast<MemRefType>(); 1353 if (!memrefType || !memrefType.isDynamicDim(index.value())) 1354 return failure(); 1355 1356 auto alloc = dimOp.source().getDefiningOp<AllocOp>(); 1357 if (!alloc) 1358 return failure(); 1359 1360 Value substituteOp = *(alloc.dynamicSizes().begin() + 1361 memrefType.getDynamicDimIndex(index.value())); 1362 rewriter.replaceOp(dimOp, substituteOp); 1363 return success(); 1364 } 1365 }; 1366 1367 } // namespace 1368 1369 void AllocOp::getCanonicalizationPatterns(RewritePatternSet &results, 1370 MLIRContext *context) { 1371 results.add<SimplifyDimOfAllocOp>(context); 1372 } 1373 1374 //===----------------------------------------------------------------------===// 1375 // GPU_DeviceAsyncCopyOp 1376 //===----------------------------------------------------------------------===// 1377 1378 LogicalResult DeviceAsyncCopyOp::verify() { 1379 auto srcMemref = src().getType().cast<MemRefType>(); 1380 auto dstMemref = dst().getType().cast<MemRefType>(); 1381 unsigned workgroupAddressSpace = GPUDialect::getWorkgroupAddressSpace(); 1382 if (!isLastMemrefDimUnitStride(srcMemref)) 1383 return emitError("source memref most minor dim must have unit stride"); 1384 if (!isLastMemrefDimUnitStride(dstMemref)) 1385 return emitError("destination memref most minor dim must have unit stride"); 1386 if (dstMemref.getMemorySpaceAsInt() != workgroupAddressSpace) 1387 return emitError("destination memref must have memory space ") 1388 << workgroupAddressSpace; 1389 if (dstMemref.getElementType() != srcMemref.getElementType()) 1390 return emitError("source and destination must have the same element type"); 1391 if (size_t(srcMemref.getRank()) != srcIndices().size()) 1392 return emitOpError() << "expected " << srcMemref.getRank() 1393 << " source indices, got " << srcIndices().size(); 1394 if (size_t(dstMemref.getRank()) != dstIndices().size()) 1395 return emitOpError() << "expected " << dstMemref.getRank() 1396 << " destination indices, got " << dstIndices().size(); 1397 return success(); 1398 } 1399 1400 #include "mlir/Dialect/GPU/GPUOpInterfaces.cpp.inc" 1401 #include "mlir/Dialect/GPU/GPUOpsEnums.cpp.inc" 1402 1403 #define GET_ATTRDEF_CLASSES 1404 #include "mlir/Dialect/GPU/GPUOpsAttributes.cpp.inc" 1405 1406 #define GET_OP_CLASSES 1407 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 1408