1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements scf.parallel to scf.for + async.execute conversion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <utility> 14 15 #include "PassDetail.h" 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Async/IR/Async.h" 18 #include "mlir/Dialect/Async/Passes.h" 19 #include "mlir/Dialect/Async/Transforms.h" 20 #include "mlir/Dialect/SCF/SCF.h" 21 #include "mlir/Dialect/StandardOps/IR/Ops.h" 22 #include "mlir/IR/BlockAndValueMapping.h" 23 #include "mlir/IR/ImplicitLocOpBuilder.h" 24 #include "mlir/IR/Matchers.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 27 #include "mlir/Transforms/RegionUtils.h" 28 29 using namespace mlir; 30 using namespace mlir::async; 31 32 #define DEBUG_TYPE "async-parallel-for" 33 34 namespace { 35 36 // Rewrite scf.parallel operation into multiple concurrent async.execute 37 // operations over non overlapping subranges of the original loop. 38 // 39 // Example: 40 // 41 // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) { 42 // "do_some_compute"(%i, %j): () -> () 43 // } 44 // 45 // Converted to: 46 // 47 // // Parallel compute function that executes the parallel body region for 48 // // a subset of the parallel iteration space defined by the one-dimensional 49 // // compute block index. 50 // func parallel_compute_function(%block_index : index, %block_size : index, 51 // <parallel operation properties>, ...) { 52 // // Compute multi-dimensional loop bounds for %block_index. 53 // %block_lbi, %block_lbj = ... 54 // %block_ubi, %block_ubj = ... 55 // 56 // // Clone parallel operation body into the scf.for loop nest. 57 // scf.for %i = %blockLbi to %blockUbi { 58 // scf.for %j = block_lbj to %block_ubj { 59 // "do_some_compute"(%i, %j): () -> () 60 // } 61 // } 62 // } 63 // 64 // And a dispatch function depending on the `asyncDispatch` option. 65 // 66 // When async dispatch is on: (pseudocode) 67 // 68 // %block_size = ... compute parallel compute block size 69 // %block_count = ... compute the number of compute blocks 70 // 71 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 72 // // Keep splitting block range until we reached a range of size 1. 73 // while (%block_end - %block_start > 1) { 74 // %mid_index = block_start + (block_end - block_start) / 2; 75 // async.execute { call @async_dispatch(%mid_index, %block_end); } 76 // %block_end = %mid_index 77 // } 78 // 79 // // Call parallel compute function for a single block. 80 // call @parallel_compute_fn(%block_start, %block_size, ...); 81 // } 82 // 83 // // Launch async dispatch for [0, block_count) range. 84 // call @async_dispatch(%c0, %block_count); 85 // 86 // When async dispatch is off: 87 // 88 // %block_size = ... compute parallel compute block size 89 // %block_count = ... compute the number of compute blocks 90 // 91 // scf.for %block_index = %c0 to %block_count { 92 // call @parallel_compute_fn(%block_index, %block_size, ...) 93 // } 94 // 95 struct AsyncParallelForPass 96 : public AsyncParallelForBase<AsyncParallelForPass> { 97 AsyncParallelForPass() = default; 98 99 AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads, 100 int32_t minTaskSize) { 101 this->asyncDispatch = asyncDispatch; 102 this->numWorkerThreads = numWorkerThreads; 103 this->minTaskSize = minTaskSize; 104 } 105 106 void runOnOperation() override; 107 }; 108 109 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> { 110 public: 111 AsyncParallelForRewrite( 112 MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads, 113 AsyncMinTaskSizeComputationFunction computeMinTaskSize) 114 : OpRewritePattern(ctx), asyncDispatch(asyncDispatch), 115 numWorkerThreads(numWorkerThreads), 116 computeMinTaskSize(std::move(computeMinTaskSize)) {} 117 118 LogicalResult matchAndRewrite(scf::ParallelOp op, 119 PatternRewriter &rewriter) const override; 120 121 private: 122 bool asyncDispatch; 123 int32_t numWorkerThreads; 124 AsyncMinTaskSizeComputationFunction computeMinTaskSize; 125 }; 126 127 struct ParallelComputeFunctionType { 128 FunctionType type; 129 SmallVector<Value> captures; 130 }; 131 132 // Helper struct to parse parallel compute function argument list. 133 struct ParallelComputeFunctionArgs { 134 BlockArgument blockIndex(); 135 BlockArgument blockSize(); 136 ArrayRef<BlockArgument> tripCounts(); 137 ArrayRef<BlockArgument> lowerBounds(); 138 ArrayRef<BlockArgument> upperBounds(); 139 ArrayRef<BlockArgument> steps(); 140 ArrayRef<BlockArgument> captures(); 141 142 unsigned numLoops; 143 ArrayRef<BlockArgument> args; 144 }; 145 146 struct ParallelComputeFunctionBounds { 147 SmallVector<IntegerAttr> tripCounts; 148 SmallVector<IntegerAttr> lowerBounds; 149 SmallVector<IntegerAttr> upperBounds; 150 SmallVector<IntegerAttr> steps; 151 }; 152 153 struct ParallelComputeFunction { 154 unsigned numLoops; 155 FuncOp func; 156 llvm::SmallVector<Value> captures; 157 }; 158 159 } // namespace 160 161 BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; } 162 BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; } 163 164 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() { 165 return args.drop_front(2).take_front(numLoops); 166 } 167 168 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() { 169 return args.drop_front(2 + 1 * numLoops).take_front(numLoops); 170 } 171 172 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() { 173 return args.drop_front(2 + 2 * numLoops).take_front(numLoops); 174 } 175 176 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() { 177 return args.drop_front(2 + 3 * numLoops).take_front(numLoops); 178 } 179 180 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() { 181 return args.drop_front(2 + 4 * numLoops); 182 } 183 184 template <typename ValueRange> 185 static SmallVector<IntegerAttr> integerConstants(ValueRange values) { 186 SmallVector<IntegerAttr> attrs(values.size()); 187 for (unsigned i = 0; i < values.size(); ++i) 188 matchPattern(values[i], m_Constant(&attrs[i])); 189 return attrs; 190 } 191 192 // Converts one-dimensional iteration index in the [0, tripCount) interval 193 // into multidimensional iteration coordinate. 194 static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index, 195 ArrayRef<Value> tripCounts) { 196 SmallVector<Value> coords(tripCounts.size()); 197 assert(!tripCounts.empty() && "tripCounts must be not empty"); 198 199 for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) { 200 coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]); 201 index = b.create<arith::DivSIOp>(index, tripCounts[i]); 202 } 203 204 return coords; 205 } 206 207 // Returns a function type and implicit captures for a parallel compute 208 // function. We'll need a list of implicit captures to setup block and value 209 // mapping when we'll clone the body of the parallel operation. 210 static ParallelComputeFunctionType 211 getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) { 212 // Values implicitly captured by the parallel operation. 213 llvm::SetVector<Value> captures; 214 getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures); 215 216 SmallVector<Type> inputs; 217 inputs.reserve(2 + 4 * op.getNumLoops() + captures.size()); 218 219 Type indexTy = rewriter.getIndexType(); 220 221 // One-dimensional iteration space defined by the block index and size. 222 inputs.push_back(indexTy); // blockIndex 223 inputs.push_back(indexTy); // blockSize 224 225 // Multi-dimensional parallel iteration space defined by the loop trip counts. 226 for (unsigned i = 0; i < op.getNumLoops(); ++i) 227 inputs.push_back(indexTy); // loop tripCount 228 229 // Parallel operation lower bound, upper bound and step. Lower bound, upper 230 // bound and step passed as contiguous arguments: 231 // call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...) 232 for (unsigned i = 0; i < op.getNumLoops(); ++i) { 233 inputs.push_back(indexTy); // lower bound 234 inputs.push_back(indexTy); // upper bound 235 inputs.push_back(indexTy); // step 236 } 237 238 // Types of the implicit captures. 239 for (Value capture : captures) 240 inputs.push_back(capture.getType()); 241 242 // Convert captures to vector for later convenience. 243 SmallVector<Value> capturesVector(captures.begin(), captures.end()); 244 return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector}; 245 } 246 247 // Create a parallel compute fuction from the parallel operation. 248 static ParallelComputeFunction createParallelComputeFunction( 249 scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds, 250 unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) { 251 OpBuilder::InsertionGuard guard(rewriter); 252 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 253 254 ModuleOp module = op->getParentOfType<ModuleOp>(); 255 256 ParallelComputeFunctionType computeFuncType = 257 getParallelComputeFunctionType(op, rewriter); 258 259 FunctionType type = computeFuncType.type; 260 FuncOp func = FuncOp::create(op.getLoc(), 261 numBlockAlignedInnerLoops > 0 262 ? "parallel_compute_fn_with_aligned_loops" 263 : "parallel_compute_fn", 264 type); 265 func.setPrivate(); 266 267 // Insert function into the module symbol table and assign it unique name. 268 SymbolTable symbolTable(module); 269 symbolTable.insert(func); 270 rewriter.getListener()->notifyOperationInserted(func); 271 272 // Create function entry block. 273 Block *block = 274 b.createBlock(&func.getBody(), func.begin(), type.getInputs(), 275 SmallVector<Location>(type.getNumInputs(), op.getLoc())); 276 b.setInsertionPointToEnd(block); 277 278 ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()}; 279 280 // Block iteration position defined by the block index and size. 281 BlockArgument blockIndex = args.blockIndex(); 282 BlockArgument blockSize = args.blockSize(); 283 284 // Constants used below. 285 Value c0 = b.create<arith::ConstantIndexOp>(0); 286 Value c1 = b.create<arith::ConstantIndexOp>(1); 287 288 // Materialize known constants as constant operation in the function body. 289 auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) { 290 return llvm::to_vector( 291 llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value { 292 if (IntegerAttr attr = std::get<1>(tuple)) 293 return b.create<ConstantOp>(attr); 294 return std::get<0>(tuple); 295 })); 296 }; 297 298 // Multi-dimensional parallel iteration space defined by the loop trip counts. 299 auto tripCounts = values(args.tripCounts(), bounds.tripCounts); 300 301 // Parallel operation lower bound and step. 302 auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds); 303 auto steps = values(args.steps(), bounds.steps); 304 305 // Remaining arguments are implicit captures of the parallel operation. 306 ArrayRef<BlockArgument> captures = args.captures(); 307 308 // Compute a product of trip counts to get the size of the flattened 309 // one-dimensional iteration space. 310 Value tripCount = tripCounts[0]; 311 for (unsigned i = 1; i < tripCounts.size(); ++i) 312 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 313 314 // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]: 315 // blockFirstIndex = blockIndex * blockSize 316 Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize); 317 318 // The last one-dimensional index in the block defined by the `blockIndex`: 319 // blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1 320 Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize); 321 Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount); 322 Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1); 323 324 // Convert one-dimensional indices to multi-dimensional coordinates. 325 auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts); 326 auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts); 327 328 // Compute loops upper bounds derived from the block last coordinates: 329 // blockEndCoord[i] = blockLastCoord[i] + 1 330 // 331 // Block first and last coordinates can be the same along the outer compute 332 // dimension when inner compute dimension contains multiple blocks. 333 SmallVector<Value> blockEndCoord(op.getNumLoops()); 334 for (size_t i = 0; i < blockLastCoord.size(); ++i) 335 blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1); 336 337 // Construct a loop nest out of scf.for operations that will iterate over 338 // all coordinates in [blockFirstCoord, blockLastCoord] range. 339 using LoopBodyBuilder = 340 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 341 using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>; 342 343 // Parallel region induction variables computed from the multi-dimensional 344 // iteration coordinate using parallel operation bounds and step: 345 // 346 // computeBlockInductionVars[loopIdx] = 347 // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx] 348 SmallVector<Value> computeBlockInductionVars(op.getNumLoops()); 349 350 // We need to know if we are in the first or last iteration of the 351 // multi-dimensional loop for each loop in the nest, so we can decide what 352 // loop bounds should we use for the nested loops: bounds defined by compute 353 // block interval, or bounds defined by the parallel operation. 354 // 355 // Example: 2d parallel operation 356 // i j 357 // loop sizes: [50, 50] 358 // first coord: [25, 25] 359 // last coord: [30, 30] 360 // 361 // If `i` is equal to 25 then iteration over `j` should start at 25, when `i` 362 // is between 25 and 30 it should start at 0. The upper bound for `j` should 363 // be 50, except when `i` is equal to 30, then it should also be 30. 364 // 365 // Value at ith position specifies if all loops in [0, i) range of the loop 366 // nest are in the first/last iteration. 367 SmallVector<Value> isBlockFirstCoord(op.getNumLoops()); 368 SmallVector<Value> isBlockLastCoord(op.getNumLoops()); 369 370 // Builds inner loop nest inside async.execute operation that does all the 371 // work concurrently. 372 LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { 373 return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv, 374 ValueRange args) { 375 ImplicitLocOpBuilder nb(loc, nestedBuilder); 376 377 // Compute induction variable for `loopIdx`. 378 computeBlockInductionVars[loopIdx] = nb.create<arith::AddIOp>( 379 lowerBounds[loopIdx], nb.create<arith::MulIOp>(iv, steps[loopIdx])); 380 381 // Check if we are inside first or last iteration of the loop. 382 isBlockFirstCoord[loopIdx] = nb.create<arith::CmpIOp>( 383 arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]); 384 isBlockLastCoord[loopIdx] = nb.create<arith::CmpIOp>( 385 arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]); 386 387 // Check if the previous loop is in its first or last iteration. 388 if (loopIdx > 0) { 389 isBlockFirstCoord[loopIdx] = nb.create<arith::AndIOp>( 390 isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]); 391 isBlockLastCoord[loopIdx] = nb.create<arith::AndIOp>( 392 isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]); 393 } 394 395 // Keep building loop nest. 396 if (loopIdx < op.getNumLoops() - 1) { 397 if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) { 398 // For block aligned loops we always iterate starting from 0 up to 399 // the loop trip counts. 400 nb.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(), 401 workLoopBuilder(loopIdx + 1)); 402 403 } else { 404 // Select nested loop lower/upper bounds depending on our position in 405 // the multi-dimensional iteration space. 406 auto lb = nb.create<SelectOp>(isBlockFirstCoord[loopIdx], 407 blockFirstCoord[loopIdx + 1], c0); 408 409 auto ub = nb.create<SelectOp>(isBlockLastCoord[loopIdx], 410 blockEndCoord[loopIdx + 1], 411 tripCounts[loopIdx + 1]); 412 413 nb.create<scf::ForOp>(lb, ub, c1, ValueRange(), 414 workLoopBuilder(loopIdx + 1)); 415 } 416 417 nb.create<scf::YieldOp>(loc); 418 return; 419 } 420 421 // Copy the body of the parallel op into the inner-most loop. 422 BlockAndValueMapping mapping; 423 mapping.map(op.getInductionVars(), computeBlockInductionVars); 424 mapping.map(computeFuncType.captures, captures); 425 426 for (auto &bodyOp : op.getLoopBody().getOps()) 427 nb.clone(bodyOp, mapping); 428 }; 429 }; 430 431 b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(), 432 workLoopBuilder(0)); 433 b.create<ReturnOp>(ValueRange()); 434 435 return {op.getNumLoops(), func, std::move(computeFuncType.captures)}; 436 } 437 438 // Creates recursive async dispatch function for the given parallel compute 439 // function. Dispatch function keeps splitting block range into halves until it 440 // reaches a single block, and then excecutes it inline. 441 // 442 // Function pseudocode (mix of C++ and MLIR): 443 // 444 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 445 // 446 // // Keep splitting block range until we reached a range of size 1. 447 // while (%block_end - %block_start > 1) { 448 // %mid_index = block_start + (block_end - block_start) / 2; 449 // async.execute { call @async_dispatch(%mid_index, %block_end); } 450 // %block_end = %mid_index 451 // } 452 // 453 // // Call parallel compute function for a single block. 454 // call @parallel_compute_fn(%block_start, %block_size, ...); 455 // } 456 // 457 static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc, 458 PatternRewriter &rewriter) { 459 OpBuilder::InsertionGuard guard(rewriter); 460 Location loc = computeFunc.func.getLoc(); 461 ImplicitLocOpBuilder b(loc, rewriter); 462 463 ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>(); 464 465 ArrayRef<Type> computeFuncInputTypes = 466 computeFunc.func.type().cast<FunctionType>().getInputs(); 467 468 // Compared to the parallel compute function async dispatch function takes 469 // additional !async.group argument. Also instead of a single `blockIndex` it 470 // takes `blockStart` and `blockEnd` arguments to define the range of 471 // dispatched blocks. 472 SmallVector<Type> inputTypes; 473 inputTypes.push_back(async::GroupType::get(rewriter.getContext())); 474 inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument 475 inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end()); 476 477 FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange()); 478 FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type); 479 func.setPrivate(); 480 481 // Insert function into the module symbol table and assign it unique name. 482 SymbolTable symbolTable(module); 483 symbolTable.insert(func); 484 rewriter.getListener()->notifyOperationInserted(func); 485 486 // Create function entry block. 487 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(), 488 SmallVector<Location>(type.getNumInputs(), loc)); 489 b.setInsertionPointToEnd(block); 490 491 Type indexTy = b.getIndexType(); 492 Value c1 = b.create<arith::ConstantIndexOp>(1); 493 Value c2 = b.create<arith::ConstantIndexOp>(2); 494 495 // Get the async group that will track async dispatch completion. 496 Value group = block->getArgument(0); 497 498 // Get the block iteration range: [blockStart, blockEnd) 499 Value blockStart = block->getArgument(1); 500 Value blockEnd = block->getArgument(2); 501 502 // Create a work splitting while loop for the [blockStart, blockEnd) range. 503 SmallVector<Type> types = {indexTy, indexTy}; 504 SmallVector<Value> operands = {blockStart, blockEnd}; 505 SmallVector<Location> locations = {loc, loc}; 506 507 // Create a recursive dispatch loop. 508 scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands); 509 Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations); 510 Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations); 511 512 // Setup dispatch loop condition block: decide if we need to go into the 513 // `after` block and launch one more async dispatch. 514 { 515 b.setInsertionPointToEnd(before); 516 Value start = before->getArgument(0); 517 Value end = before->getArgument(1); 518 Value distance = b.create<arith::SubIOp>(end, start); 519 Value dispatch = 520 b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1); 521 b.create<scf::ConditionOp>(dispatch, before->getArguments()); 522 } 523 524 // Setup the async dispatch loop body: recursively call dispatch function 525 // for the seconds half of the original range and go to the next iteration. 526 { 527 b.setInsertionPointToEnd(after); 528 Value start = after->getArgument(0); 529 Value end = after->getArgument(1); 530 Value distance = b.create<arith::SubIOp>(end, start); 531 Value halfDistance = b.create<arith::DivSIOp>(distance, c2); 532 Value midIndex = b.create<arith::AddIOp>(start, halfDistance); 533 534 // Call parallel compute function inside the async.execute region. 535 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 536 Location executeLoc, ValueRange executeArgs) { 537 // Update the original `blockStart` and `blockEnd` with new range. 538 SmallVector<Value> operands{block->getArguments().begin(), 539 block->getArguments().end()}; 540 operands[1] = midIndex; 541 operands[2] = end; 542 543 executeBuilder.create<CallOp>(executeLoc, func.sym_name(), 544 func.getCallableResults(), operands); 545 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 546 }; 547 548 // Create async.execute operation to dispatch half of the block range. 549 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 550 executeBodyBuilder); 551 b.create<AddToGroupOp>(indexTy, execute.token(), group); 552 b.create<scf::YieldOp>(ValueRange({start, midIndex})); 553 } 554 555 // After dispatching async operations to process the tail of the block range 556 // call the parallel compute function for the first block of the range. 557 b.setInsertionPointAfter(whileOp); 558 559 // Drop async dispatch specific arguments: async group, block start and end. 560 auto forwardedInputs = block->getArguments().drop_front(3); 561 SmallVector<Value> computeFuncOperands = {blockStart}; 562 computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end()); 563 564 b.create<CallOp>(computeFunc.func.sym_name(), 565 computeFunc.func.getCallableResults(), computeFuncOperands); 566 b.create<ReturnOp>(ValueRange()); 567 568 return func; 569 } 570 571 // Launch async dispatch of the parallel compute function. 572 static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 573 ParallelComputeFunction ¶llelComputeFunction, 574 scf::ParallelOp op, Value blockSize, 575 Value blockCount, 576 const SmallVector<Value> &tripCounts) { 577 MLIRContext *ctx = op->getContext(); 578 579 // Add one more level of indirection to dispatch parallel compute functions 580 // using async operations and recursive work splitting. 581 FuncOp asyncDispatchFunction = 582 createAsyncDispatchFunction(parallelComputeFunction, rewriter); 583 584 Value c0 = b.create<arith::ConstantIndexOp>(0); 585 Value c1 = b.create<arith::ConstantIndexOp>(1); 586 587 // Appends operands shared by async dispatch and parallel compute functions to 588 // the given operands vector. 589 auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) { 590 operands.append(tripCounts); 591 operands.append(op.getLowerBound().begin(), op.getLowerBound().end()); 592 operands.append(op.getUpperBound().begin(), op.getUpperBound().end()); 593 operands.append(op.getStep().begin(), op.getStep().end()); 594 operands.append(parallelComputeFunction.captures); 595 }; 596 597 // Check if the block size is one, in this case we can skip the async dispatch 598 // completely. If this will be known statically, then canonicalization will 599 // erase async group operations. 600 Value isSingleBlock = 601 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1); 602 603 auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 604 ImplicitLocOpBuilder nb(loc, nestedBuilder); 605 606 // Call parallel compute function for the single block. 607 SmallVector<Value> operands = {c0, blockSize}; 608 appendBlockComputeOperands(operands); 609 610 nb.create<CallOp>(parallelComputeFunction.func.sym_name(), 611 parallelComputeFunction.func.getCallableResults(), 612 operands); 613 nb.create<scf::YieldOp>(); 614 }; 615 616 auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 617 // Create an async.group to wait on all async tokens from the concurrent 618 // execution of multiple parallel compute function. First block will be 619 // executed synchronously in the caller thread. 620 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 621 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 622 623 ImplicitLocOpBuilder nb(loc, nestedBuilder); 624 625 // Launch async dispatch function for [0, blockCount) range. 626 SmallVector<Value> operands = {group, c0, blockCount, blockSize}; 627 appendBlockComputeOperands(operands); 628 629 nb.create<CallOp>(asyncDispatchFunction.sym_name(), 630 asyncDispatchFunction.getCallableResults(), operands); 631 632 // Wait for the completion of all parallel compute operations. 633 b.create<AwaitAllOp>(group); 634 635 nb.create<scf::YieldOp>(); 636 }; 637 638 // Dispatch either single block compute function, or launch async dispatch. 639 b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch); 640 } 641 642 // Dispatch parallel compute functions by submitting all async compute tasks 643 // from a simple for loop in the caller thread. 644 static void 645 doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 646 ParallelComputeFunction ¶llelComputeFunction, 647 scf::ParallelOp op, Value blockSize, Value blockCount, 648 const SmallVector<Value> &tripCounts) { 649 MLIRContext *ctx = op->getContext(); 650 651 FuncOp compute = parallelComputeFunction.func; 652 653 Value c0 = b.create<arith::ConstantIndexOp>(0); 654 Value c1 = b.create<arith::ConstantIndexOp>(1); 655 656 // Create an async.group to wait on all async tokens from the concurrent 657 // execution of multiple parallel compute function. First block will be 658 // executed synchronously in the caller thread. 659 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 660 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 661 662 // Call parallel compute function for all blocks. 663 using LoopBodyBuilder = 664 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 665 666 // Returns parallel compute function operands to process the given block. 667 auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> { 668 SmallVector<Value> computeFuncOperands = {blockIndex, blockSize}; 669 computeFuncOperands.append(tripCounts); 670 computeFuncOperands.append(op.getLowerBound().begin(), 671 op.getLowerBound().end()); 672 computeFuncOperands.append(op.getUpperBound().begin(), 673 op.getUpperBound().end()); 674 computeFuncOperands.append(op.getStep().begin(), op.getStep().end()); 675 computeFuncOperands.append(parallelComputeFunction.captures); 676 return computeFuncOperands; 677 }; 678 679 // Induction variable is the index of the block: [0, blockCount). 680 LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc, 681 Value iv, ValueRange args) { 682 ImplicitLocOpBuilder nb(loc, loopBuilder); 683 684 // Call parallel compute function inside the async.execute region. 685 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 686 Location executeLoc, ValueRange executeArgs) { 687 executeBuilder.create<CallOp>(executeLoc, compute.sym_name(), 688 compute.getCallableResults(), 689 computeFuncOperands(iv)); 690 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 691 }; 692 693 // Create async.execute operation to launch parallel computate function. 694 auto execute = nb.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 695 executeBodyBuilder); 696 nb.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group); 697 nb.create<scf::YieldOp>(); 698 }; 699 700 // Iterate over all compute blocks and launch parallel compute operations. 701 b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder); 702 703 // Call parallel compute function for the first block in the caller thread. 704 b.create<CallOp>(compute.sym_name(), compute.getCallableResults(), 705 computeFuncOperands(c0)); 706 707 // Wait for the completion of all async compute operations. 708 b.create<AwaitAllOp>(group); 709 } 710 711 LogicalResult 712 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op, 713 PatternRewriter &rewriter) const { 714 // We do not currently support rewrite for parallel op with reductions. 715 if (op.getNumReductions() != 0) 716 return failure(); 717 718 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 719 720 // Computing minTaskSize emits IR and can be implemented as executing a cost 721 // model on the body of the scf.parallel. Thus it needs to be computed before 722 // the body of the scf.parallel has been manipulated. 723 Value minTaskSize = computeMinTaskSize(b, op); 724 725 // Make sure that all constants will be inside the parallel operation body to 726 // reduce the number of parallel compute function arguments. 727 cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter); 728 729 // Compute trip count for each loop induction variable: 730 // tripCount = ceil_div(upperBound - lowerBound, step); 731 SmallVector<Value> tripCounts(op.getNumLoops()); 732 for (size_t i = 0; i < op.getNumLoops(); ++i) { 733 auto lb = op.getLowerBound()[i]; 734 auto ub = op.getUpperBound()[i]; 735 auto step = op.getStep()[i]; 736 auto range = b.createOrFold<arith::SubIOp>(ub, lb); 737 tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step); 738 } 739 740 // Compute a product of trip counts to get the 1-dimensional iteration space 741 // for the scf.parallel operation. 742 Value tripCount = tripCounts[0]; 743 for (size_t i = 1; i < tripCounts.size(); ++i) 744 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 745 746 // Short circuit no-op parallel loops (zero iterations) that can arise from 747 // the memrefs with dynamic dimension(s) equal to zero. 748 Value c0 = b.create<arith::ConstantIndexOp>(0); 749 Value isZeroIterations = 750 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0); 751 752 // Do absolutely nothing if the trip count is zero. 753 auto noOp = [&](OpBuilder &nestedBuilder, Location loc) { 754 nestedBuilder.create<scf::YieldOp>(loc); 755 }; 756 757 // Compute the parallel block size and dispatch concurrent tasks computing 758 // results for each block. 759 auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) { 760 ImplicitLocOpBuilder nb(loc, nestedBuilder); 761 762 // Collect statically known constants defining the loop nest in the parallel 763 // compute function. LLVM can't always push constants across the non-trivial 764 // async dispatch call graph, by providing these values explicitly we can 765 // choose to build more efficient loop nest, and rely on a better constant 766 // folding, loop unrolling and vectorization. 767 ParallelComputeFunctionBounds staticBounds = { 768 integerConstants(tripCounts), 769 integerConstants(op.getLowerBound()), 770 integerConstants(op.getUpperBound()), 771 integerConstants(op.getStep()), 772 }; 773 774 // Find how many inner iteration dimensions are statically known, and their 775 // product is smaller than the `512`. We align the parallel compute block 776 // size by the product of statically known dimensions, so that we can 777 // guarantee that the inner loops executes from 0 to the loop trip counts 778 // and we can elide dynamic loop boundaries, and give LLVM an opportunity to 779 // unroll the loops. The constant `512` is arbitrary, it should depend on 780 // how many iterations LLVM will typically decide to unroll. 781 static constexpr int64_t maxIterations = 512; 782 783 // The number of inner loops with statically known number of iterations less 784 // than the `maxIterations` value. 785 int numUnrollableLoops = 0; 786 787 auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; }; 788 789 SmallVector<int64_t> numIterations(op.getNumLoops()); 790 numIterations.back() = getInt(staticBounds.tripCounts.back()); 791 792 for (int i = op.getNumLoops() - 2; i >= 0; --i) { 793 int64_t tripCount = getInt(staticBounds.tripCounts[i]); 794 int64_t innerIterations = numIterations[i + 1]; 795 numIterations[i] = tripCount * innerIterations; 796 797 // Update the number of inner loops that we can potentially unroll. 798 if (innerIterations > 0 && innerIterations <= maxIterations) 799 numUnrollableLoops++; 800 } 801 802 // With large number of threads the value of creating many compute blocks 803 // is reduced because the problem typically becomes memory bound. For small 804 // number of threads it helps with stragglers. 805 float overshardingFactor = numWorkerThreads <= 4 ? 8.0 806 : numWorkerThreads <= 8 ? 4.0 807 : numWorkerThreads <= 16 ? 2.0 808 : numWorkerThreads <= 32 ? 1.0 809 : numWorkerThreads <= 64 ? 0.8 810 : 0.6; 811 812 // Do not overload worker threads with too many compute blocks. 813 Value maxComputeBlocks = b.create<arith::ConstantIndexOp>( 814 std::max(1, static_cast<int>(numWorkerThreads * overshardingFactor))); 815 816 // Compute parallel block size from the parallel problem size: 817 // blockSize = min(tripCount, 818 // max(ceil_div(tripCount, maxComputeBlocks), 819 // minTaskSize)) 820 Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks); 821 Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize); 822 Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1); 823 824 ParallelComputeFunction notUnrollableParallelComputeFunction = 825 createParallelComputeFunction(op, staticBounds, 0, rewriter); 826 827 // Dispatch parallel compute function using async recursive work splitting, 828 // or by submitting compute task sequentially from a caller thread. 829 auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch; 830 831 // Create a parallel compute function that takes a block id and computes 832 // the parallel operation body for a subset of iteration space. 833 834 // Compute the number of parallel compute blocks. 835 Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize); 836 837 // Unroll when numUnrollableLoops > 0 && blockSize >= maxIterations. 838 bool staticShouldUnroll = numUnrollableLoops > 0; 839 auto dispatchNotUnrollable = [&](OpBuilder &nestedBuilder, Location loc) { 840 ImplicitLocOpBuilder nb(loc, nestedBuilder); 841 doDispatch(b, rewriter, notUnrollableParallelComputeFunction, op, 842 blockSize, blockCount, tripCounts); 843 nb.create<scf::YieldOp>(); 844 }; 845 846 if (staticShouldUnroll) { 847 Value dynamicShouldUnroll = b.create<arith::CmpIOp>( 848 arith::CmpIPredicate::sge, blockSize, 849 b.create<arith::ConstantIndexOp>(maxIterations)); 850 851 ParallelComputeFunction unrollableParallelComputeFunction = 852 createParallelComputeFunction(op, staticBounds, numUnrollableLoops, 853 rewriter); 854 855 auto dispatchUnrollable = [&](OpBuilder &nestedBuilder, Location loc) { 856 ImplicitLocOpBuilder nb(loc, nestedBuilder); 857 // Align the block size to be a multiple of the statically known 858 // number of iterations in the inner loops. 859 Value numIters = nb.create<arith::ConstantIndexOp>( 860 numIterations[op.getNumLoops() - numUnrollableLoops]); 861 Value alignedBlockSize = nb.create<arith::MulIOp>( 862 nb.create<arith::CeilDivSIOp>(blockSize, numIters), numIters); 863 doDispatch(b, rewriter, unrollableParallelComputeFunction, op, 864 alignedBlockSize, blockCount, tripCounts); 865 nb.create<scf::YieldOp>(); 866 }; 867 868 b.create<scf::IfOp>(TypeRange(), dynamicShouldUnroll, dispatchUnrollable, 869 dispatchNotUnrollable); 870 nb.create<scf::YieldOp>(); 871 } else { 872 dispatchNotUnrollable(nb, loc); 873 } 874 }; 875 876 // Replace the `scf.parallel` operation with the parallel compute function. 877 b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch); 878 879 // Parallel operation was replaced with a block iteration loop. 880 rewriter.eraseOp(op); 881 882 return success(); 883 } 884 885 void AsyncParallelForPass::runOnOperation() { 886 MLIRContext *ctx = &getContext(); 887 888 RewritePatternSet patterns(ctx); 889 populateAsyncParallelForPatterns( 890 patterns, asyncDispatch, numWorkerThreads, 891 [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) { 892 return builder.create<arith::ConstantIndexOp>(minTaskSize); 893 }); 894 if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)))) 895 signalPassFailure(); 896 } 897 898 std::unique_ptr<Pass> mlir::createAsyncParallelForPass() { 899 return std::make_unique<AsyncParallelForPass>(); 900 } 901 902 std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch, 903 int32_t numWorkerThreads, 904 int32_t minTaskSize) { 905 return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads, 906 minTaskSize); 907 } 908 909 void mlir::async::populateAsyncParallelForPatterns( 910 RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads, 911 const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) { 912 MLIRContext *ctx = patterns.getContext(); 913 patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads, 914 computeMinTaskSize); 915 } 916