1 //===- ModuleBufferization.cpp - Bufferization across Func. Boundaries ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Module Bufferization is an extension of One-Shot Bufferize that
10 // bufferizes function boundaries. It provides `BufferizableOpInterface`
11 // implementations for FuncOp, CallOp and ReturnOp.
12 //
13 // Module Bufferization is run via `runOneShotModuleBufferize(ModuleOp, ...)`.
14 // This function analyzes the given module and determines the order of analysis
15 // and bufferization: Functions that are called are processed before their
16 // respective callers.
17 //
18 // After analyzing a FuncOp, additional information about its bbArgs is
19 // gathered and stored in `FuncAnalysisState`.
20 //
21 // * `aliasingFuncOpBBArgsAnalysis` determines the equivalent/aliasing bbArgs
22 // for
23 //   each tensor return value (if any).
24 // * `funcOpBbArgReadWriteAnalysis` determines whether or not a tensor bbArg is
25 //   read/written.
26 //
27 // Module Bufferization implements the following calling convention.
28 //
29 // * In the absence of conflicts within a FuncOp, the FuncOp's bbArgs may always
30 //   be written to in-place.
31 // * If a tensor operand of a CallOp is read after the CallOp, the operand of
32 //   the CallOp must bufferize out-of-place.
33 //
34 // Example: The tensor.insert op bufferizes in-place because it is allowed to
35 // modify the buffer of `%t1` directly. The CallOp in `caller` must bufferize
36 // out-of-place because `%t0` is modified by the callee but read by the
37 // tensor.extract op. The analysis of CallOps decides whether an OpOperand must
38 // bufferize out-of-place based on results of `funcOpBbArgReadWriteAnalysis`.
39 // ```
40 // func @callee(%t1 : tensor<?xf32>) -> tensor<?xf32> {
41 //   %f = ... : f32
42 //   %0 = tensor.insert %f into %t1[...] : tensor<?xf32>
43 //   return %0 : tensor<?xf32>
44 // }
45 //
46 // func @caller() -> () {
47 //   %t0 = ... : tensor<?xf32>
48 //   %1 = call @callee(%t0) : (tensor<?xf32>) -> (tensor<?xf32>)
49 //   %2 = tensor.extract %1[...]  : tensor<?xf32>
50 // }
51 // ```
52 //
53 // Note: If a function is external, `funcOpBbArgReadWriteAnalysis` cannot
54 // analyze the function body. In such a case, the CallOp analysis conservatively
55 // assumes that each tensor OpOperand is both read and written.
56 //
57 // TODO: Add FuncOp attributes so that bbArgs of external FuncOps can be marked
58 // as "not reading" and/or "not writing".
59 
60 #include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
61 
62 #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
63 #include "mlir/Dialect/Bufferization/IR/Bufferization.h"
64 #include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
65 #include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h"
66 #include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
67 #include "mlir/Dialect/Bufferization/Transforms/TensorCopyInsertion.h"
68 #include "mlir/Dialect/Func/IR/FuncOps.h"
69 #include "mlir/Dialect/MemRef/IR/MemRef.h"
70 #include "mlir/IR/Operation.h"
71 
72 using namespace mlir;
73 using namespace mlir::bufferization;
74 using namespace mlir::bufferization::func_ext;
75 
76 /// A mapping of FuncOps to their callers.
77 using FuncCallerMap = DenseMap<func::FuncOp, DenseSet<Operation *>>;
78 
79 /// Get FuncAnalysisState.
80 static const FuncAnalysisState &
getFuncAnalysisState(const AnalysisState & state)81 getFuncAnalysisState(const AnalysisState &state) {
82   Optional<const FuncAnalysisState *> maybeState =
83       state.getDialectState<FuncAnalysisState>(
84           func::FuncDialect::getDialectNamespace());
85   assert(maybeState && "FuncAnalysisState does not exist");
86   return **maybeState;
87 }
88 
89 /// Get or create FuncAnalysisState.
getFuncAnalysisState(AnalysisState & state)90 static FuncAnalysisState &getFuncAnalysisState(AnalysisState &state) {
91   return state.getOrCreateDialectState<FuncAnalysisState>(
92       func::FuncDialect::getDialectNamespace());
93 }
94 
95 /// Return the state (phase) of analysis of the FuncOp.
96 /// Used for debug modes.
97 LLVM_ATTRIBUTE_UNUSED
getFuncOpAnalysisState(const AnalysisState & state,func::FuncOp funcOp)98 static FuncOpAnalysisState getFuncOpAnalysisState(const AnalysisState &state,
99                                                   func::FuncOp funcOp) {
100   const FuncAnalysisState &funcState = getFuncAnalysisState(state);
101   auto it = funcState.analyzedFuncOps.find(funcOp);
102   if (it == funcState.analyzedFuncOps.end())
103     return FuncOpAnalysisState::NotAnalyzed;
104   return it->second;
105 }
106 
107 /// Return the unique ReturnOp that terminates `funcOp`.
108 /// Return nullptr if there is no such unique ReturnOp.
getAssumedUniqueReturnOp(func::FuncOp funcOp)109 static func::ReturnOp getAssumedUniqueReturnOp(func::FuncOp funcOp) {
110   func::ReturnOp returnOp;
111   for (Block &b : funcOp.getBody()) {
112     if (auto candidateOp = dyn_cast<func::ReturnOp>(b.getTerminator())) {
113       if (returnOp)
114         return nullptr;
115       returnOp = candidateOp;
116     }
117   }
118   return returnOp;
119 }
120 
121 namespace {
122 
123 /// Annotate IR with the results of the analysis. For testing purposes only.
annotateEquivalentReturnBbArg(OpOperand & returnVal,BlockArgument bbArg)124 static void annotateEquivalentReturnBbArg(OpOperand &returnVal,
125                                           BlockArgument bbArg) {
126   const char *kEquivalentArgsAttr = "__equivalent_func_args__";
127   Operation *op = returnVal.getOwner();
128 
129   SmallVector<int64_t> equivBbArgs;
130   if (op->hasAttr(kEquivalentArgsAttr)) {
131     auto attr = op->getAttr(kEquivalentArgsAttr).cast<ArrayAttr>();
132     equivBbArgs = llvm::to_vector<4>(llvm::map_range(attr, [](Attribute a) {
133       return a.cast<IntegerAttr>().getValue().getSExtValue();
134     }));
135   } else {
136     equivBbArgs.append(op->getNumOperands(), -1);
137   }
138   equivBbArgs[returnVal.getOperandNumber()] = bbArg.getArgNumber();
139 
140   OpBuilder b(op->getContext());
141   op->setAttr(kEquivalentArgsAttr, b.getI64ArrayAttr(equivBbArgs));
142 }
143 
144 /// Store function BlockArguments that are equivalent to/aliasing a returned
145 /// value in FuncAnalysisState.
aliasingFuncOpBBArgsAnalysis(FuncOp funcOp,OneShotAnalysisState & state)146 static LogicalResult aliasingFuncOpBBArgsAnalysis(FuncOp funcOp,
147                                                   OneShotAnalysisState &state) {
148   FuncAnalysisState &funcState = getFuncAnalysisState(state);
149 
150   // Support only single return-terminated block in the function.
151   func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
152   assert(returnOp && "expected func with single return op");
153 
154   for (OpOperand &returnVal : returnOp->getOpOperands())
155     if (returnVal.get().getType().isa<RankedTensorType>())
156       for (BlockArgument bbArg : funcOp.getArguments())
157         if (bbArg.getType().isa<RankedTensorType>()) {
158           int64_t returnIdx = returnVal.getOperandNumber();
159           int64_t bbArgIdx = bbArg.getArgNumber();
160           if (state.areEquivalentBufferizedValues(returnVal.get(), bbArg)) {
161             funcState.equivalentFuncArgs[funcOp][returnIdx] = bbArgIdx;
162             if (state.getOptions().testAnalysisOnly)
163               annotateEquivalentReturnBbArg(returnVal, bbArg);
164           }
165           if (state.areAliasingBufferizedValues(returnVal.get(), bbArg)) {
166             funcState.aliasingFuncArgs[funcOp][returnIdx].push_back(bbArgIdx);
167             funcState.aliasingReturnVals[funcOp][bbArgIdx].push_back(returnIdx);
168           }
169         }
170 
171   return success();
172 }
173 
annotateFuncArgAccess(func::FuncOp funcOp,BlockArgument bbArg,bool isRead,bool isWritten)174 static void annotateFuncArgAccess(func::FuncOp funcOp, BlockArgument bbArg,
175                                   bool isRead, bool isWritten) {
176   OpBuilder b(funcOp.getContext());
177   Attribute accessType;
178   if (isRead && isWritten) {
179     accessType = b.getStringAttr("read-write");
180   } else if (isRead) {
181     accessType = b.getStringAttr("read");
182   } else if (isWritten) {
183     accessType = b.getStringAttr("write");
184   } else {
185     accessType = b.getStringAttr("none");
186   }
187   funcOp.setArgAttr(bbArg.getArgNumber(), "bufferization.access", accessType);
188 }
189 
190 /// Determine which FuncOp bbArgs are read and which are written. When run on a
191 /// function with unknown ops, we conservatively assume that such ops bufferize
192 /// to a read + write.
funcOpBbArgReadWriteAnalysis(FuncOp funcOp,OneShotAnalysisState & state)193 static LogicalResult funcOpBbArgReadWriteAnalysis(FuncOp funcOp,
194                                                   OneShotAnalysisState &state) {
195   FuncAnalysisState &funcState = getFuncAnalysisState(state);
196 
197   // If the function has no body, conservatively assume that all args are
198   // read + written.
199   if (funcOp.getBody().empty()) {
200     for (BlockArgument bbArg : funcOp.getArguments()) {
201       funcState.readBbArgs[funcOp].insert(bbArg.getArgNumber());
202       funcState.writtenBbArgs[funcOp].insert(bbArg.getArgNumber());
203     }
204 
205     return success();
206   }
207 
208   for (BlockArgument bbArg : funcOp.getArguments()) {
209     if (!bbArg.getType().isa<TensorType>())
210       continue;
211     bool isRead = state.isValueRead(bbArg);
212     bool isWritten = state.isValueWritten(bbArg);
213     if (state.getOptions().testAnalysisOnly)
214       annotateFuncArgAccess(funcOp, bbArg, isRead, isWritten);
215     if (isRead)
216       funcState.readBbArgs[funcOp].insert(bbArg.getArgNumber());
217     if (isWritten)
218       funcState.writtenBbArgs[funcOp].insert(bbArg.getArgNumber());
219   }
220 
221   return success();
222 }
223 } // namespace
224 
225 /// Remove bufferization attributes on FuncOp arguments.
removeBufferizationAttributes(BlockArgument bbArg)226 static void removeBufferizationAttributes(BlockArgument bbArg) {
227   auto funcOp = cast<func::FuncOp>(bbArg.getOwner()->getParentOp());
228   funcOp.removeArgAttr(bbArg.getArgNumber(),
229                        BufferizationDialect::kBufferLayoutAttrName);
230   funcOp.removeArgAttr(bbArg.getArgNumber(),
231                        BufferizationDialect::kWritableAttrName);
232 }
233 
234 /// Return the func::FuncOp called by `callOp`.
getCalledFunction(CallOpInterface callOp)235 static func::FuncOp getCalledFunction(CallOpInterface callOp) {
236   SymbolRefAttr sym = callOp.getCallableForCallee().dyn_cast<SymbolRefAttr>();
237   if (!sym)
238     return nullptr;
239   return dyn_cast_or_null<func::FuncOp>(
240       SymbolTable::lookupNearestSymbolFrom(callOp, sym));
241 }
242 
243 /// Gather equivalence info of CallOps.
244 /// Note: This only adds new equivalence info if the called function was already
245 /// analyzed.
246 // TODO: This does not handle cyclic function call graphs etc.
equivalenceAnalysis(func::FuncOp funcOp,BufferizationAliasInfo & aliasInfo,OneShotAnalysisState & state)247 static void equivalenceAnalysis(func::FuncOp funcOp,
248                                 BufferizationAliasInfo &aliasInfo,
249                                 OneShotAnalysisState &state) {
250   FuncAnalysisState &funcState = getFuncAnalysisState(state);
251   funcOp->walk([&](func::CallOp callOp) {
252     func::FuncOp calledFunction = getCalledFunction(callOp);
253     assert(calledFunction && "could not retrieved called func::FuncOp");
254 
255     // No equivalence info available for the called function.
256     if (!funcState.equivalentFuncArgs.count(calledFunction))
257       return WalkResult::skip();
258 
259     for (auto it : funcState.equivalentFuncArgs[calledFunction]) {
260       int64_t returnIdx = it.first;
261       int64_t bbargIdx = it.second;
262       if (!state.isInPlace(callOp->getOpOperand(bbargIdx)))
263         continue;
264       Value returnVal = callOp.getResult(returnIdx);
265       Value argVal = callOp->getOperand(bbargIdx);
266       aliasInfo.unionEquivalenceClasses(returnVal, argVal);
267     }
268 
269     return WalkResult::advance();
270   });
271 }
272 
273 /// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by
274 /// callee-caller order (i.e. callees without callers first).
275 /// Store the map of FuncOp to all its callers in `callerMap`.
276 /// Return `failure()` if a cycle of calls is detected or if we are unable to
277 /// retrieve the called FuncOp from any CallOpInterface.
278 static LogicalResult
getFuncOpsOrderedByCalls(ModuleOp moduleOp,SmallVectorImpl<func::FuncOp> & orderedFuncOps,FuncCallerMap & callerMap)279 getFuncOpsOrderedByCalls(ModuleOp moduleOp,
280                          SmallVectorImpl<func::FuncOp> &orderedFuncOps,
281                          FuncCallerMap &callerMap) {
282   // For each FuncOp, the set of functions called by it (i.e. the union of
283   // symbols of all nested CallOpInterfaceOp).
284   DenseMap<func::FuncOp, DenseSet<func::FuncOp>> calledBy;
285   // For each FuncOp, the number of CallOpInterface it contains.
286   DenseMap<func::FuncOp, unsigned> numberCallOpsContainedInFuncOp;
287   WalkResult res = moduleOp.walk([&](func::FuncOp funcOp) -> WalkResult {
288     if (!funcOp.getBody().empty()) {
289       func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
290       if (!returnOp)
291         return funcOp->emitError()
292                << "cannot bufferize a FuncOp with tensors and "
293                   "without a unique ReturnOp";
294     }
295 
296     numberCallOpsContainedInFuncOp[funcOp] = 0;
297     return funcOp.walk([&](CallOpInterface callOp) -> WalkResult {
298       // Only support CallOp for now.
299       if (!isa<func::CallOp>(callOp.getOperation()))
300         return callOp->emitError() << "expected a CallOp";
301       func::FuncOp calledFunction = getCalledFunction(callOp);
302       assert(calledFunction && "could not retrieved called func::FuncOp");
303       callerMap[calledFunction].insert(callOp);
304       if (calledBy[calledFunction].insert(funcOp).second) {
305         numberCallOpsContainedInFuncOp[funcOp]++;
306       }
307       return WalkResult::advance();
308     });
309   });
310   if (res.wasInterrupted())
311     return failure();
312   // Iteratively remove function operation that do not call any of the
313   // functions remaining in the callCounter map and add them to the worklist.
314   while (!numberCallOpsContainedInFuncOp.empty()) {
315     auto it = llvm::find_if(numberCallOpsContainedInFuncOp,
316                             [](auto entry) { return entry.getSecond() == 0; });
317     if (it == numberCallOpsContainedInFuncOp.end())
318       return moduleOp.emitOpError(
319           "expected callgraph to be free of circular dependencies.");
320     orderedFuncOps.push_back(it->getFirst());
321     for (auto callee : calledBy[it->getFirst()])
322       numberCallOpsContainedInFuncOp[callee]--;
323     numberCallOpsContainedInFuncOp.erase(it);
324   }
325   return success();
326 }
327 
328 /// Fold return values that are memref casts and update function return types.
329 ///
330 /// During FuncOp bufferization, the exact type of the returned memrefs (if any)
331 /// is not known yet. Therefore, the bufferization uses memref types with the
332 /// most generic layout map as function return types. After bufferizing the
333 /// entire function body, a more concise memref type can potentially be used for
334 /// the return type of the function.
foldMemRefCasts(func::FuncOp funcOp)335 static void foldMemRefCasts(func::FuncOp funcOp) {
336   if (funcOp.getBody().empty())
337     return;
338 
339   func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
340   SmallVector<Type> resultTypes;
341 
342   for (OpOperand &operand : returnOp->getOpOperands()) {
343     if (auto castOp = operand.get().getDefiningOp<memref::CastOp>()) {
344       operand.set(castOp.getSource());
345       resultTypes.push_back(castOp.getSource().getType());
346     } else {
347       resultTypes.push_back(operand.get().getType());
348     }
349   }
350 
351   auto newFuncType = FunctionType::get(
352       funcOp.getContext(), funcOp.getFunctionType().getInputs(), resultTypes);
353   funcOp.setType(newFuncType);
354 }
355 
356 LogicalResult
analyzeModuleOp(ModuleOp moduleOp,OneShotAnalysisState & state)357 mlir::bufferization::analyzeModuleOp(ModuleOp moduleOp,
358                                      OneShotAnalysisState &state) {
359   OneShotBufferizationOptions options =
360       static_cast<const OneShotBufferizationOptions &>(state.getOptions());
361   assert(options.bufferizeFunctionBoundaries &&
362          "expected that function boundary bufferization is activated");
363   FuncAnalysisState &funcState = getFuncAnalysisState(state);
364   BufferizationAliasInfo &aliasInfo = state.getAliasInfo();
365 
366   // A list of functions in the order in which they are analyzed + bufferized.
367   SmallVector<func::FuncOp> orderedFuncOps;
368 
369   // A mapping of FuncOps to their callers.
370   FuncCallerMap callerMap;
371 
372   if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap)))
373     return failure();
374 
375   // Analyze ops.
376   for (func::FuncOp funcOp : orderedFuncOps) {
377     // No body => no analysis.
378     if (funcOp.getBody().empty())
379       continue;
380 
381     // Now analyzing function.
382     funcState.startFunctionAnalysis(funcOp);
383 
384     // Gather equivalence info for CallOps.
385     equivalenceAnalysis(funcOp, aliasInfo, state);
386 
387     // Analyze funcOp.
388     if (failed(analyzeOp(funcOp, state)))
389       return failure();
390 
391     // Run some extra function analyses.
392     if (failed(aliasingFuncOpBBArgsAnalysis(funcOp, state)) ||
393         failed(funcOpBbArgReadWriteAnalysis(funcOp, state)))
394       return failure();
395 
396     // Mark op as fully analyzed.
397     funcState.analyzedFuncOps[funcOp] = FuncOpAnalysisState::Analyzed;
398   }
399 
400   return success();
401 }
402 
bufferizeModuleOp(ModuleOp moduleOp,const OneShotAnalysisState & analysisState)403 LogicalResult mlir::bufferization::bufferizeModuleOp(
404     ModuleOp moduleOp, const OneShotAnalysisState &analysisState) {
405   auto const &options = static_cast<const OneShotBufferizationOptions &>(
406       analysisState.getOptions());
407   assert(options.bufferizeFunctionBoundaries &&
408          "expected that function boundary bufferization is activated");
409   IRRewriter rewriter(moduleOp.getContext());
410 
411   // A list of functions in the order in which they are analyzed + bufferized.
412   SmallVector<func::FuncOp> orderedFuncOps;
413 
414   // A mapping of FuncOps to their callers.
415   FuncCallerMap callerMap;
416 
417   if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap)))
418     return failure();
419 
420   // Bufferize functions.
421   for (func::FuncOp funcOp : orderedFuncOps) {
422     // Note: It would be good to apply cleanups here but we cannot as aliasInfo
423     // would be invalidated.
424     if (failed(bufferizeOp(funcOp, options, /*copyBeforeWrite=*/false)))
425       return failure();
426     // Change buffer return types to more precise layout maps.
427     if (options.functionBoundaryTypeConversion ==
428         BufferizationOptions::LayoutMapOption::InferLayoutMap)
429       foldMemRefCasts(funcOp);
430   }
431 
432   // Post-pass cleanup of function argument attributes.
433   moduleOp.walk([&](func::FuncOp op) {
434     for (BlockArgument bbArg : op.getArguments())
435       removeBufferizationAttributes(bbArg);
436   });
437 
438   return success();
439 }
440 
runOneShotModuleBufferize(ModuleOp moduleOp,const OneShotBufferizationOptions & options)441 LogicalResult mlir::bufferization::runOneShotModuleBufferize(
442     ModuleOp moduleOp, const OneShotBufferizationOptions &options) {
443   assert(options.bufferizeFunctionBoundaries &&
444          "expected that function boundary bufferization is activated");
445   OneShotAnalysisState analysisState(moduleOp, options);
446   if (failed(insertTensorCopies(moduleOp, options)))
447     return failure();
448   if (options.testAnalysisOnly)
449     return success();
450   if (failed(bufferizeModuleOp(moduleOp, analysisState)))
451     return failure();
452   return success();
453 }
454