1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements scf.parallel to src.for + async.execute conversion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Async/IR/Async.h" 15 #include "mlir/Dialect/Async/Passes.h" 16 #include "mlir/Dialect/SCF/SCF.h" 17 #include "mlir/Dialect/StandardOps/IR/Ops.h" 18 #include "mlir/IR/BlockAndValueMapping.h" 19 #include "mlir/IR/PatternMatch.h" 20 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 21 22 using namespace mlir; 23 using namespace mlir::async; 24 25 #define DEBUG_TYPE "async-parallel-for" 26 27 namespace { 28 29 // Rewrite scf.parallel operation into multiple concurrent async.execute 30 // operations over non overlapping subranges of the original loop. 31 // 32 // Example: 33 // 34 // scf.for (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) { 35 // "do_some_compute"(%i, %j): () -> () 36 // } 37 // 38 // Converted to: 39 // 40 // %c0 = constant 0 : index 41 // %c1 = constant 1 : index 42 // 43 // // Compute blocks sizes for each induction variable. 44 // %num_blocks_i = ... : index 45 // %num_blocks_j = ... : index 46 // %block_size_i = ... : index 47 // %block_size_j = ... : index 48 // 49 // // Create an async group to track async execute ops. 50 // %group = async.create_group 51 // 52 // scf.for %bi = %c0 to %num_blocks_i step %c1 { 53 // %block_start_i = ... : index 54 // %block_end_i = ... : index 55 // 56 // scf.for %bj = %c0 to %num_blocks_j step %c1 { 57 // %block_start_j = ... : index 58 // %block_end_j = ... : index 59 // 60 // // Execute the body of original parallel operation for the current 61 // // block. 62 // %token = async.execute { 63 // scf.for %i = %block_start_i to %block_end_i step %si { 64 // scf.for %j = %block_start_j to %block_end_j step %sj { 65 // "do_some_compute"(%i, %j): () -> () 66 // } 67 // } 68 // } 69 // 70 // // Add produced async token to the group. 71 // async.add_to_group %token, %group 72 // } 73 // } 74 // 75 // // Await completion of all async.execute operations. 76 // async.await_all %group 77 // 78 // In this example outer loop launches inner block level loops as separate async 79 // execute operations which will be executed concurrently. 80 // 81 // At the end it waits for the completiom of all async execute operations. 82 // 83 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> { 84 public: 85 AsyncParallelForRewrite(MLIRContext *ctx, int numConcurrentAsyncExecute) 86 : OpRewritePattern(ctx), 87 numConcurrentAsyncExecute(numConcurrentAsyncExecute) {} 88 89 LogicalResult matchAndRewrite(scf::ParallelOp op, 90 PatternRewriter &rewriter) const override; 91 92 private: 93 int numConcurrentAsyncExecute; 94 }; 95 96 struct AsyncParallelForPass 97 : public AsyncParallelForBase<AsyncParallelForPass> { 98 AsyncParallelForPass() = default; 99 void runOnFunction() override; 100 }; 101 102 } // namespace 103 104 LogicalResult 105 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op, 106 PatternRewriter &rewriter) const { 107 // We do not currently support rewrite for parallel op with reductions. 108 if (op.getNumReductions() != 0) 109 return failure(); 110 111 MLIRContext *ctx = op.getContext(); 112 Location loc = op.getLoc(); 113 114 // Index constants used below. 115 auto indexTy = IndexType::get(ctx); 116 auto zero = IntegerAttr::get(indexTy, 0); 117 auto one = IntegerAttr::get(indexTy, 1); 118 auto c0 = rewriter.create<ConstantOp>(loc, indexTy, zero); 119 auto c1 = rewriter.create<ConstantOp>(loc, indexTy, one); 120 121 // Shorthand for signed integer ceil division operation. 122 auto divup = [&](Value x, Value y) -> Value { 123 return rewriter.create<SignedCeilDivIOp>(loc, x, y); 124 }; 125 126 // Compute trip count for each loop induction variable: 127 // tripCount = divUp(upperBound - lowerBound, step); 128 SmallVector<Value, 4> tripCounts(op.getNumLoops()); 129 for (size_t i = 0; i < op.getNumLoops(); ++i) { 130 auto lb = op.lowerBound()[i]; 131 auto ub = op.upperBound()[i]; 132 auto step = op.step()[i]; 133 auto range = rewriter.create<SubIOp>(loc, ub, lb); 134 tripCounts[i] = divup(range, step); 135 } 136 137 // The target number of concurrent async.execute ops. 138 auto numExecuteOps = rewriter.create<ConstantOp>( 139 loc, indexTy, IntegerAttr::get(indexTy, numConcurrentAsyncExecute)); 140 141 // Blocks sizes configuration for each induction variable. 142 143 // We try to use maximum available concurrency in outer dimensions first 144 // (assuming that parallel induction variables are corresponding to some 145 // multidimensional access, e.g. in (%d0, %d1, ..., %dn) = (<from>) to (<to>) 146 // we will try to parallelize iteration along the %d0. If %d0 is too small, 147 // we'll parallelize iteration over %d1, and so on. 148 SmallVector<Value, 4> targetNumBlocks(op.getNumLoops()); 149 SmallVector<Value, 4> blockSize(op.getNumLoops()); 150 SmallVector<Value, 4> numBlocks(op.getNumLoops()); 151 152 // Compute block size and number of blocks along the first induction variable. 153 targetNumBlocks[0] = numExecuteOps; 154 blockSize[0] = divup(tripCounts[0], targetNumBlocks[0]); 155 numBlocks[0] = divup(tripCounts[0], blockSize[0]); 156 157 // Assign remaining available concurrency to other induction variables. 158 for (size_t i = 1; i < op.getNumLoops(); ++i) { 159 targetNumBlocks[i] = divup(targetNumBlocks[i - 1], numBlocks[i - 1]); 160 blockSize[i] = divup(tripCounts[i], targetNumBlocks[i]); 161 numBlocks[i] = divup(tripCounts[i], blockSize[i]); 162 } 163 164 // Create an async.group to wait on all async tokens from async execute ops. 165 auto group = rewriter.create<CreateGroupOp>(loc, GroupType::get(ctx)); 166 167 // Build a scf.for loop nest from the parallel operation. 168 169 // Lower/upper bounds for nest block level computations. 170 SmallVector<Value, 4> blockLowerBounds(op.getNumLoops()); 171 SmallVector<Value, 4> blockUpperBounds(op.getNumLoops()); 172 SmallVector<Value, 4> blockInductionVars(op.getNumLoops()); 173 174 using LoopBodyBuilder = 175 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 176 using LoopBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>; 177 178 // Builds inner loop nest inside async.execute operation that does all the 179 // work concurrently. 180 LoopBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { 181 return [&, loopIdx](OpBuilder &b, Location loc, Value iv, ValueRange args) { 182 blockInductionVars[loopIdx] = iv; 183 184 // Continute building async loop nest. 185 if (loopIdx < op.getNumLoops() - 1) { 186 b.create<scf::ForOp>( 187 loc, blockLowerBounds[loopIdx + 1], blockUpperBounds[loopIdx + 1], 188 op.step()[loopIdx + 1], ValueRange(), workLoopBuilder(loopIdx + 1)); 189 b.create<scf::YieldOp>(loc); 190 return; 191 } 192 193 // Copy the body of the parallel op with new loop bounds. 194 BlockAndValueMapping mapping; 195 mapping.map(op.getInductionVars(), blockInductionVars); 196 197 for (auto &bodyOp : op.getLoopBody().getOps()) 198 b.clone(bodyOp, mapping); 199 }; 200 }; 201 202 // Builds a loop nest that does async execute op dispatching. 203 LoopBuilder asyncLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { 204 return [&, loopIdx](OpBuilder &b, Location loc, Value iv, ValueRange args) { 205 auto lb = op.lowerBound()[loopIdx]; 206 auto ub = op.upperBound()[loopIdx]; 207 auto step = op.step()[loopIdx]; 208 209 // Compute lower bound for the current block: 210 // blockLowerBound = iv * blockSize * step + lowerBound 211 auto s0 = b.create<MulIOp>(loc, iv, blockSize[loopIdx]); 212 auto s1 = b.create<MulIOp>(loc, s0, step); 213 auto s2 = b.create<AddIOp>(loc, s1, lb); 214 blockLowerBounds[loopIdx] = s2; 215 216 // Compute upper bound for the current block: 217 // blockUpperBound = min(upperBound, 218 // blockLowerBound + blockSize * step) 219 auto e0 = b.create<MulIOp>(loc, blockSize[loopIdx], step); 220 auto e1 = b.create<AddIOp>(loc, e0, s2); 221 auto e2 = b.create<CmpIOp>(loc, CmpIPredicate::slt, e1, ub); 222 auto e3 = b.create<SelectOp>(loc, e2, e1, ub); 223 blockUpperBounds[loopIdx] = e3; 224 225 // Continue building async dispatch loop nest. 226 if (loopIdx < op.getNumLoops() - 1) { 227 b.create<scf::ForOp>(loc, c0, numBlocks[loopIdx + 1], c1, ValueRange(), 228 asyncLoopBuilder(loopIdx + 1)); 229 b.create<scf::YieldOp>(loc); 230 return; 231 } 232 233 // Build the inner loop nest that will do the actual work inside the 234 // `async.execute` body region. 235 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 236 Location executeLoc, 237 ValueRange executeArgs) { 238 executeBuilder.create<scf::ForOp>(executeLoc, blockLowerBounds[0], 239 blockUpperBounds[0], op.step()[0], 240 ValueRange(), workLoopBuilder(0)); 241 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 242 }; 243 244 auto execute = b.create<ExecuteOp>( 245 loc, /*resultTypes=*/TypeRange(), /*dependencies=*/ValueRange(), 246 /*operands=*/ValueRange(), executeBodyBuilder); 247 auto rankType = IndexType::get(ctx); 248 b.create<AddToGroupOp>(loc, rankType, execute.token(), group.result()); 249 b.create<scf::YieldOp>(loc); 250 }; 251 }; 252 253 // Start building a loop nest from the first induction variable. 254 rewriter.create<scf::ForOp>(loc, c0, numBlocks[0], c1, ValueRange(), 255 asyncLoopBuilder(0)); 256 257 // Wait for the completion of all subtasks. 258 rewriter.create<AwaitAllOp>(loc, group.result()); 259 260 // Erase the original parallel operation. 261 rewriter.eraseOp(op); 262 263 return success(); 264 } 265 266 void AsyncParallelForPass::runOnFunction() { 267 MLIRContext *ctx = &getContext(); 268 269 OwningRewritePatternList patterns; 270 patterns.insert<AsyncParallelForRewrite>(ctx, numConcurrentAsyncExecute); 271 272 if (failed(applyPatternsAndFoldGreedily(getFunction(), std::move(patterns)))) 273 signalPassFailure(); 274 } 275 276 std::unique_ptr<OperationPass<FuncOp>> mlir::createAsyncParallelForPass() { 277 return std::make_unique<AsyncParallelForPass>(); 278 } 279