1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements scf.parallel to scf.for + async.execute conversion pass.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include <utility>
14
15 #include "PassDetail.h"
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Async/IR/Async.h"
18 #include "mlir/Dialect/Async/Passes.h"
19 #include "mlir/Dialect/Async/Transforms.h"
20 #include "mlir/Dialect/Func/IR/FuncOps.h"
21 #include "mlir/Dialect/SCF/IR/SCF.h"
22 #include "mlir/IR/BlockAndValueMapping.h"
23 #include "mlir/IR/ImplicitLocOpBuilder.h"
24 #include "mlir/IR/Matchers.h"
25 #include "mlir/IR/PatternMatch.h"
26 #include "mlir/Support/LLVM.h"
27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
28 #include "mlir/Transforms/RegionUtils.h"
29
30 using namespace mlir;
31 using namespace mlir::async;
32
33 #define DEBUG_TYPE "async-parallel-for"
34
35 namespace {
36
37 // Rewrite scf.parallel operation into multiple concurrent async.execute
38 // operations over non overlapping subranges of the original loop.
39 //
40 // Example:
41 //
42 // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) {
43 // "do_some_compute"(%i, %j): () -> ()
44 // }
45 //
46 // Converted to:
47 //
48 // // Parallel compute function that executes the parallel body region for
49 // // a subset of the parallel iteration space defined by the one-dimensional
50 // // compute block index.
51 // func parallel_compute_function(%block_index : index, %block_size : index,
52 // <parallel operation properties>, ...) {
53 // // Compute multi-dimensional loop bounds for %block_index.
54 // %block_lbi, %block_lbj = ...
55 // %block_ubi, %block_ubj = ...
56 //
57 // // Clone parallel operation body into the scf.for loop nest.
58 // scf.for %i = %blockLbi to %blockUbi {
59 // scf.for %j = block_lbj to %block_ubj {
60 // "do_some_compute"(%i, %j): () -> ()
61 // }
62 // }
63 // }
64 //
65 // And a dispatch function depending on the `asyncDispatch` option.
66 //
67 // When async dispatch is on: (pseudocode)
68 //
69 // %block_size = ... compute parallel compute block size
70 // %block_count = ... compute the number of compute blocks
71 //
72 // func @async_dispatch(%block_start : index, %block_end : index, ...) {
73 // // Keep splitting block range until we reached a range of size 1.
74 // while (%block_end - %block_start > 1) {
75 // %mid_index = block_start + (block_end - block_start) / 2;
76 // async.execute { call @async_dispatch(%mid_index, %block_end); }
77 // %block_end = %mid_index
78 // }
79 //
80 // // Call parallel compute function for a single block.
81 // call @parallel_compute_fn(%block_start, %block_size, ...);
82 // }
83 //
84 // // Launch async dispatch for [0, block_count) range.
85 // call @async_dispatch(%c0, %block_count);
86 //
87 // When async dispatch is off:
88 //
89 // %block_size = ... compute parallel compute block size
90 // %block_count = ... compute the number of compute blocks
91 //
92 // scf.for %block_index = %c0 to %block_count {
93 // call @parallel_compute_fn(%block_index, %block_size, ...)
94 // }
95 //
96 struct AsyncParallelForPass
97 : public AsyncParallelForBase<AsyncParallelForPass> {
98 AsyncParallelForPass() = default;
99
AsyncParallelForPass__anon4364cdbb0111::AsyncParallelForPass100 AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads,
101 int32_t minTaskSize) {
102 this->asyncDispatch = asyncDispatch;
103 this->numWorkerThreads = numWorkerThreads;
104 this->minTaskSize = minTaskSize;
105 }
106
107 void runOnOperation() override;
108 };
109
110 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> {
111 public:
AsyncParallelForRewrite__anon4364cdbb0111::AsyncParallelForRewrite112 AsyncParallelForRewrite(
113 MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads,
114 AsyncMinTaskSizeComputationFunction computeMinTaskSize)
115 : OpRewritePattern(ctx), asyncDispatch(asyncDispatch),
116 numWorkerThreads(numWorkerThreads),
117 computeMinTaskSize(std::move(computeMinTaskSize)) {}
118
119 LogicalResult matchAndRewrite(scf::ParallelOp op,
120 PatternRewriter &rewriter) const override;
121
122 private:
123 bool asyncDispatch;
124 int32_t numWorkerThreads;
125 AsyncMinTaskSizeComputationFunction computeMinTaskSize;
126 };
127
128 struct ParallelComputeFunctionType {
129 FunctionType type;
130 SmallVector<Value> captures;
131 };
132
133 // Helper struct to parse parallel compute function argument list.
134 struct ParallelComputeFunctionArgs {
135 BlockArgument blockIndex();
136 BlockArgument blockSize();
137 ArrayRef<BlockArgument> tripCounts();
138 ArrayRef<BlockArgument> lowerBounds();
139 ArrayRef<BlockArgument> upperBounds();
140 ArrayRef<BlockArgument> steps();
141 ArrayRef<BlockArgument> captures();
142
143 unsigned numLoops;
144 ArrayRef<BlockArgument> args;
145 };
146
147 struct ParallelComputeFunctionBounds {
148 SmallVector<IntegerAttr> tripCounts;
149 SmallVector<IntegerAttr> lowerBounds;
150 SmallVector<IntegerAttr> upperBounds;
151 SmallVector<IntegerAttr> steps;
152 };
153
154 struct ParallelComputeFunction {
155 unsigned numLoops;
156 func::FuncOp func;
157 llvm::SmallVector<Value> captures;
158 };
159
160 } // namespace
161
blockIndex()162 BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; }
blockSize()163 BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; }
164
tripCounts()165 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() {
166 return args.drop_front(2).take_front(numLoops);
167 }
168
lowerBounds()169 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() {
170 return args.drop_front(2 + 1 * numLoops).take_front(numLoops);
171 }
172
upperBounds()173 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() {
174 return args.drop_front(2 + 2 * numLoops).take_front(numLoops);
175 }
176
steps()177 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() {
178 return args.drop_front(2 + 3 * numLoops).take_front(numLoops);
179 }
180
captures()181 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() {
182 return args.drop_front(2 + 4 * numLoops);
183 }
184
185 template <typename ValueRange>
integerConstants(ValueRange values)186 static SmallVector<IntegerAttr> integerConstants(ValueRange values) {
187 SmallVector<IntegerAttr> attrs(values.size());
188 for (unsigned i = 0; i < values.size(); ++i)
189 matchPattern(values[i], m_Constant(&attrs[i]));
190 return attrs;
191 }
192
193 // Converts one-dimensional iteration index in the [0, tripCount) interval
194 // into multidimensional iteration coordinate.
delinearize(ImplicitLocOpBuilder & b,Value index,ArrayRef<Value> tripCounts)195 static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index,
196 ArrayRef<Value> tripCounts) {
197 SmallVector<Value> coords(tripCounts.size());
198 assert(!tripCounts.empty() && "tripCounts must be not empty");
199
200 for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) {
201 coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]);
202 index = b.create<arith::DivSIOp>(index, tripCounts[i]);
203 }
204
205 return coords;
206 }
207
208 // Returns a function type and implicit captures for a parallel compute
209 // function. We'll need a list of implicit captures to setup block and value
210 // mapping when we'll clone the body of the parallel operation.
211 static ParallelComputeFunctionType
getParallelComputeFunctionType(scf::ParallelOp op,PatternRewriter & rewriter)212 getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) {
213 // Values implicitly captured by the parallel operation.
214 llvm::SetVector<Value> captures;
215 getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures);
216
217 SmallVector<Type> inputs;
218 inputs.reserve(2 + 4 * op.getNumLoops() + captures.size());
219
220 Type indexTy = rewriter.getIndexType();
221
222 // One-dimensional iteration space defined by the block index and size.
223 inputs.push_back(indexTy); // blockIndex
224 inputs.push_back(indexTy); // blockSize
225
226 // Multi-dimensional parallel iteration space defined by the loop trip counts.
227 for (unsigned i = 0; i < op.getNumLoops(); ++i)
228 inputs.push_back(indexTy); // loop tripCount
229
230 // Parallel operation lower bound, upper bound and step. Lower bound, upper
231 // bound and step passed as contiguous arguments:
232 // call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...)
233 for (unsigned i = 0; i < op.getNumLoops(); ++i) {
234 inputs.push_back(indexTy); // lower bound
235 inputs.push_back(indexTy); // upper bound
236 inputs.push_back(indexTy); // step
237 }
238
239 // Types of the implicit captures.
240 for (Value capture : captures)
241 inputs.push_back(capture.getType());
242
243 // Convert captures to vector for later convenience.
244 SmallVector<Value> capturesVector(captures.begin(), captures.end());
245 return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector};
246 }
247
248 // Create a parallel compute fuction from the parallel operation.
createParallelComputeFunction(scf::ParallelOp op,const ParallelComputeFunctionBounds & bounds,unsigned numBlockAlignedInnerLoops,PatternRewriter & rewriter)249 static ParallelComputeFunction createParallelComputeFunction(
250 scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds,
251 unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) {
252 OpBuilder::InsertionGuard guard(rewriter);
253 ImplicitLocOpBuilder b(op.getLoc(), rewriter);
254
255 ModuleOp module = op->getParentOfType<ModuleOp>();
256
257 ParallelComputeFunctionType computeFuncType =
258 getParallelComputeFunctionType(op, rewriter);
259
260 FunctionType type = computeFuncType.type;
261 func::FuncOp func = func::FuncOp::create(
262 op.getLoc(),
263 numBlockAlignedInnerLoops > 0 ? "parallel_compute_fn_with_aligned_loops"
264 : "parallel_compute_fn",
265 type);
266 func.setPrivate();
267
268 // Insert function into the module symbol table and assign it unique name.
269 SymbolTable symbolTable(module);
270 symbolTable.insert(func);
271 rewriter.getListener()->notifyOperationInserted(func);
272
273 // Create function entry block.
274 Block *block =
275 b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
276 SmallVector<Location>(type.getNumInputs(), op.getLoc()));
277 b.setInsertionPointToEnd(block);
278
279 ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()};
280
281 // Block iteration position defined by the block index and size.
282 BlockArgument blockIndex = args.blockIndex();
283 BlockArgument blockSize = args.blockSize();
284
285 // Constants used below.
286 Value c0 = b.create<arith::ConstantIndexOp>(0);
287 Value c1 = b.create<arith::ConstantIndexOp>(1);
288
289 // Materialize known constants as constant operation in the function body.
290 auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) {
291 return llvm::to_vector(
292 llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value {
293 if (IntegerAttr attr = std::get<1>(tuple))
294 return b.create<arith::ConstantOp>(attr);
295 return std::get<0>(tuple);
296 }));
297 };
298
299 // Multi-dimensional parallel iteration space defined by the loop trip counts.
300 auto tripCounts = values(args.tripCounts(), bounds.tripCounts);
301
302 // Parallel operation lower bound and step.
303 auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds);
304 auto steps = values(args.steps(), bounds.steps);
305
306 // Remaining arguments are implicit captures of the parallel operation.
307 ArrayRef<BlockArgument> captures = args.captures();
308
309 // Compute a product of trip counts to get the size of the flattened
310 // one-dimensional iteration space.
311 Value tripCount = tripCounts[0];
312 for (unsigned i = 1; i < tripCounts.size(); ++i)
313 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
314
315 // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]:
316 // blockFirstIndex = blockIndex * blockSize
317 Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize);
318
319 // The last one-dimensional index in the block defined by the `blockIndex`:
320 // blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1
321 Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize);
322 Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount);
323 Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1);
324
325 // Convert one-dimensional indices to multi-dimensional coordinates.
326 auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts);
327 auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts);
328
329 // Compute loops upper bounds derived from the block last coordinates:
330 // blockEndCoord[i] = blockLastCoord[i] + 1
331 //
332 // Block first and last coordinates can be the same along the outer compute
333 // dimension when inner compute dimension contains multiple blocks.
334 SmallVector<Value> blockEndCoord(op.getNumLoops());
335 for (size_t i = 0; i < blockLastCoord.size(); ++i)
336 blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1);
337
338 // Construct a loop nest out of scf.for operations that will iterate over
339 // all coordinates in [blockFirstCoord, blockLastCoord] range.
340 using LoopBodyBuilder =
341 std::function<void(OpBuilder &, Location, Value, ValueRange)>;
342 using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>;
343
344 // Parallel region induction variables computed from the multi-dimensional
345 // iteration coordinate using parallel operation bounds and step:
346 //
347 // computeBlockInductionVars[loopIdx] =
348 // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx]
349 SmallVector<Value> computeBlockInductionVars(op.getNumLoops());
350
351 // We need to know if we are in the first or last iteration of the
352 // multi-dimensional loop for each loop in the nest, so we can decide what
353 // loop bounds should we use for the nested loops: bounds defined by compute
354 // block interval, or bounds defined by the parallel operation.
355 //
356 // Example: 2d parallel operation
357 // i j
358 // loop sizes: [50, 50]
359 // first coord: [25, 25]
360 // last coord: [30, 30]
361 //
362 // If `i` is equal to 25 then iteration over `j` should start at 25, when `i`
363 // is between 25 and 30 it should start at 0. The upper bound for `j` should
364 // be 50, except when `i` is equal to 30, then it should also be 30.
365 //
366 // Value at ith position specifies if all loops in [0, i) range of the loop
367 // nest are in the first/last iteration.
368 SmallVector<Value> isBlockFirstCoord(op.getNumLoops());
369 SmallVector<Value> isBlockLastCoord(op.getNumLoops());
370
371 // Builds inner loop nest inside async.execute operation that does all the
372 // work concurrently.
373 LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder {
374 return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv,
375 ValueRange args) {
376 ImplicitLocOpBuilder b(loc, nestedBuilder);
377
378 // Compute induction variable for `loopIdx`.
379 computeBlockInductionVars[loopIdx] = b.create<arith::AddIOp>(
380 lowerBounds[loopIdx], b.create<arith::MulIOp>(iv, steps[loopIdx]));
381
382 // Check if we are inside first or last iteration of the loop.
383 isBlockFirstCoord[loopIdx] = b.create<arith::CmpIOp>(
384 arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]);
385 isBlockLastCoord[loopIdx] = b.create<arith::CmpIOp>(
386 arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]);
387
388 // Check if the previous loop is in its first or last iteration.
389 if (loopIdx > 0) {
390 isBlockFirstCoord[loopIdx] = b.create<arith::AndIOp>(
391 isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]);
392 isBlockLastCoord[loopIdx] = b.create<arith::AndIOp>(
393 isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]);
394 }
395
396 // Keep building loop nest.
397 if (loopIdx < op.getNumLoops() - 1) {
398 if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) {
399 // For block aligned loops we always iterate starting from 0 up to
400 // the loop trip counts.
401 b.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(),
402 workLoopBuilder(loopIdx + 1));
403
404 } else {
405 // Select nested loop lower/upper bounds depending on our position in
406 // the multi-dimensional iteration space.
407 auto lb = b.create<arith::SelectOp>(isBlockFirstCoord[loopIdx],
408 blockFirstCoord[loopIdx + 1], c0);
409
410 auto ub = b.create<arith::SelectOp>(isBlockLastCoord[loopIdx],
411 blockEndCoord[loopIdx + 1],
412 tripCounts[loopIdx + 1]);
413
414 b.create<scf::ForOp>(lb, ub, c1, ValueRange(),
415 workLoopBuilder(loopIdx + 1));
416 }
417
418 b.create<scf::YieldOp>(loc);
419 return;
420 }
421
422 // Copy the body of the parallel op into the inner-most loop.
423 BlockAndValueMapping mapping;
424 mapping.map(op.getInductionVars(), computeBlockInductionVars);
425 mapping.map(computeFuncType.captures, captures);
426
427 for (auto &bodyOp : op.getLoopBody().getOps())
428 b.clone(bodyOp, mapping);
429 };
430 };
431
432 b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(),
433 workLoopBuilder(0));
434 b.create<func::ReturnOp>(ValueRange());
435
436 return {op.getNumLoops(), func, std::move(computeFuncType.captures)};
437 }
438
439 // Creates recursive async dispatch function for the given parallel compute
440 // function. Dispatch function keeps splitting block range into halves until it
441 // reaches a single block, and then excecutes it inline.
442 //
443 // Function pseudocode (mix of C++ and MLIR):
444 //
445 // func @async_dispatch(%block_start : index, %block_end : index, ...) {
446 //
447 // // Keep splitting block range until we reached a range of size 1.
448 // while (%block_end - %block_start > 1) {
449 // %mid_index = block_start + (block_end - block_start) / 2;
450 // async.execute { call @async_dispatch(%mid_index, %block_end); }
451 // %block_end = %mid_index
452 // }
453 //
454 // // Call parallel compute function for a single block.
455 // call @parallel_compute_fn(%block_start, %block_size, ...);
456 // }
457 //
458 static func::FuncOp
createAsyncDispatchFunction(ParallelComputeFunction & computeFunc,PatternRewriter & rewriter)459 createAsyncDispatchFunction(ParallelComputeFunction &computeFunc,
460 PatternRewriter &rewriter) {
461 OpBuilder::InsertionGuard guard(rewriter);
462 Location loc = computeFunc.func.getLoc();
463 ImplicitLocOpBuilder b(loc, rewriter);
464
465 ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>();
466
467 ArrayRef<Type> computeFuncInputTypes =
468 computeFunc.func.getFunctionType().getInputs();
469
470 // Compared to the parallel compute function async dispatch function takes
471 // additional !async.group argument. Also instead of a single `blockIndex` it
472 // takes `blockStart` and `blockEnd` arguments to define the range of
473 // dispatched blocks.
474 SmallVector<Type> inputTypes;
475 inputTypes.push_back(async::GroupType::get(rewriter.getContext()));
476 inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument
477 inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end());
478
479 FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange());
480 func::FuncOp func = func::FuncOp::create(loc, "async_dispatch_fn", type);
481 func.setPrivate();
482
483 // Insert function into the module symbol table and assign it unique name.
484 SymbolTable symbolTable(module);
485 symbolTable.insert(func);
486 rewriter.getListener()->notifyOperationInserted(func);
487
488 // Create function entry block.
489 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
490 SmallVector<Location>(type.getNumInputs(), loc));
491 b.setInsertionPointToEnd(block);
492
493 Type indexTy = b.getIndexType();
494 Value c1 = b.create<arith::ConstantIndexOp>(1);
495 Value c2 = b.create<arith::ConstantIndexOp>(2);
496
497 // Get the async group that will track async dispatch completion.
498 Value group = block->getArgument(0);
499
500 // Get the block iteration range: [blockStart, blockEnd)
501 Value blockStart = block->getArgument(1);
502 Value blockEnd = block->getArgument(2);
503
504 // Create a work splitting while loop for the [blockStart, blockEnd) range.
505 SmallVector<Type> types = {indexTy, indexTy};
506 SmallVector<Value> operands = {blockStart, blockEnd};
507 SmallVector<Location> locations = {loc, loc};
508
509 // Create a recursive dispatch loop.
510 scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands);
511 Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations);
512 Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations);
513
514 // Setup dispatch loop condition block: decide if we need to go into the
515 // `after` block and launch one more async dispatch.
516 {
517 b.setInsertionPointToEnd(before);
518 Value start = before->getArgument(0);
519 Value end = before->getArgument(1);
520 Value distance = b.create<arith::SubIOp>(end, start);
521 Value dispatch =
522 b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1);
523 b.create<scf::ConditionOp>(dispatch, before->getArguments());
524 }
525
526 // Setup the async dispatch loop body: recursively call dispatch function
527 // for the seconds half of the original range and go to the next iteration.
528 {
529 b.setInsertionPointToEnd(after);
530 Value start = after->getArgument(0);
531 Value end = after->getArgument(1);
532 Value distance = b.create<arith::SubIOp>(end, start);
533 Value halfDistance = b.create<arith::DivSIOp>(distance, c2);
534 Value midIndex = b.create<arith::AddIOp>(start, halfDistance);
535
536 // Call parallel compute function inside the async.execute region.
537 auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
538 Location executeLoc, ValueRange executeArgs) {
539 // Update the original `blockStart` and `blockEnd` with new range.
540 SmallVector<Value> operands{block->getArguments().begin(),
541 block->getArguments().end()};
542 operands[1] = midIndex;
543 operands[2] = end;
544
545 executeBuilder.create<func::CallOp>(executeLoc, func.getSymName(),
546 func.getCallableResults(), operands);
547 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
548 };
549
550 // Create async.execute operation to dispatch half of the block range.
551 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
552 executeBodyBuilder);
553 b.create<AddToGroupOp>(indexTy, execute.token(), group);
554 b.create<scf::YieldOp>(ValueRange({start, midIndex}));
555 }
556
557 // After dispatching async operations to process the tail of the block range
558 // call the parallel compute function for the first block of the range.
559 b.setInsertionPointAfter(whileOp);
560
561 // Drop async dispatch specific arguments: async group, block start and end.
562 auto forwardedInputs = block->getArguments().drop_front(3);
563 SmallVector<Value> computeFuncOperands = {blockStart};
564 computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end());
565
566 b.create<func::CallOp>(computeFunc.func.getSymName(),
567 computeFunc.func.getCallableResults(),
568 computeFuncOperands);
569 b.create<func::ReturnOp>(ValueRange());
570
571 return func;
572 }
573
574 // Launch async dispatch of the parallel compute function.
doAsyncDispatch(ImplicitLocOpBuilder & b,PatternRewriter & rewriter,ParallelComputeFunction & parallelComputeFunction,scf::ParallelOp op,Value blockSize,Value blockCount,const SmallVector<Value> & tripCounts)575 static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
576 ParallelComputeFunction ¶llelComputeFunction,
577 scf::ParallelOp op, Value blockSize,
578 Value blockCount,
579 const SmallVector<Value> &tripCounts) {
580 MLIRContext *ctx = op->getContext();
581
582 // Add one more level of indirection to dispatch parallel compute functions
583 // using async operations and recursive work splitting.
584 func::FuncOp asyncDispatchFunction =
585 createAsyncDispatchFunction(parallelComputeFunction, rewriter);
586
587 Value c0 = b.create<arith::ConstantIndexOp>(0);
588 Value c1 = b.create<arith::ConstantIndexOp>(1);
589
590 // Appends operands shared by async dispatch and parallel compute functions to
591 // the given operands vector.
592 auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) {
593 operands.append(tripCounts);
594 operands.append(op.getLowerBound().begin(), op.getLowerBound().end());
595 operands.append(op.getUpperBound().begin(), op.getUpperBound().end());
596 operands.append(op.getStep().begin(), op.getStep().end());
597 operands.append(parallelComputeFunction.captures);
598 };
599
600 // Check if the block size is one, in this case we can skip the async dispatch
601 // completely. If this will be known statically, then canonicalization will
602 // erase async group operations.
603 Value isSingleBlock =
604 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1);
605
606 auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
607 ImplicitLocOpBuilder b(loc, nestedBuilder);
608
609 // Call parallel compute function for the single block.
610 SmallVector<Value> operands = {c0, blockSize};
611 appendBlockComputeOperands(operands);
612
613 b.create<func::CallOp>(parallelComputeFunction.func.getSymName(),
614 parallelComputeFunction.func.getCallableResults(),
615 operands);
616 b.create<scf::YieldOp>();
617 };
618
619 auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
620 ImplicitLocOpBuilder b(loc, nestedBuilder);
621
622 // Create an async.group to wait on all async tokens from the concurrent
623 // execution of multiple parallel compute function. First block will be
624 // executed synchronously in the caller thread.
625 Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
626 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
627
628 // Launch async dispatch function for [0, blockCount) range.
629 SmallVector<Value> operands = {group, c0, blockCount, blockSize};
630 appendBlockComputeOperands(operands);
631
632 b.create<func::CallOp>(asyncDispatchFunction.getSymName(),
633 asyncDispatchFunction.getCallableResults(),
634 operands);
635
636 // Wait for the completion of all parallel compute operations.
637 b.create<AwaitAllOp>(group);
638
639 b.create<scf::YieldOp>();
640 };
641
642 // Dispatch either single block compute function, or launch async dispatch.
643 b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch);
644 }
645
646 // Dispatch parallel compute functions by submitting all async compute tasks
647 // from a simple for loop in the caller thread.
648 static void
doSequentialDispatch(ImplicitLocOpBuilder & b,PatternRewriter & rewriter,ParallelComputeFunction & parallelComputeFunction,scf::ParallelOp op,Value blockSize,Value blockCount,const SmallVector<Value> & tripCounts)649 doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
650 ParallelComputeFunction ¶llelComputeFunction,
651 scf::ParallelOp op, Value blockSize, Value blockCount,
652 const SmallVector<Value> &tripCounts) {
653 MLIRContext *ctx = op->getContext();
654
655 func::FuncOp compute = parallelComputeFunction.func;
656
657 Value c0 = b.create<arith::ConstantIndexOp>(0);
658 Value c1 = b.create<arith::ConstantIndexOp>(1);
659
660 // Create an async.group to wait on all async tokens from the concurrent
661 // execution of multiple parallel compute function. First block will be
662 // executed synchronously in the caller thread.
663 Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
664 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
665
666 // Call parallel compute function for all blocks.
667 using LoopBodyBuilder =
668 std::function<void(OpBuilder &, Location, Value, ValueRange)>;
669
670 // Returns parallel compute function operands to process the given block.
671 auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> {
672 SmallVector<Value> computeFuncOperands = {blockIndex, blockSize};
673 computeFuncOperands.append(tripCounts);
674 computeFuncOperands.append(op.getLowerBound().begin(),
675 op.getLowerBound().end());
676 computeFuncOperands.append(op.getUpperBound().begin(),
677 op.getUpperBound().end());
678 computeFuncOperands.append(op.getStep().begin(), op.getStep().end());
679 computeFuncOperands.append(parallelComputeFunction.captures);
680 return computeFuncOperands;
681 };
682
683 // Induction variable is the index of the block: [0, blockCount).
684 LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc,
685 Value iv, ValueRange args) {
686 ImplicitLocOpBuilder b(loc, loopBuilder);
687
688 // Call parallel compute function inside the async.execute region.
689 auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
690 Location executeLoc, ValueRange executeArgs) {
691 executeBuilder.create<func::CallOp>(executeLoc, compute.getSymName(),
692 compute.getCallableResults(),
693 computeFuncOperands(iv));
694 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
695 };
696
697 // Create async.execute operation to launch parallel computate function.
698 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
699 executeBodyBuilder);
700 b.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group);
701 b.create<scf::YieldOp>();
702 };
703
704 // Iterate over all compute blocks and launch parallel compute operations.
705 b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder);
706
707 // Call parallel compute function for the first block in the caller thread.
708 b.create<func::CallOp>(compute.getSymName(), compute.getCallableResults(),
709 computeFuncOperands(c0));
710
711 // Wait for the completion of all async compute operations.
712 b.create<AwaitAllOp>(group);
713 }
714
715 LogicalResult
matchAndRewrite(scf::ParallelOp op,PatternRewriter & rewriter) const716 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op,
717 PatternRewriter &rewriter) const {
718 // We do not currently support rewrite for parallel op with reductions.
719 if (op.getNumReductions() != 0)
720 return failure();
721
722 ImplicitLocOpBuilder b(op.getLoc(), rewriter);
723
724 // Computing minTaskSize emits IR and can be implemented as executing a cost
725 // model on the body of the scf.parallel. Thus it needs to be computed before
726 // the body of the scf.parallel has been manipulated.
727 Value minTaskSize = computeMinTaskSize(b, op);
728
729 // Make sure that all constants will be inside the parallel operation body to
730 // reduce the number of parallel compute function arguments.
731 cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter);
732
733 // Compute trip count for each loop induction variable:
734 // tripCount = ceil_div(upperBound - lowerBound, step);
735 SmallVector<Value> tripCounts(op.getNumLoops());
736 for (size_t i = 0; i < op.getNumLoops(); ++i) {
737 auto lb = op.getLowerBound()[i];
738 auto ub = op.getUpperBound()[i];
739 auto step = op.getStep()[i];
740 auto range = b.createOrFold<arith::SubIOp>(ub, lb);
741 tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step);
742 }
743
744 // Compute a product of trip counts to get the 1-dimensional iteration space
745 // for the scf.parallel operation.
746 Value tripCount = tripCounts[0];
747 for (size_t i = 1; i < tripCounts.size(); ++i)
748 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
749
750 // Short circuit no-op parallel loops (zero iterations) that can arise from
751 // the memrefs with dynamic dimension(s) equal to zero.
752 Value c0 = b.create<arith::ConstantIndexOp>(0);
753 Value isZeroIterations =
754 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0);
755
756 // Do absolutely nothing if the trip count is zero.
757 auto noOp = [&](OpBuilder &nestedBuilder, Location loc) {
758 nestedBuilder.create<scf::YieldOp>(loc);
759 };
760
761 // Compute the parallel block size and dispatch concurrent tasks computing
762 // results for each block.
763 auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) {
764 ImplicitLocOpBuilder b(loc, nestedBuilder);
765
766 // Collect statically known constants defining the loop nest in the parallel
767 // compute function. LLVM can't always push constants across the non-trivial
768 // async dispatch call graph, by providing these values explicitly we can
769 // choose to build more efficient loop nest, and rely on a better constant
770 // folding, loop unrolling and vectorization.
771 ParallelComputeFunctionBounds staticBounds = {
772 integerConstants(tripCounts),
773 integerConstants(op.getLowerBound()),
774 integerConstants(op.getUpperBound()),
775 integerConstants(op.getStep()),
776 };
777
778 // Find how many inner iteration dimensions are statically known, and their
779 // product is smaller than the `512`. We align the parallel compute block
780 // size by the product of statically known dimensions, so that we can
781 // guarantee that the inner loops executes from 0 to the loop trip counts
782 // and we can elide dynamic loop boundaries, and give LLVM an opportunity to
783 // unroll the loops. The constant `512` is arbitrary, it should depend on
784 // how many iterations LLVM will typically decide to unroll.
785 static constexpr int64_t maxUnrollableIterations = 512;
786
787 // The number of inner loops with statically known number of iterations less
788 // than the `maxUnrollableIterations` value.
789 int numUnrollableLoops = 0;
790
791 auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; };
792
793 SmallVector<int64_t> numIterations(op.getNumLoops());
794 numIterations.back() = getInt(staticBounds.tripCounts.back());
795
796 for (int i = op.getNumLoops() - 2; i >= 0; --i) {
797 int64_t tripCount = getInt(staticBounds.tripCounts[i]);
798 int64_t innerIterations = numIterations[i + 1];
799 numIterations[i] = tripCount * innerIterations;
800
801 // Update the number of inner loops that we can potentially unroll.
802 if (innerIterations > 0 && innerIterations <= maxUnrollableIterations)
803 numUnrollableLoops++;
804 }
805
806 Value numWorkerThreadsVal;
807 if (numWorkerThreads >= 0)
808 numWorkerThreadsVal = b.create<arith::ConstantIndexOp>(numWorkerThreads);
809 else
810 numWorkerThreadsVal = b.create<async::RuntimeNumWorkerThreadsOp>();
811
812 // With large number of threads the value of creating many compute blocks
813 // is reduced because the problem typically becomes memory bound. For this
814 // reason we scale the number of workers using an equivalent to the
815 // following logic:
816 // float overshardingFactor = numWorkerThreads <= 4 ? 8.0
817 // : numWorkerThreads <= 8 ? 4.0
818 // : numWorkerThreads <= 16 ? 2.0
819 // : numWorkerThreads <= 32 ? 1.0
820 // : numWorkerThreads <= 64 ? 0.8
821 // : 0.6;
822
823 // Pairs of non-inclusive lower end of the bracket and factor that the
824 // number of workers needs to be scaled with if it falls in that bucket.
825 const SmallVector<std::pair<int, float>> overshardingBrackets = {
826 {4, 4.0f}, {8, 2.0f}, {16, 1.0f}, {32, 0.8f}, {64, 0.6f}};
827 const float initialOvershardingFactor = 8.0f;
828
829 Value scalingFactor = b.create<arith::ConstantFloatOp>(
830 llvm::APFloat(initialOvershardingFactor), b.getF32Type());
831 for (const std::pair<int, float> &p : overshardingBrackets) {
832 Value bracketBegin = b.create<arith::ConstantIndexOp>(p.first);
833 Value inBracket = b.create<arith::CmpIOp>(
834 arith::CmpIPredicate::sgt, numWorkerThreadsVal, bracketBegin);
835 Value bracketScalingFactor = b.create<arith::ConstantFloatOp>(
836 llvm::APFloat(p.second), b.getF32Type());
837 scalingFactor = b.create<arith::SelectOp>(inBracket, bracketScalingFactor,
838 scalingFactor);
839 }
840 Value numWorkersIndex =
841 b.create<arith::IndexCastOp>(b.getI32Type(), numWorkerThreadsVal);
842 Value numWorkersFloat =
843 b.create<arith::SIToFPOp>(b.getF32Type(), numWorkersIndex);
844 Value scaledNumWorkers =
845 b.create<arith::MulFOp>(scalingFactor, numWorkersFloat);
846 Value scaledNumInt =
847 b.create<arith::FPToSIOp>(b.getI32Type(), scaledNumWorkers);
848 Value scaledWorkers =
849 b.create<arith::IndexCastOp>(b.getIndexType(), scaledNumInt);
850
851 Value maxComputeBlocks = b.create<arith::MaxSIOp>(
852 b.create<arith::ConstantIndexOp>(1), scaledWorkers);
853
854 // Compute parallel block size from the parallel problem size:
855 // blockSize = min(tripCount,
856 // max(ceil_div(tripCount, maxComputeBlocks),
857 // minTaskSize))
858 Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks);
859 Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize);
860 Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1);
861
862 // Dispatch parallel compute function using async recursive work splitting,
863 // or by submitting compute task sequentially from a caller thread.
864 auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch;
865
866 // Create a parallel compute function that takes a block id and computes
867 // the parallel operation body for a subset of iteration space.
868
869 // Compute the number of parallel compute blocks.
870 Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize);
871
872 // Dispatch parallel compute function without hints to unroll inner loops.
873 auto dispatchDefault = [&](OpBuilder &nestedBuilder, Location loc) {
874 ParallelComputeFunction compute =
875 createParallelComputeFunction(op, staticBounds, 0, rewriter);
876
877 ImplicitLocOpBuilder b(loc, nestedBuilder);
878 doDispatch(b, rewriter, compute, op, blockSize, blockCount, tripCounts);
879 b.create<scf::YieldOp>();
880 };
881
882 // Dispatch parallel compute function with hints for unrolling inner loops.
883 auto dispatchBlockAligned = [&](OpBuilder &nestedBuilder, Location loc) {
884 ParallelComputeFunction compute = createParallelComputeFunction(
885 op, staticBounds, numUnrollableLoops, rewriter);
886
887 ImplicitLocOpBuilder b(loc, nestedBuilder);
888 // Align the block size to be a multiple of the statically known
889 // number of iterations in the inner loops.
890 Value numIters = b.create<arith::ConstantIndexOp>(
891 numIterations[op.getNumLoops() - numUnrollableLoops]);
892 Value alignedBlockSize = b.create<arith::MulIOp>(
893 b.create<arith::CeilDivSIOp>(blockSize, numIters), numIters);
894 doDispatch(b, rewriter, compute, op, alignedBlockSize, blockCount,
895 tripCounts);
896 b.create<scf::YieldOp>();
897 };
898
899 // Dispatch to block aligned compute function only if the computed block
900 // size is larger than the number of iterations in the unrollable inner
901 // loops, because otherwise it can reduce the available parallelism.
902 if (numUnrollableLoops > 0) {
903 Value numIters = b.create<arith::ConstantIndexOp>(
904 numIterations[op.getNumLoops() - numUnrollableLoops]);
905 Value useBlockAlignedComputeFn = b.create<arith::CmpIOp>(
906 arith::CmpIPredicate::sge, blockSize, numIters);
907
908 b.create<scf::IfOp>(TypeRange(), useBlockAlignedComputeFn,
909 dispatchBlockAligned, dispatchDefault);
910 b.create<scf::YieldOp>();
911 } else {
912 dispatchDefault(b, loc);
913 }
914 };
915
916 // Replace the `scf.parallel` operation with the parallel compute function.
917 b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch);
918
919 // Parallel operation was replaced with a block iteration loop.
920 rewriter.eraseOp(op);
921
922 return success();
923 }
924
runOnOperation()925 void AsyncParallelForPass::runOnOperation() {
926 MLIRContext *ctx = &getContext();
927
928 RewritePatternSet patterns(ctx);
929 populateAsyncParallelForPatterns(
930 patterns, asyncDispatch, numWorkerThreads,
931 [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) {
932 return builder.create<arith::ConstantIndexOp>(minTaskSize);
933 });
934 if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
935 signalPassFailure();
936 }
937
createAsyncParallelForPass()938 std::unique_ptr<Pass> mlir::createAsyncParallelForPass() {
939 return std::make_unique<AsyncParallelForPass>();
940 }
941
createAsyncParallelForPass(bool asyncDispatch,int32_t numWorkerThreads,int32_t minTaskSize)942 std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch,
943 int32_t numWorkerThreads,
944 int32_t minTaskSize) {
945 return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads,
946 minTaskSize);
947 }
948
populateAsyncParallelForPatterns(RewritePatternSet & patterns,bool asyncDispatch,int32_t numWorkerThreads,const AsyncMinTaskSizeComputationFunction & computeMinTaskSize)949 void mlir::async::populateAsyncParallelForPatterns(
950 RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads,
951 const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) {
952 MLIRContext *ctx = patterns.getContext();
953 patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads,
954 computeMinTaskSize);
955 }
956