1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements scf.parallel to scf.for + async.execute conversion pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include <utility>
14 
15 #include "PassDetail.h"
16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17 #include "mlir/Dialect/Async/IR/Async.h"
18 #include "mlir/Dialect/Async/Passes.h"
19 #include "mlir/Dialect/Async/Transforms.h"
20 #include "mlir/Dialect/SCF/SCF.h"
21 #include "mlir/Dialect/StandardOps/IR/Ops.h"
22 #include "mlir/IR/BlockAndValueMapping.h"
23 #include "mlir/IR/ImplicitLocOpBuilder.h"
24 #include "mlir/IR/Matchers.h"
25 #include "mlir/IR/PatternMatch.h"
26 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
27 #include "mlir/Transforms/RegionUtils.h"
28 
29 using namespace mlir;
30 using namespace mlir::async;
31 
32 #define DEBUG_TYPE "async-parallel-for"
33 
34 namespace {
35 
36 // Rewrite scf.parallel operation into multiple concurrent async.execute
37 // operations over non overlapping subranges of the original loop.
38 //
39 // Example:
40 //
41 //   scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) {
42 //     "do_some_compute"(%i, %j): () -> ()
43 //   }
44 //
45 // Converted to:
46 //
47 //   // Parallel compute function that executes the parallel body region for
48 //   // a subset of the parallel iteration space defined by the one-dimensional
49 //   // compute block index.
50 //   func parallel_compute_function(%block_index : index, %block_size : index,
51 //                                  <parallel operation properties>, ...) {
52 //     // Compute multi-dimensional loop bounds for %block_index.
53 //     %block_lbi, %block_lbj = ...
54 //     %block_ubi, %block_ubj = ...
55 //
56 //     // Clone parallel operation body into the scf.for loop nest.
57 //     scf.for %i = %blockLbi to %blockUbi {
58 //       scf.for %j = block_lbj to %block_ubj {
59 //         "do_some_compute"(%i, %j): () -> ()
60 //       }
61 //     }
62 //   }
63 //
64 // And a dispatch function depending on the `asyncDispatch` option.
65 //
66 // When async dispatch is on: (pseudocode)
67 //
68 //   %block_size = ... compute parallel compute block size
69 //   %block_count = ... compute the number of compute blocks
70 //
71 //   func @async_dispatch(%block_start : index, %block_end : index, ...) {
72 //     // Keep splitting block range until we reached a range of size 1.
73 //     while (%block_end - %block_start > 1) {
74 //       %mid_index = block_start + (block_end - block_start) / 2;
75 //       async.execute { call @async_dispatch(%mid_index, %block_end); }
76 //       %block_end = %mid_index
77 //     }
78 //
79 //     // Call parallel compute function for a single block.
80 //     call @parallel_compute_fn(%block_start, %block_size, ...);
81 //   }
82 //
83 //   // Launch async dispatch for [0, block_count) range.
84 //   call @async_dispatch(%c0, %block_count);
85 //
86 // When async dispatch is off:
87 //
88 //   %block_size = ... compute parallel compute block size
89 //   %block_count = ... compute the number of compute blocks
90 //
91 //   scf.for %block_index = %c0 to %block_count {
92 //      call @parallel_compute_fn(%block_index, %block_size, ...)
93 //   }
94 //
95 struct AsyncParallelForPass
96     : public AsyncParallelForBase<AsyncParallelForPass> {
97   AsyncParallelForPass() = default;
98 
99   AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads,
100                        int32_t minTaskSize) {
101     this->asyncDispatch = asyncDispatch;
102     this->numWorkerThreads = numWorkerThreads;
103     this->minTaskSize = minTaskSize;
104   }
105 
106   void runOnOperation() override;
107 };
108 
109 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> {
110 public:
111   AsyncParallelForRewrite(
112       MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads,
113       AsyncMinTaskSizeComputationFunction computeMinTaskSize)
114       : OpRewritePattern(ctx), asyncDispatch(asyncDispatch),
115         numWorkerThreads(numWorkerThreads),
116         computeMinTaskSize(std::move(computeMinTaskSize)) {}
117 
118   LogicalResult matchAndRewrite(scf::ParallelOp op,
119                                 PatternRewriter &rewriter) const override;
120 
121 private:
122   bool asyncDispatch;
123   int32_t numWorkerThreads;
124   AsyncMinTaskSizeComputationFunction computeMinTaskSize;
125 };
126 
127 struct ParallelComputeFunctionType {
128   FunctionType type;
129   SmallVector<Value> captures;
130 };
131 
132 // Helper struct to parse parallel compute function argument list.
133 struct ParallelComputeFunctionArgs {
134   BlockArgument blockIndex();
135   BlockArgument blockSize();
136   ArrayRef<BlockArgument> tripCounts();
137   ArrayRef<BlockArgument> lowerBounds();
138   ArrayRef<BlockArgument> upperBounds();
139   ArrayRef<BlockArgument> steps();
140   ArrayRef<BlockArgument> captures();
141 
142   unsigned numLoops;
143   ArrayRef<BlockArgument> args;
144 };
145 
146 struct ParallelComputeFunctionBounds {
147   SmallVector<IntegerAttr> tripCounts;
148   SmallVector<IntegerAttr> lowerBounds;
149   SmallVector<IntegerAttr> upperBounds;
150   SmallVector<IntegerAttr> steps;
151 };
152 
153 struct ParallelComputeFunction {
154   unsigned numLoops;
155   FuncOp func;
156   llvm::SmallVector<Value> captures;
157 };
158 
159 } // namespace
160 
161 BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; }
162 BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; }
163 
164 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() {
165   return args.drop_front(2).take_front(numLoops);
166 }
167 
168 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() {
169   return args.drop_front(2 + 1 * numLoops).take_front(numLoops);
170 }
171 
172 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() {
173   return args.drop_front(2 + 2 * numLoops).take_front(numLoops);
174 }
175 
176 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() {
177   return args.drop_front(2 + 3 * numLoops).take_front(numLoops);
178 }
179 
180 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() {
181   return args.drop_front(2 + 4 * numLoops);
182 }
183 
184 template <typename ValueRange>
185 static SmallVector<IntegerAttr> integerConstants(ValueRange values) {
186   SmallVector<IntegerAttr> attrs(values.size());
187   for (unsigned i = 0; i < values.size(); ++i)
188     matchPattern(values[i], m_Constant(&attrs[i]));
189   return attrs;
190 }
191 
192 // Converts one-dimensional iteration index in the [0, tripCount) interval
193 // into multidimensional iteration coordinate.
194 static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index,
195                                       ArrayRef<Value> tripCounts) {
196   SmallVector<Value> coords(tripCounts.size());
197   assert(!tripCounts.empty() && "tripCounts must be not empty");
198 
199   for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) {
200     coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]);
201     index = b.create<arith::DivSIOp>(index, tripCounts[i]);
202   }
203 
204   return coords;
205 }
206 
207 // Returns a function type and implicit captures for a parallel compute
208 // function. We'll need a list of implicit captures to setup block and value
209 // mapping when we'll clone the body of the parallel operation.
210 static ParallelComputeFunctionType
211 getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) {
212   // Values implicitly captured by the parallel operation.
213   llvm::SetVector<Value> captures;
214   getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures);
215 
216   SmallVector<Type> inputs;
217   inputs.reserve(2 + 4 * op.getNumLoops() + captures.size());
218 
219   Type indexTy = rewriter.getIndexType();
220 
221   // One-dimensional iteration space defined by the block index and size.
222   inputs.push_back(indexTy); // blockIndex
223   inputs.push_back(indexTy); // blockSize
224 
225   // Multi-dimensional parallel iteration space defined by the loop trip counts.
226   for (unsigned i = 0; i < op.getNumLoops(); ++i)
227     inputs.push_back(indexTy); // loop tripCount
228 
229   // Parallel operation lower bound, upper bound and step. Lower bound, upper
230   // bound and step passed as contiguous arguments:
231   //   call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...)
232   for (unsigned i = 0; i < op.getNumLoops(); ++i) {
233     inputs.push_back(indexTy); // lower bound
234     inputs.push_back(indexTy); // upper bound
235     inputs.push_back(indexTy); // step
236   }
237 
238   // Types of the implicit captures.
239   for (Value capture : captures)
240     inputs.push_back(capture.getType());
241 
242   // Convert captures to vector for later convenience.
243   SmallVector<Value> capturesVector(captures.begin(), captures.end());
244   return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector};
245 }
246 
247 // Create a parallel compute fuction from the parallel operation.
248 static ParallelComputeFunction createParallelComputeFunction(
249     scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds,
250     unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) {
251   OpBuilder::InsertionGuard guard(rewriter);
252   ImplicitLocOpBuilder b(op.getLoc(), rewriter);
253 
254   ModuleOp module = op->getParentOfType<ModuleOp>();
255 
256   ParallelComputeFunctionType computeFuncType =
257       getParallelComputeFunctionType(op, rewriter);
258 
259   FunctionType type = computeFuncType.type;
260   FuncOp func = FuncOp::create(op.getLoc(),
261                                numBlockAlignedInnerLoops > 0
262                                    ? "parallel_compute_fn_with_aligned_loops"
263                                    : "parallel_compute_fn",
264                                type);
265   func.setPrivate();
266 
267   // Insert function into the module symbol table and assign it unique name.
268   SymbolTable symbolTable(module);
269   symbolTable.insert(func);
270   rewriter.getListener()->notifyOperationInserted(func);
271 
272   // Create function entry block.
273   Block *block =
274       b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
275                     SmallVector<Location>(type.getNumInputs(), op.getLoc()));
276   b.setInsertionPointToEnd(block);
277 
278   ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()};
279 
280   // Block iteration position defined by the block index and size.
281   BlockArgument blockIndex = args.blockIndex();
282   BlockArgument blockSize = args.blockSize();
283 
284   // Constants used below.
285   Value c0 = b.create<arith::ConstantIndexOp>(0);
286   Value c1 = b.create<arith::ConstantIndexOp>(1);
287 
288   // Materialize known constants as constant operation in the function body.
289   auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) {
290     return llvm::to_vector(
291         llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value {
292           if (IntegerAttr attr = std::get<1>(tuple))
293             return b.create<ConstantOp>(attr);
294           return std::get<0>(tuple);
295         }));
296   };
297 
298   // Multi-dimensional parallel iteration space defined by the loop trip counts.
299   auto tripCounts = values(args.tripCounts(), bounds.tripCounts);
300 
301   // Parallel operation lower bound and step.
302   auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds);
303   auto steps = values(args.steps(), bounds.steps);
304 
305   // Remaining arguments are implicit captures of the parallel operation.
306   ArrayRef<BlockArgument> captures = args.captures();
307 
308   // Compute a product of trip counts to get the size of the flattened
309   // one-dimensional iteration space.
310   Value tripCount = tripCounts[0];
311   for (unsigned i = 1; i < tripCounts.size(); ++i)
312     tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
313 
314   // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]:
315   //   blockFirstIndex = blockIndex * blockSize
316   Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize);
317 
318   // The last one-dimensional index in the block defined by the `blockIndex`:
319   //   blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1
320   Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize);
321   Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount);
322   Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1);
323 
324   // Convert one-dimensional indices to multi-dimensional coordinates.
325   auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts);
326   auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts);
327 
328   // Compute loops upper bounds derived from the block last coordinates:
329   //   blockEndCoord[i] = blockLastCoord[i] + 1
330   //
331   // Block first and last coordinates can be the same along the outer compute
332   // dimension when inner compute dimension contains multiple blocks.
333   SmallVector<Value> blockEndCoord(op.getNumLoops());
334   for (size_t i = 0; i < blockLastCoord.size(); ++i)
335     blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1);
336 
337   // Construct a loop nest out of scf.for operations that will iterate over
338   // all coordinates in [blockFirstCoord, blockLastCoord] range.
339   using LoopBodyBuilder =
340       std::function<void(OpBuilder &, Location, Value, ValueRange)>;
341   using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>;
342 
343   // Parallel region induction variables computed from the multi-dimensional
344   // iteration coordinate using parallel operation bounds and step:
345   //
346   //   computeBlockInductionVars[loopIdx] =
347   //       lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx]
348   SmallVector<Value> computeBlockInductionVars(op.getNumLoops());
349 
350   // We need to know if we are in the first or last iteration of the
351   // multi-dimensional loop for each loop in the nest, so we can decide what
352   // loop bounds should we use for the nested loops: bounds defined by compute
353   // block interval, or bounds defined by the parallel operation.
354   //
355   // Example: 2d parallel operation
356   //                   i   j
357   //   loop sizes:   [50, 50]
358   //   first coord:  [25, 25]
359   //   last coord:   [30, 30]
360   //
361   // If `i` is equal to 25 then iteration over `j` should start at 25, when `i`
362   // is between 25 and 30 it should start at 0. The upper bound for `j` should
363   // be 50, except when `i` is equal to 30, then it should also be 30.
364   //
365   // Value at ith position specifies if all loops in [0, i) range of the loop
366   // nest are in the first/last iteration.
367   SmallVector<Value> isBlockFirstCoord(op.getNumLoops());
368   SmallVector<Value> isBlockLastCoord(op.getNumLoops());
369 
370   // Builds inner loop nest inside async.execute operation that does all the
371   // work concurrently.
372   LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder {
373     return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv,
374                         ValueRange args) {
375       ImplicitLocOpBuilder nb(loc, nestedBuilder);
376 
377       // Compute induction variable for `loopIdx`.
378       computeBlockInductionVars[loopIdx] = nb.create<arith::AddIOp>(
379           lowerBounds[loopIdx], nb.create<arith::MulIOp>(iv, steps[loopIdx]));
380 
381       // Check if we are inside first or last iteration of the loop.
382       isBlockFirstCoord[loopIdx] = nb.create<arith::CmpIOp>(
383           arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]);
384       isBlockLastCoord[loopIdx] = nb.create<arith::CmpIOp>(
385           arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]);
386 
387       // Check if the previous loop is in its first or last iteration.
388       if (loopIdx > 0) {
389         isBlockFirstCoord[loopIdx] = nb.create<arith::AndIOp>(
390             isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]);
391         isBlockLastCoord[loopIdx] = nb.create<arith::AndIOp>(
392             isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]);
393       }
394 
395       // Keep building loop nest.
396       if (loopIdx < op.getNumLoops() - 1) {
397         if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) {
398           // For block aligned loops we always iterate starting from 0 up to
399           // the loop trip counts.
400           nb.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(),
401                                 workLoopBuilder(loopIdx + 1));
402 
403         } else {
404           // Select nested loop lower/upper bounds depending on our position in
405           // the multi-dimensional iteration space.
406           auto lb = nb.create<SelectOp>(isBlockFirstCoord[loopIdx],
407                                         blockFirstCoord[loopIdx + 1], c0);
408 
409           auto ub = nb.create<SelectOp>(isBlockLastCoord[loopIdx],
410                                         blockEndCoord[loopIdx + 1],
411                                         tripCounts[loopIdx + 1]);
412 
413           nb.create<scf::ForOp>(lb, ub, c1, ValueRange(),
414                                 workLoopBuilder(loopIdx + 1));
415         }
416 
417         nb.create<scf::YieldOp>(loc);
418         return;
419       }
420 
421       // Copy the body of the parallel op into the inner-most loop.
422       BlockAndValueMapping mapping;
423       mapping.map(op.getInductionVars(), computeBlockInductionVars);
424       mapping.map(computeFuncType.captures, captures);
425 
426       for (auto &bodyOp : op.getLoopBody().getOps())
427         nb.clone(bodyOp, mapping);
428     };
429   };
430 
431   b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(),
432                        workLoopBuilder(0));
433   b.create<ReturnOp>(ValueRange());
434 
435   return {op.getNumLoops(), func, std::move(computeFuncType.captures)};
436 }
437 
438 // Creates recursive async dispatch function for the given parallel compute
439 // function. Dispatch function keeps splitting block range into halves until it
440 // reaches a single block, and then excecutes it inline.
441 //
442 // Function pseudocode (mix of C++ and MLIR):
443 //
444 //   func @async_dispatch(%block_start : index, %block_end : index, ...) {
445 //
446 //     // Keep splitting block range until we reached a range of size 1.
447 //     while (%block_end - %block_start > 1) {
448 //       %mid_index = block_start + (block_end - block_start) / 2;
449 //       async.execute { call @async_dispatch(%mid_index, %block_end); }
450 //       %block_end = %mid_index
451 //     }
452 //
453 //     // Call parallel compute function for a single block.
454 //     call @parallel_compute_fn(%block_start, %block_size, ...);
455 //   }
456 //
457 static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc,
458                                           PatternRewriter &rewriter) {
459   OpBuilder::InsertionGuard guard(rewriter);
460   Location loc = computeFunc.func.getLoc();
461   ImplicitLocOpBuilder b(loc, rewriter);
462 
463   ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>();
464 
465   ArrayRef<Type> computeFuncInputTypes =
466       computeFunc.func.type().cast<FunctionType>().getInputs();
467 
468   // Compared to the parallel compute function async dispatch function takes
469   // additional !async.group argument. Also instead of a single `blockIndex` it
470   // takes `blockStart` and `blockEnd` arguments to define the range of
471   // dispatched blocks.
472   SmallVector<Type> inputTypes;
473   inputTypes.push_back(async::GroupType::get(rewriter.getContext()));
474   inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument
475   inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end());
476 
477   FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange());
478   FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type);
479   func.setPrivate();
480 
481   // Insert function into the module symbol table and assign it unique name.
482   SymbolTable symbolTable(module);
483   symbolTable.insert(func);
484   rewriter.getListener()->notifyOperationInserted(func);
485 
486   // Create function entry block.
487   Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
488                                SmallVector<Location>(type.getNumInputs(), loc));
489   b.setInsertionPointToEnd(block);
490 
491   Type indexTy = b.getIndexType();
492   Value c1 = b.create<arith::ConstantIndexOp>(1);
493   Value c2 = b.create<arith::ConstantIndexOp>(2);
494 
495   // Get the async group that will track async dispatch completion.
496   Value group = block->getArgument(0);
497 
498   // Get the block iteration range: [blockStart, blockEnd)
499   Value blockStart = block->getArgument(1);
500   Value blockEnd = block->getArgument(2);
501 
502   // Create a work splitting while loop for the [blockStart, blockEnd) range.
503   SmallVector<Type> types = {indexTy, indexTy};
504   SmallVector<Value> operands = {blockStart, blockEnd};
505   SmallVector<Location> locations = {loc, loc};
506 
507   // Create a recursive dispatch loop.
508   scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands);
509   Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations);
510   Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations);
511 
512   // Setup dispatch loop condition block: decide if we need to go into the
513   // `after` block and launch one more async dispatch.
514   {
515     b.setInsertionPointToEnd(before);
516     Value start = before->getArgument(0);
517     Value end = before->getArgument(1);
518     Value distance = b.create<arith::SubIOp>(end, start);
519     Value dispatch =
520         b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1);
521     b.create<scf::ConditionOp>(dispatch, before->getArguments());
522   }
523 
524   // Setup the async dispatch loop body: recursively call dispatch function
525   // for the seconds half of the original range and go to the next iteration.
526   {
527     b.setInsertionPointToEnd(after);
528     Value start = after->getArgument(0);
529     Value end = after->getArgument(1);
530     Value distance = b.create<arith::SubIOp>(end, start);
531     Value halfDistance = b.create<arith::DivSIOp>(distance, c2);
532     Value midIndex = b.create<arith::AddIOp>(start, halfDistance);
533 
534     // Call parallel compute function inside the async.execute region.
535     auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
536                                   Location executeLoc, ValueRange executeArgs) {
537       // Update the original `blockStart` and `blockEnd` with new range.
538       SmallVector<Value> operands{block->getArguments().begin(),
539                                   block->getArguments().end()};
540       operands[1] = midIndex;
541       operands[2] = end;
542 
543       executeBuilder.create<CallOp>(executeLoc, func.sym_name(),
544                                     func.getCallableResults(), operands);
545       executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
546     };
547 
548     // Create async.execute operation to dispatch half of the block range.
549     auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
550                                        executeBodyBuilder);
551     b.create<AddToGroupOp>(indexTy, execute.token(), group);
552     b.create<scf::YieldOp>(ValueRange({start, midIndex}));
553   }
554 
555   // After dispatching async operations to process the tail of the block range
556   // call the parallel compute function for the first block of the range.
557   b.setInsertionPointAfter(whileOp);
558 
559   // Drop async dispatch specific arguments: async group, block start and end.
560   auto forwardedInputs = block->getArguments().drop_front(3);
561   SmallVector<Value> computeFuncOperands = {blockStart};
562   computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end());
563 
564   b.create<CallOp>(computeFunc.func.sym_name(),
565                    computeFunc.func.getCallableResults(), computeFuncOperands);
566   b.create<ReturnOp>(ValueRange());
567 
568   return func;
569 }
570 
571 // Launch async dispatch of the parallel compute function.
572 static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
573                             ParallelComputeFunction &parallelComputeFunction,
574                             scf::ParallelOp op, Value blockSize,
575                             Value blockCount,
576                             const SmallVector<Value> &tripCounts) {
577   MLIRContext *ctx = op->getContext();
578 
579   // Add one more level of indirection to dispatch parallel compute functions
580   // using async operations and recursive work splitting.
581   FuncOp asyncDispatchFunction =
582       createAsyncDispatchFunction(parallelComputeFunction, rewriter);
583 
584   Value c0 = b.create<arith::ConstantIndexOp>(0);
585   Value c1 = b.create<arith::ConstantIndexOp>(1);
586 
587   // Appends operands shared by async dispatch and parallel compute functions to
588   // the given operands vector.
589   auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) {
590     operands.append(tripCounts);
591     operands.append(op.getLowerBound().begin(), op.getLowerBound().end());
592     operands.append(op.getUpperBound().begin(), op.getUpperBound().end());
593     operands.append(op.getStep().begin(), op.getStep().end());
594     operands.append(parallelComputeFunction.captures);
595   };
596 
597   // Check if the block size is one, in this case we can skip the async dispatch
598   // completely. If this will be known statically, then canonicalization will
599   // erase async group operations.
600   Value isSingleBlock =
601       b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1);
602 
603   auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
604     ImplicitLocOpBuilder nb(loc, nestedBuilder);
605 
606     // Call parallel compute function for the single block.
607     SmallVector<Value> operands = {c0, blockSize};
608     appendBlockComputeOperands(operands);
609 
610     nb.create<CallOp>(parallelComputeFunction.func.sym_name(),
611                       parallelComputeFunction.func.getCallableResults(),
612                       operands);
613     nb.create<scf::YieldOp>();
614   };
615 
616   auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
617     // Create an async.group to wait on all async tokens from the concurrent
618     // execution of multiple parallel compute function. First block will be
619     // executed synchronously in the caller thread.
620     Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
621     Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
622 
623     ImplicitLocOpBuilder nb(loc, nestedBuilder);
624 
625     // Launch async dispatch function for [0, blockCount) range.
626     SmallVector<Value> operands = {group, c0, blockCount, blockSize};
627     appendBlockComputeOperands(operands);
628 
629     nb.create<CallOp>(asyncDispatchFunction.sym_name(),
630                       asyncDispatchFunction.getCallableResults(), operands);
631 
632     // Wait for the completion of all parallel compute operations.
633     b.create<AwaitAllOp>(group);
634 
635     nb.create<scf::YieldOp>();
636   };
637 
638   // Dispatch either single block compute function, or launch async dispatch.
639   b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch);
640 }
641 
642 // Dispatch parallel compute functions by submitting all async compute tasks
643 // from a simple for loop in the caller thread.
644 static void
645 doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
646                      ParallelComputeFunction &parallelComputeFunction,
647                      scf::ParallelOp op, Value blockSize, Value blockCount,
648                      const SmallVector<Value> &tripCounts) {
649   MLIRContext *ctx = op->getContext();
650 
651   FuncOp compute = parallelComputeFunction.func;
652 
653   Value c0 = b.create<arith::ConstantIndexOp>(0);
654   Value c1 = b.create<arith::ConstantIndexOp>(1);
655 
656   // Create an async.group to wait on all async tokens from the concurrent
657   // execution of multiple parallel compute function. First block will be
658   // executed synchronously in the caller thread.
659   Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
660   Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
661 
662   // Call parallel compute function for all blocks.
663   using LoopBodyBuilder =
664       std::function<void(OpBuilder &, Location, Value, ValueRange)>;
665 
666   // Returns parallel compute function operands to process the given block.
667   auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> {
668     SmallVector<Value> computeFuncOperands = {blockIndex, blockSize};
669     computeFuncOperands.append(tripCounts);
670     computeFuncOperands.append(op.getLowerBound().begin(),
671                                op.getLowerBound().end());
672     computeFuncOperands.append(op.getUpperBound().begin(),
673                                op.getUpperBound().end());
674     computeFuncOperands.append(op.getStep().begin(), op.getStep().end());
675     computeFuncOperands.append(parallelComputeFunction.captures);
676     return computeFuncOperands;
677   };
678 
679   // Induction variable is the index of the block: [0, blockCount).
680   LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc,
681                                     Value iv, ValueRange args) {
682     ImplicitLocOpBuilder nb(loc, loopBuilder);
683 
684     // Call parallel compute function inside the async.execute region.
685     auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
686                                   Location executeLoc, ValueRange executeArgs) {
687       executeBuilder.create<CallOp>(executeLoc, compute.sym_name(),
688                                     compute.getCallableResults(),
689                                     computeFuncOperands(iv));
690       executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
691     };
692 
693     // Create async.execute operation to launch parallel computate function.
694     auto execute = nb.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
695                                         executeBodyBuilder);
696     nb.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group);
697     nb.create<scf::YieldOp>();
698   };
699 
700   // Iterate over all compute blocks and launch parallel compute operations.
701   b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder);
702 
703   // Call parallel compute function for the first block in the caller thread.
704   b.create<CallOp>(compute.sym_name(), compute.getCallableResults(),
705                    computeFuncOperands(c0));
706 
707   // Wait for the completion of all async compute operations.
708   b.create<AwaitAllOp>(group);
709 }
710 
711 LogicalResult
712 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op,
713                                          PatternRewriter &rewriter) const {
714   // We do not currently support rewrite for parallel op with reductions.
715   if (op.getNumReductions() != 0)
716     return failure();
717 
718   ImplicitLocOpBuilder b(op.getLoc(), rewriter);
719 
720   // Computing minTaskSize emits IR and can be implemented as executing a cost
721   // model on the body of the scf.parallel. Thus it needs to be computed before
722   // the body of the scf.parallel has been manipulated.
723   Value minTaskSize = computeMinTaskSize(b, op);
724 
725   // Make sure that all constants will be inside the parallel operation body to
726   // reduce the number of parallel compute function arguments.
727   cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter);
728 
729   // Compute trip count for each loop induction variable:
730   //   tripCount = ceil_div(upperBound - lowerBound, step);
731   SmallVector<Value> tripCounts(op.getNumLoops());
732   for (size_t i = 0; i < op.getNumLoops(); ++i) {
733     auto lb = op.getLowerBound()[i];
734     auto ub = op.getUpperBound()[i];
735     auto step = op.getStep()[i];
736     auto range = b.createOrFold<arith::SubIOp>(ub, lb);
737     tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step);
738   }
739 
740   // Compute a product of trip counts to get the 1-dimensional iteration space
741   // for the scf.parallel operation.
742   Value tripCount = tripCounts[0];
743   for (size_t i = 1; i < tripCounts.size(); ++i)
744     tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
745 
746   // Short circuit no-op parallel loops (zero iterations) that can arise from
747   // the memrefs with dynamic dimension(s) equal to zero.
748   Value c0 = b.create<arith::ConstantIndexOp>(0);
749   Value isZeroIterations =
750       b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0);
751 
752   // Do absolutely nothing if the trip count is zero.
753   auto noOp = [&](OpBuilder &nestedBuilder, Location loc) {
754     nestedBuilder.create<scf::YieldOp>(loc);
755   };
756 
757   // Compute the parallel block size and dispatch concurrent tasks computing
758   // results for each block.
759   auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) {
760     ImplicitLocOpBuilder nb(loc, nestedBuilder);
761 
762     // Collect statically known constants defining the loop nest in the parallel
763     // compute function. LLVM can't always push constants across the non-trivial
764     // async dispatch call graph, by providing these values explicitly we can
765     // choose to build more efficient loop nest, and rely on a better constant
766     // folding, loop unrolling and vectorization.
767     ParallelComputeFunctionBounds staticBounds = {
768         integerConstants(tripCounts),
769         integerConstants(op.getLowerBound()),
770         integerConstants(op.getUpperBound()),
771         integerConstants(op.getStep()),
772     };
773 
774     // Find how many inner iteration dimensions are statically known, and their
775     // product is smaller than the `512`. We align the parallel compute block
776     // size by the product of statically known dimensions, so that we can
777     // guarantee that the inner loops executes from 0 to the loop trip counts
778     // and we can elide dynamic loop boundaries, and give LLVM an opportunity to
779     // unroll the loops. The constant `512` is arbitrary, it should depend on
780     // how many iterations LLVM will typically decide to unroll.
781     static constexpr int64_t maxIterations = 512;
782 
783     // The number of inner loops with statically known number of iterations less
784     // than the `maxIterations` value.
785     int numUnrollableLoops = 0;
786 
787     auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; };
788 
789     SmallVector<int64_t> numIterations(op.getNumLoops());
790     numIterations.back() = getInt(staticBounds.tripCounts.back());
791 
792     for (int i = op.getNumLoops() - 2; i >= 0; --i) {
793       int64_t tripCount = getInt(staticBounds.tripCounts[i]);
794       int64_t innerIterations = numIterations[i + 1];
795       numIterations[i] = tripCount * innerIterations;
796 
797       // Update the number of inner loops that we can potentially unroll.
798       if (innerIterations > 0 && innerIterations <= maxIterations)
799         numUnrollableLoops++;
800     }
801 
802     // With large number of threads the value of creating many compute blocks
803     // is reduced because the problem typically becomes memory bound. For small
804     // number of threads it helps with stragglers.
805     float overshardingFactor = numWorkerThreads <= 4    ? 8.0
806                                : numWorkerThreads <= 8  ? 4.0
807                                : numWorkerThreads <= 16 ? 2.0
808                                : numWorkerThreads <= 32 ? 1.0
809                                : numWorkerThreads <= 64 ? 0.8
810                                                         : 0.6;
811 
812     // Do not overload worker threads with too many compute blocks.
813     Value maxComputeBlocks = b.create<arith::ConstantIndexOp>(
814         std::max(1, static_cast<int>(numWorkerThreads * overshardingFactor)));
815 
816     // Compute parallel block size from the parallel problem size:
817     //   blockSize = min(tripCount,
818     //                   max(ceil_div(tripCount, maxComputeBlocks),
819     //                       minTaskSize))
820     Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks);
821     Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize);
822     Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1);
823 
824     ParallelComputeFunction notUnrollableParallelComputeFunction =
825         createParallelComputeFunction(op, staticBounds, 0, rewriter);
826 
827     // Dispatch parallel compute function using async recursive work splitting,
828     // or by submitting compute task sequentially from a caller thread.
829     auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch;
830 
831     // Create a parallel compute function that takes a block id and computes
832     // the parallel operation body for a subset of iteration space.
833 
834     // Compute the number of parallel compute blocks.
835     Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize);
836 
837     // Unroll when numUnrollableLoops > 0 && blockSize >= maxIterations.
838     bool staticShouldUnroll = numUnrollableLoops > 0;
839     auto dispatchNotUnrollable = [&](OpBuilder &nestedBuilder, Location loc) {
840       ImplicitLocOpBuilder nb(loc, nestedBuilder);
841       doDispatch(b, rewriter, notUnrollableParallelComputeFunction, op,
842                  blockSize, blockCount, tripCounts);
843       nb.create<scf::YieldOp>();
844     };
845 
846     if (staticShouldUnroll) {
847       Value dynamicShouldUnroll = b.create<arith::CmpIOp>(
848           arith::CmpIPredicate::sge, blockSize,
849           b.create<arith::ConstantIndexOp>(maxIterations));
850 
851       ParallelComputeFunction unrollableParallelComputeFunction =
852           createParallelComputeFunction(op, staticBounds, numUnrollableLoops,
853                                         rewriter);
854 
855       auto dispatchUnrollable = [&](OpBuilder &nestedBuilder, Location loc) {
856         ImplicitLocOpBuilder nb(loc, nestedBuilder);
857         // Align the block size to be a multiple of the statically known
858         // number of iterations in the inner loops.
859         Value numIters = nb.create<arith::ConstantIndexOp>(
860             numIterations[op.getNumLoops() - numUnrollableLoops]);
861         Value alignedBlockSize = nb.create<arith::MulIOp>(
862             nb.create<arith::CeilDivSIOp>(blockSize, numIters), numIters);
863         doDispatch(b, rewriter, unrollableParallelComputeFunction, op,
864                    alignedBlockSize, blockCount, tripCounts);
865         nb.create<scf::YieldOp>();
866       };
867 
868       b.create<scf::IfOp>(TypeRange(), dynamicShouldUnroll, dispatchUnrollable,
869                           dispatchNotUnrollable);
870       nb.create<scf::YieldOp>();
871     } else {
872       dispatchNotUnrollable(nb, loc);
873     }
874   };
875 
876   // Replace the `scf.parallel` operation with the parallel compute function.
877   b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch);
878 
879   // Parallel operation was replaced with a block iteration loop.
880   rewriter.eraseOp(op);
881 
882   return success();
883 }
884 
885 void AsyncParallelForPass::runOnOperation() {
886   MLIRContext *ctx = &getContext();
887 
888   RewritePatternSet patterns(ctx);
889   populateAsyncParallelForPatterns(
890       patterns, asyncDispatch, numWorkerThreads,
891       [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) {
892         return builder.create<arith::ConstantIndexOp>(minTaskSize);
893       });
894   if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
895     signalPassFailure();
896 }
897 
898 std::unique_ptr<Pass> mlir::createAsyncParallelForPass() {
899   return std::make_unique<AsyncParallelForPass>();
900 }
901 
902 std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch,
903                                                        int32_t numWorkerThreads,
904                                                        int32_t minTaskSize) {
905   return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads,
906                                                 minTaskSize);
907 }
908 
909 void mlir::async::populateAsyncParallelForPatterns(
910     RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads,
911     const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) {
912   MLIRContext *ctx = patterns.getContext();
913   patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads,
914                                         computeMinTaskSize);
915 }
916