1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements scf.parallel to scf.for + async.execute conversion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Async/IR/Async.h" 15 #include "mlir/Dialect/Async/Passes.h" 16 #include "mlir/Dialect/SCF/SCF.h" 17 #include "mlir/Dialect/StandardOps/IR/Ops.h" 18 #include "mlir/IR/BlockAndValueMapping.h" 19 #include "mlir/IR/ImplicitLocOpBuilder.h" 20 #include "mlir/IR/PatternMatch.h" 21 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 22 #include "mlir/Transforms/RegionUtils.h" 23 24 using namespace mlir; 25 using namespace mlir::async; 26 27 #define DEBUG_TYPE "async-parallel-for" 28 29 namespace { 30 31 // Rewrite scf.parallel operation into multiple concurrent async.execute 32 // operations over non overlapping subranges of the original loop. 33 // 34 // Example: 35 // 36 // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) { 37 // "do_some_compute"(%i, %j): () -> () 38 // } 39 // 40 // Converted to: 41 // 42 // // Parallel compute function that executes the parallel body region for 43 // // a subset of the parallel iteration space defined by the one-dimensional 44 // // compute block index. 45 // func parallel_compute_function(%block_index : index, %block_size : index, 46 // <parallel operation properties>, ...) { 47 // // Compute multi-dimensional loop bounds for %block_index. 48 // %block_lbi, %block_lbj = ... 49 // %block_ubi, %block_ubj = ... 50 // 51 // // Clone parallel operation body into the scf.for loop nest. 52 // scf.for %i = %blockLbi to %blockUbi { 53 // scf.for %j = block_lbj to %block_ubj { 54 // "do_some_compute"(%i, %j): () -> () 55 // } 56 // } 57 // } 58 // 59 // And a dispatch function depending on the `asyncDispatch` option. 60 // 61 // When async dispatch is on: (pseudocode) 62 // 63 // %block_size = ... compute parallel compute block size 64 // %block_count = ... compute the number of compute blocks 65 // 66 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 67 // // Keep splitting block range until we reached a range of size 1. 68 // while (%block_end - %block_start > 1) { 69 // %mid_index = block_start + (block_end - block_start) / 2; 70 // async.execute { call @async_dispatch(%mid_index, %block_end); } 71 // %block_end = %mid_index 72 // } 73 // 74 // // Call parallel compute function for a single block. 75 // call @parallel_compute_fn(%block_start, %block_size, ...); 76 // } 77 // 78 // // Launch async dispatch for [0, block_count) range. 79 // call @async_dispatch(%c0, %block_count); 80 // 81 // When async dispatch is off: 82 // 83 // %block_size = ... compute parallel compute block size 84 // %block_count = ... compute the number of compute blocks 85 // 86 // scf.for %block_index = %c0 to %block_count { 87 // call @parallel_compute_fn(%block_index, %block_size, ...) 88 // } 89 // 90 struct AsyncParallelForPass 91 : public AsyncParallelForBase<AsyncParallelForPass> { 92 AsyncParallelForPass() = default; 93 94 AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads, 95 int32_t targetBlockSize) { 96 this->asyncDispatch = asyncDispatch; 97 this->numWorkerThreads = numWorkerThreads; 98 this->targetBlockSize = targetBlockSize; 99 } 100 101 void runOnOperation() override; 102 }; 103 104 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> { 105 public: 106 AsyncParallelForRewrite(MLIRContext *ctx, bool asyncDispatch, 107 int32_t numWorkerThreads, int32_t targetBlockSize) 108 : OpRewritePattern(ctx), asyncDispatch(asyncDispatch), 109 numWorkerThreads(numWorkerThreads), targetBlockSize(targetBlockSize) {} 110 111 LogicalResult matchAndRewrite(scf::ParallelOp op, 112 PatternRewriter &rewriter) const override; 113 114 private: 115 bool asyncDispatch; 116 int32_t numWorkerThreads; 117 int32_t targetBlockSize; 118 }; 119 120 struct ParallelComputeFunctionType { 121 FunctionType type; 122 llvm::SmallVector<Value> captures; 123 }; 124 125 struct ParallelComputeFunction { 126 FuncOp func; 127 llvm::SmallVector<Value> captures; 128 }; 129 130 } // namespace 131 132 // Converts one-dimensional iteration index in the [0, tripCount) interval 133 // into multidimensional iteration coordinate. 134 static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index, 135 ArrayRef<Value> tripCounts) { 136 SmallVector<Value> coords(tripCounts.size()); 137 assert(!tripCounts.empty() && "tripCounts must be not empty"); 138 139 for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) { 140 coords[i] = b.create<SignedRemIOp>(index, tripCounts[i]); 141 index = b.create<SignedDivIOp>(index, tripCounts[i]); 142 } 143 144 return coords; 145 } 146 147 // Returns a function type and implicit captures for a parallel compute 148 // function. We'll need a list of implicit captures to setup block and value 149 // mapping when we'll clone the body of the parallel operation. 150 static ParallelComputeFunctionType 151 getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) { 152 // Values implicitly captured by the parallel operation. 153 llvm::SetVector<Value> captures; 154 getUsedValuesDefinedAbove(op.region(), op.region(), captures); 155 156 llvm::SmallVector<Type> inputs; 157 inputs.reserve(2 + 4 * op.getNumLoops() + captures.size()); 158 159 Type indexTy = rewriter.getIndexType(); 160 161 // One-dimensional iteration space defined by the block index and size. 162 inputs.push_back(indexTy); // blockIndex 163 inputs.push_back(indexTy); // blockSize 164 165 // Multi-dimensional parallel iteration space defined by the loop trip counts. 166 for (unsigned i = 0; i < op.getNumLoops(); ++i) 167 inputs.push_back(indexTy); // loop tripCount 168 169 // Parallel operation lower bound, upper bound and step. 170 for (unsigned i = 0; i < op.getNumLoops(); ++i) { 171 inputs.push_back(indexTy); // lower bound 172 inputs.push_back(indexTy); // upper bound 173 inputs.push_back(indexTy); // step 174 } 175 176 // Types of the implicit captures. 177 for (Value capture : captures) 178 inputs.push_back(capture.getType()); 179 180 // Convert captures to vector for later convenience. 181 SmallVector<Value> capturesVector(captures.begin(), captures.end()); 182 return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector}; 183 } 184 185 // Create a parallel compute fuction from the parallel operation. 186 static ParallelComputeFunction 187 createParallelComputeFunction(scf::ParallelOp op, PatternRewriter &rewriter) { 188 OpBuilder::InsertionGuard guard(rewriter); 189 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 190 191 ModuleOp module = op->getParentOfType<ModuleOp>(); 192 193 ParallelComputeFunctionType computeFuncType = 194 getParallelComputeFunctionType(op, rewriter); 195 196 FunctionType type = computeFuncType.type; 197 FuncOp func = FuncOp::create(op.getLoc(), "parallel_compute_fn", type); 198 func.setPrivate(); 199 200 // Insert function into the module symbol table and assign it unique name. 201 SymbolTable symbolTable(module); 202 symbolTable.insert(func); 203 rewriter.getListener()->notifyOperationInserted(func); 204 205 // Create function entry block. 206 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs()); 207 b.setInsertionPointToEnd(block); 208 209 unsigned offset = 0; // argument offset for arguments decoding 210 211 // Returns `numArguments` arguments starting from `offset` and updates offset 212 // by moving forward to the next argument. 213 auto getArguments = [&](unsigned numArguments) -> ArrayRef<Value> { 214 auto args = block->getArguments(); 215 auto slice = args.drop_front(offset).take_front(numArguments); 216 offset += numArguments; 217 return {slice.begin(), slice.end()}; 218 }; 219 220 // Block iteration position defined by the block index and size. 221 Value blockIndex = block->getArgument(offset++); 222 Value blockSize = block->getArgument(offset++); 223 224 // Constants used below. 225 Value c0 = b.create<ConstantIndexOp>(0); 226 Value c1 = b.create<ConstantIndexOp>(1); 227 228 // Multi-dimensional parallel iteration space defined by the loop trip counts. 229 ArrayRef<Value> tripCounts = getArguments(op.getNumLoops()); 230 231 // Compute a product of trip counts to get the size of the flattened 232 // one-dimensional iteration space. 233 Value tripCount = tripCounts[0]; 234 for (unsigned i = 1; i < tripCounts.size(); ++i) 235 tripCount = b.create<MulIOp>(tripCount, tripCounts[i]); 236 237 // Parallel operation lower bound and step. 238 ArrayRef<Value> lowerBound = getArguments(op.getNumLoops()); 239 offset += op.getNumLoops(); // skip upper bound arguments 240 ArrayRef<Value> step = getArguments(op.getNumLoops()); 241 242 // Remaining arguments are implicit captures of the parallel operation. 243 ArrayRef<Value> captures = getArguments(block->getNumArguments() - offset); 244 245 // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]: 246 // blockFirstIndex = blockIndex * blockSize 247 Value blockFirstIndex = b.create<MulIOp>(blockIndex, blockSize); 248 249 // The last one-dimensional index in the block defined by the `blockIndex`: 250 // blockLastIndex = max(blockFirstIndex + blockSize, tripCount) - 1 251 Value blockEnd0 = b.create<AddIOp>(blockFirstIndex, blockSize); 252 Value blockEnd1 = b.create<CmpIOp>(CmpIPredicate::sge, blockEnd0, tripCount); 253 Value blockEnd2 = b.create<SelectOp>(blockEnd1, tripCount, blockEnd0); 254 Value blockLastIndex = b.create<SubIOp>(blockEnd2, c1); 255 256 // Convert one-dimensional indices to multi-dimensional coordinates. 257 auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts); 258 auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts); 259 260 // Compute loops upper bounds derived from the block last coordinates: 261 // blockEndCoord[i] = blockLastCoord[i] + 1 262 // 263 // Block first and last coordinates can be the same along the outer compute 264 // dimension when inner compute dimension contains multiple blocks. 265 SmallVector<Value> blockEndCoord(op.getNumLoops()); 266 for (size_t i = 0; i < blockLastCoord.size(); ++i) 267 blockEndCoord[i] = b.create<AddIOp>(blockLastCoord[i], c1); 268 269 // Construct a loop nest out of scf.for operations that will iterate over 270 // all coordinates in [blockFirstCoord, blockLastCoord] range. 271 using LoopBodyBuilder = 272 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 273 using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>; 274 275 // Parallel region induction variables computed from the multi-dimensional 276 // iteration coordinate using parallel operation bounds and step: 277 // 278 // computeBlockInductionVars[loopIdx] = 279 // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopDdx] 280 SmallVector<Value> computeBlockInductionVars(op.getNumLoops()); 281 282 // We need to know if we are in the first or last iteration of the 283 // multi-dimensional loop for each loop in the nest, so we can decide what 284 // loop bounds should we use for the nested loops: bounds defined by compute 285 // block interval, or bounds defined by the parallel operation. 286 // 287 // Example: 2d parallel operation 288 // i j 289 // loop sizes: [50, 50] 290 // first coord: [25, 25] 291 // last coord: [30, 30] 292 // 293 // If `i` is equal to 25 then iteration over `j` should start at 25, when `i` 294 // is between 25 and 30 it should start at 0. The upper bound for `j` should 295 // be 50, except when `i` is equal to 30, then it should also be 30. 296 // 297 // Value at ith position specifies if all loops in [0, i) range of the loop 298 // nest are in the first/last iteration. 299 SmallVector<Value> isBlockFirstCoord(op.getNumLoops()); 300 SmallVector<Value> isBlockLastCoord(op.getNumLoops()); 301 302 // Builds inner loop nest inside async.execute operation that does all the 303 // work concurrently. 304 LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { 305 return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv, 306 ValueRange args) { 307 ImplicitLocOpBuilder nb(loc, nestedBuilder); 308 309 // Compute induction variable for `loopIdx`. 310 computeBlockInductionVars[loopIdx] = nb.create<AddIOp>( 311 lowerBound[loopIdx], nb.create<MulIOp>(iv, step[loopIdx])); 312 313 // Check if we are inside first or last iteration of the loop. 314 isBlockFirstCoord[loopIdx] = 315 nb.create<CmpIOp>(CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]); 316 isBlockLastCoord[loopIdx] = 317 nb.create<CmpIOp>(CmpIPredicate::eq, iv, blockLastCoord[loopIdx]); 318 319 // Check if the previous loop is in its first or last iteration. 320 if (loopIdx > 0) { 321 isBlockFirstCoord[loopIdx] = nb.create<AndOp>( 322 isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]); 323 isBlockLastCoord[loopIdx] = nb.create<AndOp>( 324 isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]); 325 } 326 327 // Keep building loop nest. 328 if (loopIdx < op.getNumLoops() - 1) { 329 // Select nested loop lower/upper bounds depending on out position in 330 // the multi-dimensional iteration space. 331 auto lb = nb.create<SelectOp>(isBlockFirstCoord[loopIdx], 332 blockFirstCoord[loopIdx + 1], c0); 333 334 auto ub = nb.create<SelectOp>(isBlockLastCoord[loopIdx], 335 blockEndCoord[loopIdx + 1], 336 tripCounts[loopIdx + 1]); 337 338 nb.create<scf::ForOp>(lb, ub, c1, ValueRange(), 339 workLoopBuilder(loopIdx + 1)); 340 nb.create<scf::YieldOp>(loc); 341 return; 342 } 343 344 // Copy the body of the parallel op into the inner-most loop. 345 BlockAndValueMapping mapping; 346 mapping.map(op.getInductionVars(), computeBlockInductionVars); 347 mapping.map(computeFuncType.captures, captures); 348 349 for (auto &bodyOp : op.getLoopBody().getOps()) 350 nb.clone(bodyOp, mapping); 351 }; 352 }; 353 354 b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(), 355 workLoopBuilder(0)); 356 b.create<ReturnOp>(ValueRange()); 357 358 return {func, std::move(computeFuncType.captures)}; 359 } 360 361 // Creates recursive async dispatch function for the given parallel compute 362 // function. Dispatch function keeps splitting block range into halves until it 363 // reaches a single block, and then excecutes it inline. 364 // 365 // Function pseudocode (mix of C++ and MLIR): 366 // 367 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 368 // 369 // // Keep splitting block range until we reached a range of size 1. 370 // while (%block_end - %block_start > 1) { 371 // %mid_index = block_start + (block_end - block_start) / 2; 372 // async.execute { call @async_dispatch(%mid_index, %block_end); } 373 // %block_end = %mid_index 374 // } 375 // 376 // // Call parallel compute function for a single block. 377 // call @parallel_compute_fn(%block_start, %block_size, ...); 378 // } 379 // 380 static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc, 381 PatternRewriter &rewriter) { 382 OpBuilder::InsertionGuard guard(rewriter); 383 Location loc = computeFunc.func.getLoc(); 384 ImplicitLocOpBuilder b(loc, rewriter); 385 386 ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>(); 387 388 ArrayRef<Type> computeFuncInputTypes = 389 computeFunc.func.type().cast<FunctionType>().getInputs(); 390 391 // Compared to the parallel compute function async dispatch function takes 392 // additional !async.group argument. Also instead of a single `blockIndex` it 393 // takes `blockStart` and `blockEnd` arguments to define the range of 394 // dispatched blocks. 395 SmallVector<Type> inputTypes; 396 inputTypes.push_back(async::GroupType::get(rewriter.getContext())); 397 inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument 398 inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end()); 399 400 FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange()); 401 FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type); 402 func.setPrivate(); 403 404 // Insert function into the module symbol table and assign it unique name. 405 SymbolTable symbolTable(module); 406 symbolTable.insert(func); 407 rewriter.getListener()->notifyOperationInserted(func); 408 409 // Create function entry block. 410 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs()); 411 b.setInsertionPointToEnd(block); 412 413 Type indexTy = b.getIndexType(); 414 Value c1 = b.create<ConstantIndexOp>(1); 415 Value c2 = b.create<ConstantIndexOp>(2); 416 417 // Get the async group that will track async dispatch completion. 418 Value group = block->getArgument(0); 419 420 // Get the block iteration range: [blockStart, blockEnd) 421 Value blockStart = block->getArgument(1); 422 Value blockEnd = block->getArgument(2); 423 424 // Create a work splitting while loop for the [blockStart, blockEnd) range. 425 SmallVector<Type> types = {indexTy, indexTy}; 426 SmallVector<Value> operands = {blockStart, blockEnd}; 427 428 // Create a recursive dispatch loop. 429 scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands); 430 Block *before = b.createBlock(&whileOp.before(), {}, types); 431 Block *after = b.createBlock(&whileOp.after(), {}, types); 432 433 // Setup dispatch loop condition block: decide if we need to go into the 434 // `after` block and launch one more async dispatch. 435 { 436 b.setInsertionPointToEnd(before); 437 Value start = before->getArgument(0); 438 Value end = before->getArgument(1); 439 Value distance = b.create<SubIOp>(end, start); 440 Value dispatch = b.create<CmpIOp>(CmpIPredicate::sgt, distance, c1); 441 b.create<scf::ConditionOp>(dispatch, before->getArguments()); 442 } 443 444 // Setup the async dispatch loop body: recursively call dispatch function 445 // for the seconds half of the original range and go to the next iteration. 446 { 447 b.setInsertionPointToEnd(after); 448 Value start = after->getArgument(0); 449 Value end = after->getArgument(1); 450 Value distance = b.create<SubIOp>(end, start); 451 Value halfDistance = b.create<SignedDivIOp>(distance, c2); 452 Value midIndex = b.create<AddIOp>(start, halfDistance); 453 454 // Call parallel compute function inside the async.execute region. 455 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 456 Location executeLoc, ValueRange executeArgs) { 457 // Update the original `blockStart` and `blockEnd` with new range. 458 SmallVector<Value> operands{block->getArguments().begin(), 459 block->getArguments().end()}; 460 operands[1] = midIndex; 461 operands[2] = end; 462 463 executeBuilder.create<CallOp>(executeLoc, func.sym_name(), 464 func.getCallableResults(), operands); 465 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 466 }; 467 468 // Create async.execute operation to dispatch half of the block range. 469 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 470 executeBodyBuilder); 471 b.create<AddToGroupOp>(indexTy, execute.token(), group); 472 b.create<scf::YieldOp>(ValueRange({start, midIndex})); 473 } 474 475 // After dispatching async operations to process the tail of the block range 476 // call the parallel compute function for the first block of the range. 477 b.setInsertionPointAfter(whileOp); 478 479 // Drop async dispatch specific arguments: async group, block start and end. 480 auto forwardedInputs = block->getArguments().drop_front(3); 481 SmallVector<Value> computeFuncOperands = {blockStart}; 482 computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end()); 483 484 b.create<CallOp>(computeFunc.func.sym_name(), 485 computeFunc.func.getCallableResults(), computeFuncOperands); 486 b.create<ReturnOp>(ValueRange()); 487 488 return func; 489 } 490 491 // Launch async dispatch of the parallel compute function. 492 static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 493 ParallelComputeFunction ¶llelComputeFunction, 494 scf::ParallelOp op, Value blockSize, 495 Value blockCount, 496 const SmallVector<Value> &tripCounts) { 497 MLIRContext *ctx = op->getContext(); 498 499 // Add one more level of indirection to dispatch parallel compute functions 500 // using async operations and recursive work splitting. 501 FuncOp asyncDispatchFunction = 502 createAsyncDispatchFunction(parallelComputeFunction, rewriter); 503 504 Value c0 = b.create<ConstantIndexOp>(0); 505 Value c1 = b.create<ConstantIndexOp>(1); 506 507 // Create an async.group to wait on all async tokens from the concurrent 508 // execution of multiple parallel compute function. First block will be 509 // executed synchronously in the caller thread. 510 Value groupSize = b.create<SubIOp>(blockCount, c1); 511 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 512 513 // Appends operands shared by async dispatch and parallel compute functions to 514 // the given operands vector. 515 auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) { 516 operands.append(tripCounts); 517 operands.append(op.lowerBound().begin(), op.lowerBound().end()); 518 operands.append(op.upperBound().begin(), op.upperBound().end()); 519 operands.append(op.step().begin(), op.step().end()); 520 operands.append(parallelComputeFunction.captures); 521 }; 522 523 // Check if the block size is one, in this case we can skip the async dispatch 524 // completely. If this will be known statically, then canonicalization will 525 // erase async group operations. 526 Value isSingleBlock = b.create<CmpIOp>(CmpIPredicate::eq, blockCount, c1); 527 528 auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 529 ImplicitLocOpBuilder nb(loc, nestedBuilder); 530 531 // Call parallel compute function for the single block. 532 SmallVector<Value> operands = {c0, blockSize}; 533 appendBlockComputeOperands(operands); 534 535 nb.create<CallOp>(parallelComputeFunction.func.sym_name(), 536 parallelComputeFunction.func.getCallableResults(), 537 operands); 538 nb.create<scf::YieldOp>(); 539 }; 540 541 auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 542 ImplicitLocOpBuilder nb(loc, nestedBuilder); 543 544 // Launch async dispatch function for [0, blockCount) range. 545 SmallVector<Value> operands = {group, c0, blockCount, blockSize}; 546 appendBlockComputeOperands(operands); 547 548 nb.create<CallOp>(asyncDispatchFunction.sym_name(), 549 asyncDispatchFunction.getCallableResults(), operands); 550 nb.create<scf::YieldOp>(); 551 }; 552 553 // Dispatch either single block compute function, or launch async dispatch. 554 b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch); 555 556 // Wait for the completion of all parallel compute operations. 557 b.create<AwaitAllOp>(group); 558 } 559 560 // Dispatch parallel compute functions by submitting all async compute tasks 561 // from a simple for loop in the caller thread. 562 static void 563 doSequantialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 564 ParallelComputeFunction ¶llelComputeFunction, 565 scf::ParallelOp op, Value blockSize, Value blockCount, 566 const SmallVector<Value> &tripCounts) { 567 MLIRContext *ctx = op->getContext(); 568 569 FuncOp compute = parallelComputeFunction.func; 570 571 Value c0 = b.create<ConstantIndexOp>(0); 572 Value c1 = b.create<ConstantIndexOp>(1); 573 574 // Create an async.group to wait on all async tokens from the concurrent 575 // execution of multiple parallel compute function. First block will be 576 // executed synchronously in the caller thread. 577 Value groupSize = b.create<SubIOp>(blockCount, c1); 578 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 579 580 // Call parallel compute function for all blocks. 581 using LoopBodyBuilder = 582 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 583 584 // Returns parallel compute function operands to process the given block. 585 auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> { 586 SmallVector<Value> computeFuncOperands = {blockIndex, blockSize}; 587 computeFuncOperands.append(tripCounts); 588 computeFuncOperands.append(op.lowerBound().begin(), op.lowerBound().end()); 589 computeFuncOperands.append(op.upperBound().begin(), op.upperBound().end()); 590 computeFuncOperands.append(op.step().begin(), op.step().end()); 591 computeFuncOperands.append(parallelComputeFunction.captures); 592 return computeFuncOperands; 593 }; 594 595 // Induction variable is the index of the block: [0, blockCount). 596 LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc, 597 Value iv, ValueRange args) { 598 ImplicitLocOpBuilder nb(loc, loopBuilder); 599 600 // Call parallel compute function inside the async.execute region. 601 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 602 Location executeLoc, ValueRange executeArgs) { 603 executeBuilder.create<CallOp>(executeLoc, compute.sym_name(), 604 compute.getCallableResults(), 605 computeFuncOperands(iv)); 606 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 607 }; 608 609 // Create async.execute operation to launch parallel computate function. 610 auto execute = nb.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 611 executeBodyBuilder); 612 nb.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group); 613 nb.create<scf::YieldOp>(); 614 }; 615 616 // Iterate over all compute blocks and launch parallel compute operations. 617 b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder); 618 619 // Call parallel compute function for the first block in the caller thread. 620 b.create<CallOp>(compute.sym_name(), compute.getCallableResults(), 621 computeFuncOperands(c0)); 622 623 // Wait for the completion of all async compute operations. 624 b.create<AwaitAllOp>(group); 625 } 626 627 LogicalResult 628 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op, 629 PatternRewriter &rewriter) const { 630 // We do not currently support rewrite for parallel op with reductions. 631 if (op.getNumReductions() != 0) 632 return failure(); 633 634 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 635 636 // Compute trip count for each loop induction variable: 637 // tripCount = ceil_div(upperBound - lowerBound, step); 638 SmallVector<Value> tripCounts(op.getNumLoops()); 639 for (size_t i = 0; i < op.getNumLoops(); ++i) { 640 auto lb = op.lowerBound()[i]; 641 auto ub = op.upperBound()[i]; 642 auto step = op.step()[i]; 643 auto range = b.create<SubIOp>(ub, lb); 644 tripCounts[i] = b.create<SignedCeilDivIOp>(range, step); 645 } 646 647 // Compute a product of trip counts to get the 1-dimensional iteration space 648 // for the scf.parallel operation. 649 Value tripCount = tripCounts[0]; 650 for (size_t i = 1; i < tripCounts.size(); ++i) 651 tripCount = b.create<MulIOp>(tripCount, tripCounts[i]); 652 653 // Short circuit no-op parallel loops (zero iterations) that can arise from 654 // the memrefs with dynamic dimension(s) equal to zero. 655 Value c0 = b.create<ConstantIndexOp>(0); 656 Value isZeroIterations = b.create<CmpIOp>(CmpIPredicate::eq, tripCount, c0); 657 658 // Do absolutely nothing if the trip count is zero. 659 auto noOp = [&](OpBuilder &nestedBuilder, Location loc) { 660 nestedBuilder.create<scf::YieldOp>(loc); 661 }; 662 663 // Compute the parallel block size and dispatch concurrent tasks computing 664 // results for each block. 665 auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) { 666 ImplicitLocOpBuilder nb(loc, nestedBuilder); 667 668 // With large number of threads the value of creating many compute blocks 669 // is reduced because the problem typically becomes memory bound. For small 670 // number of threads it helps with stragglers. 671 float overshardingFactor = numWorkerThreads <= 4 ? 8.0 672 : numWorkerThreads <= 8 ? 4.0 673 : numWorkerThreads <= 16 ? 2.0 674 : numWorkerThreads <= 32 ? 1.0 675 : numWorkerThreads <= 64 ? 0.8 676 : 0.6; 677 678 // Do not overload worker threads with too many compute blocks. 679 Value maxComputeBlocks = b.create<ConstantIndexOp>( 680 std::max(1, static_cast<int>(numWorkerThreads * overshardingFactor))); 681 682 // Target block size from the pass parameters. 683 Value targetComputeBlock = b.create<ConstantIndexOp>(targetBlockSize); 684 685 // Compute parallel block size from the parallel problem size: 686 // blockSize = min(tripCount, 687 // max(ceil_div(tripCount, maxComputeBlocks), 688 // targetComputeBlock)) 689 Value bs0 = b.create<SignedCeilDivIOp>(tripCount, maxComputeBlocks); 690 Value bs1 = b.create<CmpIOp>(CmpIPredicate::sge, bs0, targetComputeBlock); 691 Value bs2 = b.create<SelectOp>(bs1, bs0, targetComputeBlock); 692 Value bs3 = b.create<CmpIOp>(CmpIPredicate::sle, tripCount, bs2); 693 Value blockSize0 = b.create<SelectOp>(bs3, tripCount, bs2); 694 Value blockCount0 = b.create<SignedCeilDivIOp>(tripCount, blockSize0); 695 696 // Compute balanced block size for the estimated block count. 697 Value blockSize = b.create<SignedCeilDivIOp>(tripCount, blockCount0); 698 Value blockCount = b.create<SignedCeilDivIOp>(tripCount, blockSize); 699 700 // Create a parallel compute function that takes a block id and computes the 701 // parallel operation body for a subset of iteration space. 702 ParallelComputeFunction parallelComputeFunction = 703 createParallelComputeFunction(op, rewriter); 704 705 // Dispatch parallel compute function using async recursive work splitting, 706 // or by submitting compute task sequentially from a caller thread. 707 if (asyncDispatch) { 708 doAsyncDispatch(b, rewriter, parallelComputeFunction, op, blockSize, 709 blockCount, tripCounts); 710 } else { 711 doSequantialDispatch(b, rewriter, parallelComputeFunction, op, blockSize, 712 blockCount, tripCounts); 713 } 714 715 nb.create<scf::YieldOp>(); 716 }; 717 718 // Replace the `scf.parallel` operation with the parallel compute function. 719 b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch); 720 721 // Parallel operation was replaced with a block iteration loop. 722 rewriter.eraseOp(op); 723 724 return success(); 725 } 726 727 void AsyncParallelForPass::runOnOperation() { 728 MLIRContext *ctx = &getContext(); 729 730 RewritePatternSet patterns(ctx); 731 patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads, 732 targetBlockSize); 733 734 if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)))) 735 signalPassFailure(); 736 } 737 738 std::unique_ptr<Pass> mlir::createAsyncParallelForPass() { 739 return std::make_unique<AsyncParallelForPass>(); 740 } 741 742 std::unique_ptr<Pass> 743 mlir::createAsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads, 744 int32_t targetBlockSize) { 745 return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads, 746 targetBlockSize); 747 } 748