1 //===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the GPU kernel-related dialect and its operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/GPU/GPUDialect.h" 14 15 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 16 #include "mlir/Dialect/MemRef/IR/MemRef.h" 17 #include "mlir/Dialect/StandardOps/IR/Ops.h" 18 #include "mlir/IR/Attributes.h" 19 #include "mlir/IR/Builders.h" 20 #include "mlir/IR/BuiltinOps.h" 21 #include "mlir/IR/BuiltinTypes.h" 22 #include "mlir/IR/DialectImplementation.h" 23 #include "mlir/IR/FunctionImplementation.h" 24 #include "mlir/IR/OpImplementation.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "mlir/IR/TypeUtilities.h" 27 #include "llvm/ADT/TypeSwitch.h" 28 29 using namespace mlir; 30 using namespace mlir::gpu; 31 32 #include "mlir/Dialect/GPU/GPUOpsDialect.cpp.inc" 33 34 //===----------------------------------------------------------------------===// 35 // MMAMatrixType 36 //===----------------------------------------------------------------------===// 37 38 MMAMatrixType MMAMatrixType::get(ArrayRef<int64_t> shape, Type elementType, 39 StringRef operand) { 40 return Base::get(elementType.getContext(), shape, elementType, operand); 41 } 42 43 MMAMatrixType 44 MMAMatrixType::getChecked(function_ref<InFlightDiagnostic()> emitError, 45 ArrayRef<int64_t> shape, Type elementType, 46 StringRef operand) { 47 return Base::getChecked(emitError, elementType.getContext(), shape, 48 elementType, operand); 49 } 50 51 unsigned MMAMatrixType::getNumDims() const { return getImpl()->numDims; } 52 53 ArrayRef<int64_t> MMAMatrixType::getShape() const { 54 return getImpl()->getShape(); 55 } 56 57 Type MMAMatrixType::getElementType() const { return getImpl()->elementType; } 58 59 StringRef MMAMatrixType::getOperand() const { return getImpl()->getOperand(); } 60 61 bool MMAMatrixType::isValidElementType(Type elementType) { 62 return elementType.isF16() || elementType.isF32(); 63 } 64 65 LogicalResult 66 MMAMatrixType::verify(function_ref<InFlightDiagnostic()> emitError, 67 ArrayRef<int64_t> shape, Type elementType, 68 StringRef operand) { 69 if (!operand.equals("AOp") && !operand.equals("BOp") && 70 !operand.equals("COp")) 71 return emitError() << "operand expected to be one of AOp, BOp or COp"; 72 73 if (shape.size() != 2) 74 return emitError() << "MMAMatrixType must have exactly two dimensions"; 75 76 if (!MMAMatrixType::isValidElementType(elementType)) 77 return emitError() << "MMAMatrixType elements must be F16 or F32"; 78 79 return success(); 80 } 81 82 //===----------------------------------------------------------------------===// 83 // GPUDialect 84 //===----------------------------------------------------------------------===// 85 86 /// GPU memory space identifiers. 87 enum GPUMemorySpace { 88 /// Generic memory space identifier. 89 kGenericMemorySpace = 0, 90 91 /// Global memory space identifier. 92 kGlobalMemorySpace = 1, 93 94 /// Shared memory space identifier. 95 kSharedMemorySpace = 3 96 }; 97 98 bool GPUDialect::isKernel(Operation *op) { 99 UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName()); 100 return static_cast<bool>(isKernelAttr); 101 } 102 103 void GPUDialect::initialize() { 104 addTypes<AsyncTokenType>(); 105 addTypes<MMAMatrixType>(); 106 addOperations< 107 #define GET_OP_LIST 108 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 109 >(); 110 } 111 112 Type GPUDialect::parseType(DialectAsmParser &parser) const { 113 // Parse the main keyword for the type. 114 StringRef keyword; 115 if (parser.parseKeyword(&keyword)) 116 return Type(); 117 MLIRContext *context = getContext(); 118 119 // Handle 'async token' types. 120 if (keyword == "async.token") 121 return AsyncTokenType::get(context); 122 123 if (keyword == "mma_matrix") { 124 llvm::SMLoc beginLoc = parser.getNameLoc(); 125 126 // Parse '<'. 127 if (parser.parseLess()) 128 return nullptr; 129 130 // Parse the size and elementType. 131 SmallVector<int64_t> shape; 132 Type elementType; 133 if (parser.parseDimensionList(shape, /*allowDynamic=*/false) || 134 parser.parseType(elementType)) 135 return nullptr; 136 137 // Parse ',' 138 if (parser.parseComma()) 139 return nullptr; 140 141 // Parse operand. 142 std::string operand; 143 if (failed(parser.parseOptionalString(&operand))) 144 return nullptr; 145 146 // Parse '>'. 147 if (parser.parseGreater()) 148 return nullptr; 149 150 return MMAMatrixType::getChecked(mlir::detail::getDefaultDiagnosticEmitFn( 151 parser.getEncodedSourceLoc(beginLoc)), 152 shape, elementType, operand); 153 } 154 155 parser.emitError(parser.getNameLoc(), "unknown gpu type: " + keyword); 156 return Type(); 157 } 158 159 void GPUDialect::printType(Type type, DialectAsmPrinter &os) const { 160 TypeSwitch<Type>(type) 161 .Case<AsyncTokenType>([&](Type) { os << "async.token"; }) 162 .Case<MMAMatrixType>([&](MMAMatrixType fragTy) { 163 os << "mma_matrix<"; 164 auto shape = fragTy.getShape(); 165 for (auto dim = shape.begin(), e = shape.end() - 1; dim != e; ++dim) 166 os << *dim << 'x'; 167 os << shape.back() << 'x' << fragTy.getElementType(); 168 os << ", \"" << fragTy.getOperand() << "\"" << '>'; 169 }) 170 .Default([](Type) { llvm_unreachable("unexpected 'gpu' type kind"); }); 171 } 172 173 LogicalResult GPUDialect::verifyOperationAttribute(Operation *op, 174 NamedAttribute attr) { 175 if (!attr.second.isa<UnitAttr>() || 176 attr.first != getContainerModuleAttrName()) 177 return success(); 178 179 auto module = dyn_cast<ModuleOp>(op); 180 if (!module) 181 return op->emitError("expected '") 182 << getContainerModuleAttrName() << "' attribute to be attached to '" 183 << ModuleOp::getOperationName() << '\''; 184 185 auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult { 186 // Ignore launches that are nested more or less deep than functions in the 187 // module we are currently checking. 188 if (!launchOp->getParentOp() || 189 launchOp->getParentOp()->getParentOp() != module) 190 return success(); 191 192 // Ignore launch ops with missing attributes here. The errors will be 193 // reported by the verifiers of those ops. 194 if (!launchOp->getAttrOfType<SymbolRefAttr>( 195 LaunchFuncOp::getKernelAttrName())) 196 return success(); 197 198 // Check that `launch_func` refers to a well-formed GPU kernel module. 199 StringAttr kernelModuleName = launchOp.getKernelModuleName(); 200 auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName); 201 if (!kernelModule) 202 return launchOp.emitOpError() 203 << "kernel module '" << kernelModuleName.getValue() 204 << "' is undefined"; 205 206 // Check that `launch_func` refers to a well-formed kernel function. 207 Operation *kernelFunc = module.lookupSymbol(launchOp.kernelAttr()); 208 auto kernelGPUFunction = dyn_cast_or_null<gpu::GPUFuncOp>(kernelFunc); 209 auto kernelLLVMFunction = dyn_cast_or_null<LLVM::LLVMFuncOp>(kernelFunc); 210 if (!kernelGPUFunction && !kernelLLVMFunction) 211 return launchOp.emitOpError("kernel function '") 212 << launchOp.kernel() << "' is undefined"; 213 if (!kernelFunc->getAttrOfType<mlir::UnitAttr>( 214 GPUDialect::getKernelFuncAttrName())) 215 return launchOp.emitOpError("kernel function is missing the '") 216 << GPUDialect::getKernelFuncAttrName() << "' attribute"; 217 218 // TODO: if the kernel function has been converted to 219 // the LLVM dialect but the caller hasn't (which happens during the 220 // separate compilation), do not check type correspondence as it would 221 // require the verifier to be aware of the LLVM type conversion. 222 if (kernelLLVMFunction) 223 return success(); 224 225 unsigned actualNumArguments = launchOp.getNumKernelOperands(); 226 unsigned expectedNumArguments = kernelGPUFunction.getNumArguments(); 227 if (expectedNumArguments != actualNumArguments) 228 return launchOp.emitOpError("got ") 229 << actualNumArguments << " kernel operands but expected " 230 << expectedNumArguments; 231 232 auto functionType = kernelGPUFunction.getType(); 233 for (unsigned i = 0; i < expectedNumArguments; ++i) { 234 if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) { 235 return launchOp.emitOpError("type of function argument ") 236 << i << " does not match"; 237 } 238 } 239 240 return success(); 241 }); 242 243 return walkResult.wasInterrupted() ? failure() : success(); 244 } 245 246 template <typename T> 247 static LogicalResult verifyIndexOp(T op) { 248 auto dimension = op.dimension(); 249 if (dimension != "x" && dimension != "y" && dimension != "z") 250 return op.emitError("dimension \"") << dimension << "\" is invalid"; 251 return success(); 252 } 253 254 static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) { 255 if (allReduce.body().empty() != allReduce.op().hasValue()) 256 return allReduce.emitError( 257 "expected either an op attribute or a non-empty body"); 258 if (!allReduce.body().empty()) { 259 if (allReduce.body().getNumArguments() != 2) 260 return allReduce.emitError("expected two region arguments"); 261 for (auto argument : allReduce.body().getArguments()) { 262 if (argument.getType() != allReduce.getType()) 263 return allReduce.emitError("incorrect region argument type"); 264 } 265 unsigned yieldCount = 0; 266 for (Block &block : allReduce.body()) { 267 if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) { 268 if (yield.getNumOperands() != 1) 269 return allReduce.emitError("expected one gpu.yield operand"); 270 if (yield.getOperand(0).getType() != allReduce.getType()) 271 return allReduce.emitError("incorrect gpu.yield type"); 272 ++yieldCount; 273 } 274 } 275 if (yieldCount == 0) 276 return allReduce.emitError("expected gpu.yield op in region"); 277 } else { 278 StringRef opName = *allReduce.op(); 279 if ((opName == "and" || opName == "or" || opName == "xor") && 280 !allReduce.getType().isa<IntegerType>()) { 281 return allReduce.emitError() 282 << '`' << opName << '`' 283 << " accumulator is only compatible with Integer type"; 284 } 285 } 286 return success(); 287 } 288 289 static LogicalResult verifyShuffleOp(gpu::ShuffleOp shuffleOp) { 290 auto type = shuffleOp.value().getType(); 291 if (shuffleOp.result().getType() != type) { 292 return shuffleOp.emitOpError() 293 << "requires the same type for value operand and result"; 294 } 295 if (!type.isSignlessIntOrFloat() || type.getIntOrFloatBitWidth() != 32) { 296 return shuffleOp.emitOpError() 297 << "requires value operand type to be f32 or i32"; 298 } 299 return success(); 300 } 301 302 static void printShuffleOp(OpAsmPrinter &p, ShuffleOp op) { 303 p << ShuffleOp::getOperationName() << ' ' << op.getOperands() << ' ' 304 << op.mode() << " : " << op.value().getType(); 305 } 306 307 static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &state) { 308 SmallVector<OpAsmParser::OperandType, 3> operandInfo; 309 if (parser.parseOperandList(operandInfo, 3)) 310 return failure(); 311 312 StringRef mode; 313 if (parser.parseKeyword(&mode)) 314 return failure(); 315 state.addAttribute("mode", parser.getBuilder().getStringAttr(mode)); 316 317 Type valueType; 318 Type int32Type = parser.getBuilder().getIntegerType(32); 319 Type int1Type = parser.getBuilder().getI1Type(); 320 if (parser.parseColonType(valueType) || 321 parser.resolveOperands(operandInfo, {valueType, int32Type, int32Type}, 322 parser.getCurrentLocation(), state.operands) || 323 parser.addTypesToList({valueType, int1Type}, state.types)) 324 return failure(); 325 return success(); 326 } 327 328 //===----------------------------------------------------------------------===// 329 // AsyncOpInterface 330 //===----------------------------------------------------------------------===// 331 332 void gpu::addAsyncDependency(Operation *op, Value token) { 333 op->insertOperands(0, {token}); 334 if (!op->template hasTrait<OpTrait::AttrSizedOperandSegments>()) 335 return; 336 auto attrName = 337 OpTrait::AttrSizedOperandSegments<void>::getOperandSegmentSizeAttr(); 338 auto sizeAttr = op->template getAttrOfType<DenseIntElementsAttr>(attrName); 339 if (!sizeAttr) 340 return; // Async dependencies is the only variadic operand. 341 SmallVector<int32_t, 8> sizes; 342 for (auto size : sizeAttr.getIntValues()) 343 sizes.push_back(size.getSExtValue()); 344 ++sizes.front(); 345 op->setAttr(attrName, Builder(op->getContext()).getI32VectorAttr(sizes)); 346 } 347 348 //===----------------------------------------------------------------------===// 349 // LaunchOp 350 //===----------------------------------------------------------------------===// 351 352 void LaunchOp::build(OpBuilder &builder, OperationState &result, 353 Value gridSizeX, Value gridSizeY, Value gridSizeZ, 354 Value blockSizeX, Value blockSizeY, Value blockSizeZ) { 355 // Add grid and block sizes as op operands, followed by the data operands. 356 result.addOperands( 357 {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ}); 358 359 // Create a kernel body region with kNumConfigRegionAttributes + N arguments, 360 // where the first kNumConfigRegionAttributes arguments have `index` type and 361 // the rest have the same types as the data operands. 362 Region *kernelRegion = result.addRegion(); 363 Block *body = new Block(); 364 body->addArguments( 365 std::vector<Type>(kNumConfigRegionAttributes, builder.getIndexType())); 366 kernelRegion->push_back(body); 367 } 368 369 KernelDim3 LaunchOp::getBlockIds() { 370 assert(!body().empty() && "LaunchOp body must not be empty."); 371 auto args = body().getArguments(); 372 return KernelDim3{args[0], args[1], args[2]}; 373 } 374 375 KernelDim3 LaunchOp::getThreadIds() { 376 assert(!body().empty() && "LaunchOp body must not be empty."); 377 auto args = body().getArguments(); 378 return KernelDim3{args[3], args[4], args[5]}; 379 } 380 381 KernelDim3 LaunchOp::getGridSize() { 382 assert(!body().empty() && "LaunchOp body must not be empty."); 383 auto args = body().getArguments(); 384 return KernelDim3{args[6], args[7], args[8]}; 385 } 386 387 KernelDim3 LaunchOp::getBlockSize() { 388 assert(!body().empty() && "LaunchOp body must not be empty."); 389 auto args = body().getArguments(); 390 return KernelDim3{args[9], args[10], args[11]}; 391 } 392 393 KernelDim3 LaunchOp::getGridSizeOperandValues() { 394 return KernelDim3{getOperand(0), getOperand(1), getOperand(2)}; 395 } 396 397 KernelDim3 LaunchOp::getBlockSizeOperandValues() { 398 return KernelDim3{getOperand(3), getOperand(4), getOperand(5)}; 399 } 400 401 static LogicalResult verify(LaunchOp op) { 402 // Kernel launch takes kNumConfigOperands leading operands for grid/block 403 // sizes and transforms them into kNumConfigRegionAttributes region arguments 404 // for block/thread identifiers and grid/block sizes. 405 if (!op.body().empty()) { 406 if (op.body().getNumArguments() != 407 LaunchOp::kNumConfigOperands + op.getNumOperands()) 408 return op.emitOpError("unexpected number of region arguments"); 409 } 410 411 // Block terminators without successors are expected to exit the kernel region 412 // and must be `gpu.terminator`. 413 for (Block &block : op.body()) { 414 if (block.empty()) 415 continue; 416 if (block.back().getNumSuccessors() != 0) 417 continue; 418 if (!isa<gpu::TerminatorOp>(&block.back())) { 419 return block.back() 420 .emitError() 421 .append("expected '", gpu::TerminatorOp::getOperationName(), 422 "' or a terminator with successors") 423 .attachNote(op.getLoc()) 424 .append("in '", LaunchOp::getOperationName(), "' body region"); 425 } 426 } 427 428 return success(); 429 } 430 431 // Pretty-print the kernel grid/block size assignment as 432 // (%iter-x, %iter-y, %iter-z) in 433 // (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use) 434 // where %size-* and %iter-* will correspond to the body region arguments. 435 static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size, 436 KernelDim3 operands, KernelDim3 ids) { 437 p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in ("; 438 p << size.x << " = " << operands.x << ", "; 439 p << size.y << " = " << operands.y << ", "; 440 p << size.z << " = " << operands.z << ')'; 441 } 442 443 static void printLaunchOp(OpAsmPrinter &p, LaunchOp op) { 444 // Print the launch configuration. 445 p << LaunchOp::getOperationName() << ' ' << op.getBlocksKeyword(); 446 printSizeAssignment(p, op.getGridSize(), op.getGridSizeOperandValues(), 447 op.getBlockIds()); 448 p << ' ' << op.getThreadsKeyword(); 449 printSizeAssignment(p, op.getBlockSize(), op.getBlockSizeOperandValues(), 450 op.getThreadIds()); 451 452 p.printRegion(op.body(), /*printEntryBlockArgs=*/false); 453 p.printOptionalAttrDict(op->getAttrs()); 454 } 455 456 // Parse the size assignment blocks for blocks and threads. These have the form 457 // (%region_arg, %region_arg, %region_arg) in 458 // (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand) 459 // where %region_arg are percent-identifiers for the region arguments to be 460 // introduced further (SSA defs), and %operand are percent-identifiers for the 461 // SSA value uses. 462 static ParseResult 463 parseSizeAssignment(OpAsmParser &parser, 464 MutableArrayRef<OpAsmParser::OperandType> sizes, 465 MutableArrayRef<OpAsmParser::OperandType> regionSizes, 466 MutableArrayRef<OpAsmParser::OperandType> indices) { 467 assert(indices.size() == 3 && "space for three indices expected"); 468 SmallVector<OpAsmParser::OperandType, 3> args; 469 if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3, 470 OpAsmParser::Delimiter::Paren) || 471 parser.parseKeyword("in") || parser.parseLParen()) 472 return failure(); 473 std::move(args.begin(), args.end(), indices.begin()); 474 475 for (int i = 0; i < 3; ++i) { 476 if (i != 0 && parser.parseComma()) 477 return failure(); 478 if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() || 479 parser.parseOperand(sizes[i])) 480 return failure(); 481 } 482 483 return parser.parseRParen(); 484 } 485 486 // Parses a Launch operation. 487 // operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment 488 // `threads` `(` ssa-id-list `)` `in` ssa-reassignment 489 // region attr-dict? 490 // ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)` 491 static ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) { 492 // Sizes of the grid and block. 493 SmallVector<OpAsmParser::OperandType, LaunchOp::kNumConfigOperands> sizes( 494 LaunchOp::kNumConfigOperands); 495 MutableArrayRef<OpAsmParser::OperandType> sizesRef(sizes); 496 497 // Actual (data) operands passed to the kernel. 498 SmallVector<OpAsmParser::OperandType, 4> dataOperands; 499 500 // Region arguments to be created. 501 SmallVector<OpAsmParser::OperandType, 16> regionArgs( 502 LaunchOp::kNumConfigRegionAttributes); 503 MutableArrayRef<OpAsmParser::OperandType> regionArgsRef(regionArgs); 504 505 // Parse the size assignment segments: the first segment assigns grid sizes 506 // and defines values for block identifiers; the second segment assigns block 507 // sizes and defines values for thread identifiers. In the region argument 508 // list, identifiers precede sizes, and block-related values precede 509 // thread-related values. 510 if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) || 511 parseSizeAssignment(parser, sizesRef.take_front(3), 512 regionArgsRef.slice(6, 3), 513 regionArgsRef.slice(0, 3)) || 514 parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) || 515 parseSizeAssignment(parser, sizesRef.drop_front(3), 516 regionArgsRef.slice(9, 3), 517 regionArgsRef.slice(3, 3)) || 518 parser.resolveOperands(sizes, parser.getBuilder().getIndexType(), 519 result.operands)) 520 return failure(); 521 522 // Introduce the body region and parse it. The region has 523 // kNumConfigRegionAttributes arguments that correspond to 524 // block/thread identifiers and grid/block sizes, all of the `index` type. 525 Type index = parser.getBuilder().getIndexType(); 526 SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes( 527 LaunchOp::kNumConfigRegionAttributes, index); 528 Region *body = result.addRegion(); 529 return failure(parser.parseRegion(*body, regionArgs, dataTypes) || 530 parser.parseOptionalAttrDict(result.attributes)); 531 } 532 533 //===----------------------------------------------------------------------===// 534 // LaunchFuncOp 535 //===----------------------------------------------------------------------===// 536 537 void LaunchFuncOp::build(OpBuilder &builder, OperationState &result, 538 GPUFuncOp kernelFunc, KernelDim3 gridSize, 539 KernelDim3 blockSize, ValueRange kernelOperands) { 540 // Add grid and block sizes as op operands, followed by the data operands. 541 result.addOperands({gridSize.x, gridSize.y, gridSize.z, blockSize.x, 542 blockSize.y, blockSize.z}); 543 result.addOperands(kernelOperands); 544 auto kernelModule = kernelFunc->getParentOfType<GPUModuleOp>(); 545 auto kernelSymbol = builder.getSymbolRefAttr( 546 kernelModule.getName(), {builder.getSymbolRefAttr(kernelFunc.getName())}); 547 result.addAttribute(getKernelAttrName(), kernelSymbol); 548 SmallVector<int32_t, 8> segmentSizes(8, 1); 549 segmentSizes.front() = 0; // Initially no async dependencies. 550 segmentSizes.back() = static_cast<int32_t>(kernelOperands.size()); 551 result.addAttribute(getOperandSegmentSizeAttr(), 552 builder.getI32VectorAttr(segmentSizes)); 553 } 554 555 unsigned LaunchFuncOp::getNumKernelOperands() { 556 return getNumOperands() - asyncDependencies().size() - kNumConfigOperands; 557 } 558 559 StringAttr LaunchFuncOp::getKernelModuleName() { 560 return kernel().getRootReference(); 561 } 562 563 StringAttr LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); } 564 565 Value LaunchFuncOp::getKernelOperand(unsigned i) { 566 return getOperand(asyncDependencies().size() + kNumConfigOperands + i); 567 } 568 569 KernelDim3 LaunchFuncOp::getGridSizeOperandValues() { 570 auto operands = getOperands().drop_front(asyncDependencies().size()); 571 return KernelDim3{operands[0], operands[1], operands[2]}; 572 } 573 574 KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() { 575 auto operands = getOperands().drop_front(asyncDependencies().size()); 576 return KernelDim3{operands[3], operands[4], operands[5]}; 577 } 578 579 static LogicalResult verify(LaunchFuncOp op) { 580 auto module = op->getParentOfType<ModuleOp>(); 581 if (!module) 582 return op.emitOpError("expected to belong to a module"); 583 584 if (!module->getAttrOfType<UnitAttr>( 585 GPUDialect::getContainerModuleAttrName())) 586 return op.emitOpError( 587 "expected the closest surrounding module to have the '" + 588 GPUDialect::getContainerModuleAttrName() + "' attribute"); 589 590 auto kernelAttr = op->getAttrOfType<SymbolRefAttr>(op.getKernelAttrName()); 591 if (!kernelAttr) 592 return op.emitOpError("symbol reference attribute '" + 593 op.getKernelAttrName() + "' must be specified"); 594 595 return success(); 596 } 597 598 static ParseResult 599 parseLaunchFuncOperands(OpAsmParser &parser, 600 SmallVectorImpl<OpAsmParser::OperandType> &argNames, 601 SmallVectorImpl<Type> &argTypes) { 602 if (parser.parseOptionalKeyword("args")) 603 return success(); 604 SmallVector<NamedAttrList, 4> argAttrs; 605 bool isVariadic = false; 606 return function_like_impl::parseFunctionArgumentList( 607 parser, /*allowAttributes=*/false, 608 /*allowVariadic=*/false, argNames, argTypes, argAttrs, isVariadic); 609 } 610 611 static void printLaunchFuncOperands(OpAsmPrinter &printer, Operation *, 612 OperandRange operands, TypeRange types) { 613 if (operands.empty()) 614 return; 615 printer << "args("; 616 llvm::interleaveComma(llvm::zip(operands, types), printer, 617 [&](const auto &pair) { 618 printer.printOperand(std::get<0>(pair)); 619 printer << " : "; 620 printer.printType(std::get<1>(pair)); 621 }); 622 printer << ")"; 623 } 624 625 //===----------------------------------------------------------------------===// 626 // GPUFuncOp 627 //===----------------------------------------------------------------------===// 628 629 /// Adds a new block argument that corresponds to buffers located in 630 /// workgroup memory. 631 BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type) { 632 auto attrName = getNumWorkgroupAttributionsAttrName(); 633 auto attr = (*this)->getAttrOfType<IntegerAttr>(attrName); 634 (*this)->setAttr(attrName, 635 IntegerAttr::get(attr.getType(), attr.getValue() + 1)); 636 return getBody().insertArgument(getType().getNumInputs() + attr.getInt(), 637 type); 638 } 639 640 /// Adds a new block argument that corresponds to buffers located in 641 /// private memory. 642 BlockArgument GPUFuncOp::addPrivateAttribution(Type type) { 643 // Buffers on the private memory always come after buffers on the workgroup 644 // memory. 645 return getBody().addArgument(type); 646 } 647 648 void GPUFuncOp::build(OpBuilder &builder, OperationState &result, 649 StringRef name, FunctionType type, 650 TypeRange workgroupAttributions, 651 TypeRange privateAttributions, 652 ArrayRef<NamedAttribute> attrs) { 653 result.addAttribute(SymbolTable::getSymbolAttrName(), 654 builder.getStringAttr(name)); 655 result.addAttribute(getTypeAttrName(), TypeAttr::get(type)); 656 result.addAttribute(getNumWorkgroupAttributionsAttrName(), 657 builder.getI64IntegerAttr(workgroupAttributions.size())); 658 result.addAttributes(attrs); 659 Region *body = result.addRegion(); 660 Block *entryBlock = new Block; 661 entryBlock->addArguments(type.getInputs()); 662 entryBlock->addArguments(workgroupAttributions); 663 entryBlock->addArguments(privateAttributions); 664 665 body->getBlocks().push_back(entryBlock); 666 } 667 668 /// Parses a GPU function memory attribution. 669 /// 670 /// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)? 671 /// (`private` `(` ssa-id-and-type-list `)`)? 672 /// 673 /// Note that this function parses only one of the two similar parts, with the 674 /// keyword provided as argument. 675 static ParseResult 676 parseAttributions(OpAsmParser &parser, StringRef keyword, 677 SmallVectorImpl<OpAsmParser::OperandType> &args, 678 SmallVectorImpl<Type> &argTypes) { 679 // If we could not parse the keyword, just assume empty list and succeed. 680 if (failed(parser.parseOptionalKeyword(keyword))) 681 return success(); 682 683 if (failed(parser.parseLParen())) 684 return failure(); 685 686 // Early exit for an empty list. 687 if (succeeded(parser.parseOptionalRParen())) 688 return success(); 689 690 do { 691 OpAsmParser::OperandType arg; 692 Type type; 693 694 if (parser.parseRegionArgument(arg) || parser.parseColonType(type)) 695 return failure(); 696 697 args.push_back(arg); 698 argTypes.push_back(type); 699 } while (succeeded(parser.parseOptionalComma())); 700 701 return parser.parseRParen(); 702 } 703 704 /// Parses a GPU function. 705 /// 706 /// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)` 707 /// (`->` function-result-list)? memory-attribution `kernel`? 708 /// function-attributes? region 709 static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) { 710 SmallVector<OpAsmParser::OperandType, 8> entryArgs; 711 SmallVector<NamedAttrList, 1> argAttrs; 712 SmallVector<NamedAttrList, 1> resultAttrs; 713 SmallVector<Type, 8> argTypes; 714 SmallVector<Type, 4> resultTypes; 715 bool isVariadic; 716 717 // Parse the function name. 718 StringAttr nameAttr; 719 if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(), 720 result.attributes)) 721 return failure(); 722 723 auto signatureLocation = parser.getCurrentLocation(); 724 if (failed(function_like_impl::parseFunctionSignature( 725 parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs, 726 isVariadic, resultTypes, resultAttrs))) 727 return failure(); 728 729 if (entryArgs.empty() && !argTypes.empty()) 730 return parser.emitError(signatureLocation) 731 << "gpu.func requires named arguments"; 732 733 // Construct the function type. More types will be added to the region, but 734 // not to the function type. 735 Builder &builder = parser.getBuilder(); 736 auto type = builder.getFunctionType(argTypes, resultTypes); 737 result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type)); 738 739 // Parse workgroup memory attributions. 740 if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(), 741 entryArgs, argTypes))) 742 return failure(); 743 744 // Store the number of operands we just parsed as the number of workgroup 745 // memory attributions. 746 unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs(); 747 result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(), 748 builder.getI64IntegerAttr(numWorkgroupAttrs)); 749 750 // Parse private memory attributions. 751 if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(), 752 entryArgs, argTypes))) 753 return failure(); 754 755 // Parse the kernel attribute if present. 756 if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword()))) 757 result.addAttribute(GPUDialect::getKernelFuncAttrName(), 758 builder.getUnitAttr()); 759 760 // Parse attributes. 761 if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes))) 762 return failure(); 763 function_like_impl::addArgAndResultAttrs(builder, result, argAttrs, 764 resultAttrs); 765 766 // Parse the region. If no argument names were provided, take all names 767 // (including those of attributions) from the entry block. 768 auto *body = result.addRegion(); 769 return parser.parseRegion(*body, entryArgs, argTypes); 770 } 771 772 static void printAttributions(OpAsmPrinter &p, StringRef keyword, 773 ArrayRef<BlockArgument> values) { 774 if (values.empty()) 775 return; 776 777 p << ' ' << keyword << '('; 778 llvm::interleaveComma( 779 values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); }); 780 p << ')'; 781 } 782 783 /// Prints a GPU Func op. 784 static void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) { 785 p << GPUFuncOp::getOperationName() << ' '; 786 p.printSymbolName(op.getName()); 787 788 FunctionType type = op.getType(); 789 function_like_impl::printFunctionSignature( 790 p, op.getOperation(), type.getInputs(), 791 /*isVariadic=*/false, type.getResults()); 792 793 printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions()); 794 printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions()); 795 if (op.isKernel()) 796 p << ' ' << op.getKernelKeyword(); 797 798 function_like_impl::printFunctionAttributes( 799 p, op.getOperation(), type.getNumInputs(), type.getNumResults(), 800 {op.getNumWorkgroupAttributionsAttrName(), 801 GPUDialect::getKernelFuncAttrName()}); 802 p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false); 803 } 804 805 /// Hook for FunctionLike verifier. 806 LogicalResult GPUFuncOp::verifyType() { 807 Type type = getTypeAttr().getValue(); 808 if (!type.isa<FunctionType>()) 809 return emitOpError("requires '" + getTypeAttrName() + 810 "' attribute of function type"); 811 812 if (isKernel() && getType().getNumResults() != 0) 813 return emitOpError() << "expected void return type for kernel function"; 814 815 return success(); 816 } 817 818 static LogicalResult verifyAttributions(Operation *op, 819 ArrayRef<BlockArgument> attributions, 820 unsigned memorySpace) { 821 for (Value v : attributions) { 822 auto type = v.getType().dyn_cast<MemRefType>(); 823 if (!type) 824 return op->emitOpError() << "expected memref type in attribution"; 825 826 if (type.getMemorySpaceAsInt() != memorySpace) { 827 return op->emitOpError() 828 << "expected memory space " << memorySpace << " in attribution"; 829 } 830 } 831 return success(); 832 } 833 834 /// Verifies the body of the function. 835 LogicalResult GPUFuncOp::verifyBody() { 836 unsigned numFuncArguments = getNumArguments(); 837 unsigned numWorkgroupAttributions = getNumWorkgroupAttributions(); 838 unsigned numBlockArguments = front().getNumArguments(); 839 if (numBlockArguments < numFuncArguments + numWorkgroupAttributions) 840 return emitOpError() << "expected at least " 841 << numFuncArguments + numWorkgroupAttributions 842 << " arguments to body region"; 843 844 ArrayRef<Type> funcArgTypes = getType().getInputs(); 845 for (unsigned i = 0; i < numFuncArguments; ++i) { 846 Type blockArgType = front().getArgument(i).getType(); 847 if (funcArgTypes[i] != blockArgType) 848 return emitOpError() << "expected body region argument #" << i 849 << " to be of type " << funcArgTypes[i] << ", got " 850 << blockArgType; 851 } 852 853 if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(), 854 GPUDialect::getWorkgroupAddressSpace())) || 855 failed(verifyAttributions(getOperation(), getPrivateAttributions(), 856 GPUDialect::getPrivateAddressSpace()))) 857 return failure(); 858 859 return success(); 860 } 861 862 //===----------------------------------------------------------------------===// 863 // ReturnOp 864 //===----------------------------------------------------------------------===// 865 866 static ParseResult parseReturnOp(OpAsmParser &parser, OperationState &result) { 867 llvm::SmallVector<OpAsmParser::OperandType, 4> operands; 868 llvm::SmallVector<Type, 4> types; 869 if (parser.parseOperandList(operands) || 870 parser.parseOptionalColonTypeList(types) || 871 parser.resolveOperands(operands, types, parser.getCurrentLocation(), 872 result.operands)) 873 return failure(); 874 875 return success(); 876 } 877 878 static LogicalResult verify(gpu::ReturnOp returnOp) { 879 GPUFuncOp function = returnOp->getParentOfType<GPUFuncOp>(); 880 881 FunctionType funType = function.getType(); 882 883 if (funType.getNumResults() != returnOp.operands().size()) 884 return returnOp.emitOpError() 885 .append("expected ", funType.getNumResults(), " result operands") 886 .attachNote(function.getLoc()) 887 .append("return type declared here"); 888 889 for (auto pair : llvm::enumerate( 890 llvm::zip(function.getType().getResults(), returnOp.operands()))) { 891 Type type; 892 Value operand; 893 std::tie(type, operand) = pair.value(); 894 if (type != operand.getType()) 895 return returnOp.emitOpError() << "unexpected type `" << operand.getType() 896 << "' for operand #" << pair.index(); 897 } 898 return success(); 899 } 900 901 //===----------------------------------------------------------------------===// 902 // GPUModuleOp 903 //===----------------------------------------------------------------------===// 904 905 void GPUModuleOp::build(OpBuilder &builder, OperationState &result, 906 StringRef name) { 907 ensureTerminator(*result.addRegion(), builder, result.location); 908 result.attributes.push_back(builder.getNamedAttr( 909 ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name))); 910 } 911 912 static ParseResult parseGPUModuleOp(OpAsmParser &parser, 913 OperationState &result) { 914 StringAttr nameAttr; 915 if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(), 916 result.attributes)) 917 return failure(); 918 919 // If module attributes are present, parse them. 920 if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) 921 return failure(); 922 923 // Parse the module body. 924 auto *body = result.addRegion(); 925 if (parser.parseRegion(*body, None, None)) 926 return failure(); 927 928 // Ensure that this module has a valid terminator. 929 GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location); 930 return success(); 931 } 932 933 static void print(OpAsmPrinter &p, GPUModuleOp op) { 934 p << op.getOperationName() << ' '; 935 p.printSymbolName(op.getName()); 936 p.printOptionalAttrDictWithKeyword(op->getAttrs(), 937 {SymbolTable::getSymbolAttrName()}); 938 p.printRegion(op->getRegion(0), /*printEntryBlockArgs=*/false, 939 /*printBlockTerminators=*/false); 940 } 941 942 //===----------------------------------------------------------------------===// 943 // GPUMemcpyOp 944 //===----------------------------------------------------------------------===// 945 946 static LogicalResult verify(MemcpyOp op) { 947 auto srcType = op.src().getType(); 948 auto dstType = op.dst().getType(); 949 950 if (getElementTypeOrSelf(srcType) != getElementTypeOrSelf(dstType)) 951 return op.emitOpError("arguments have incompatible element type"); 952 953 if (failed(verifyCompatibleShape(srcType, dstType))) 954 return op.emitOpError("arguments have incompatible shape"); 955 956 return success(); 957 } 958 959 static ParseResult parseAsyncDependencies( 960 OpAsmParser &parser, Type &asyncTokenType, 961 SmallVectorImpl<OpAsmParser::OperandType> &asyncDependencies) { 962 auto loc = parser.getCurrentLocation(); 963 if (succeeded(parser.parseOptionalKeyword("async"))) { 964 if (parser.getNumResults() == 0) 965 return parser.emitError(loc, "needs to be named when marked 'async'"); 966 asyncTokenType = parser.getBuilder().getType<AsyncTokenType>(); 967 } 968 return parser.parseOperandList(asyncDependencies, 969 OpAsmParser::Delimiter::OptionalSquare); 970 } 971 972 static void printAsyncDependencies(OpAsmPrinter &printer, Operation *op, 973 Type asyncTokenType, 974 OperandRange asyncDependencies) { 975 if (asyncTokenType) 976 printer << "async "; 977 if (asyncDependencies.empty()) 978 return; 979 printer << "["; 980 llvm::interleaveComma(asyncDependencies, printer); 981 printer << "]"; 982 } 983 984 //===----------------------------------------------------------------------===// 985 // GPU_SubgroupMmaLoadMatrixOp 986 //===----------------------------------------------------------------------===// 987 988 static LogicalResult verify(SubgroupMmaLoadMatrixOp op) { 989 auto srcType = op.srcMemref().getType(); 990 auto resType = op.res().getType(); 991 auto resMatrixType = resType.cast<gpu::MMAMatrixType>(); 992 auto operand = resMatrixType.getOperand(); 993 auto srcMemrefType = srcType.cast<MemRefType>(); 994 auto srcMemSpace = srcMemrefType.getMemorySpaceAsInt(); 995 996 if (!srcMemrefType.getAffineMaps().empty() && 997 !srcMemrefType.getAffineMaps().front().isIdentity()) 998 return op.emitError("expected identity layout map for source memref"); 999 1000 if (srcMemSpace != kGenericMemorySpace && srcMemSpace != kSharedMemorySpace && 1001 srcMemSpace != kGlobalMemorySpace) 1002 return op.emitError( 1003 "source memorySpace kGenericMemorySpace, kSharedMemorySpace or " 1004 "kGlobalMemorySpace only allowed"); 1005 1006 if (!operand.equals("AOp") && !operand.equals("BOp") && 1007 !operand.equals("COp")) 1008 return op.emitError("only AOp, BOp and COp can be loaded"); 1009 1010 return success(); 1011 } 1012 1013 //===----------------------------------------------------------------------===// 1014 // GPU_SubgroupMmaStoreMatrixOp 1015 //===----------------------------------------------------------------------===// 1016 1017 static LogicalResult verify(SubgroupMmaStoreMatrixOp op) { 1018 auto srcType = op.src().getType(); 1019 auto dstType = op.dstMemref().getType(); 1020 auto srcMatrixType = srcType.cast<gpu::MMAMatrixType>(); 1021 auto dstMemrefType = dstType.cast<MemRefType>(); 1022 auto dstMemSpace = dstMemrefType.getMemorySpaceAsInt(); 1023 1024 if (!dstMemrefType.getAffineMaps().empty() && 1025 !dstMemrefType.getAffineMaps().front().isIdentity()) 1026 return op.emitError("expected identity layout map for destination memref"); 1027 1028 if (dstMemSpace != kGenericMemorySpace && dstMemSpace != kSharedMemorySpace && 1029 dstMemSpace != kGlobalMemorySpace) 1030 return op.emitError( 1031 "destination memorySpace of kGenericMemorySpace, " 1032 "kGlobalMemorySpace or kSharedMemorySpace only allowed"); 1033 1034 if (!srcMatrixType.getOperand().equals("COp")) 1035 return op.emitError( 1036 "expected the operand matrix being stored to have 'COp' operand type"); 1037 1038 return success(); 1039 } 1040 1041 //===----------------------------------------------------------------------===// 1042 // GPU_SubgroupMmaComputeOp 1043 //===----------------------------------------------------------------------===// 1044 1045 static LogicalResult verify(SubgroupMmaComputeOp op) { 1046 enum OperandMap { A, B, C }; 1047 SmallVector<MMAMatrixType, 3> opTypes; 1048 1049 auto populateOpInfo = [&opTypes, &op]() { 1050 opTypes.push_back(op.opA().getType().cast<MMAMatrixType>()); 1051 opTypes.push_back(op.opB().getType().cast<MMAMatrixType>()); 1052 opTypes.push_back(op.opC().getType().cast<MMAMatrixType>()); 1053 }; 1054 populateOpInfo(); 1055 1056 if (!opTypes[A].getOperand().equals("AOp") || 1057 !opTypes[B].getOperand().equals("BOp") || 1058 !opTypes[C].getOperand().equals("COp")) 1059 return op.emitError("operands must be in the order AOp, BOp, COp"); 1060 1061 ArrayRef<int64_t> aShape, bShape, cShape; 1062 aShape = opTypes[A].getShape(); 1063 bShape = opTypes[B].getShape(); 1064 cShape = opTypes[C].getShape(); 1065 1066 if (aShape[1] != bShape[0] || aShape[0] != cShape[0] || 1067 bShape[1] != cShape[1]) 1068 return op.emitError("operand shapes do not satisfy matmul constraints"); 1069 1070 return success(); 1071 } 1072 1073 /// This is a common class used for patterns of the form 1074 /// "someop(memrefcast) -> someop". It folds the source of any memref.cast 1075 /// into the root operation directly. 1076 static LogicalResult foldMemRefCast(Operation *op) { 1077 bool folded = false; 1078 for (OpOperand &operand : op->getOpOperands()) { 1079 auto cast = operand.get().getDefiningOp<mlir::memref::CastOp>(); 1080 if (cast) { 1081 operand.set(cast.getOperand()); 1082 folded = true; 1083 } 1084 } 1085 return success(folded); 1086 } 1087 1088 LogicalResult MemcpyOp::fold(ArrayRef<Attribute> operands, 1089 SmallVectorImpl<::mlir::OpFoldResult> &results) { 1090 return foldMemRefCast(*this); 1091 } 1092 1093 #include "mlir/Dialect/GPU/GPUOpInterfaces.cpp.inc" 1094 1095 #define GET_OP_CLASSES 1096 #include "mlir/Dialect/GPU/GPUOps.cpp.inc" 1097