1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements scf.parallel to scf.for + async.execute conversion pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Async/IR/Async.h"
15 #include "mlir/Dialect/Async/Passes.h"
16 #include "mlir/Dialect/SCF/SCF.h"
17 #include "mlir/Dialect/StandardOps/IR/Ops.h"
18 #include "mlir/IR/BlockAndValueMapping.h"
19 #include "mlir/IR/ImplicitLocOpBuilder.h"
20 #include "mlir/IR/PatternMatch.h"
21 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
22 #include "mlir/Transforms/RegionUtils.h"
23 
24 using namespace mlir;
25 using namespace mlir::async;
26 
27 #define DEBUG_TYPE "async-parallel-for"
28 
29 namespace {
30 
31 // Rewrite scf.parallel operation into multiple concurrent async.execute
32 // operations over non overlapping subranges of the original loop.
33 //
34 // Example:
35 //
36 //   scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) {
37 //     "do_some_compute"(%i, %j): () -> ()
38 //   }
39 //
40 // Converted to:
41 //
42 //   // Parallel compute function that executes the parallel body region for
43 //   // a subset of the parallel iteration space defined by the one-dimensional
44 //   // compute block index.
45 //   func parallel_compute_function(%block_index : index, %block_size : index,
46 //                                  <parallel operation properties>, ...) {
47 //     // Compute multi-dimensional loop bounds for %block_index.
48 //     %block_lbi, %block_lbj = ...
49 //     %block_ubi, %block_ubj = ...
50 //
51 //     // Clone parallel operation body into the scf.for loop nest.
52 //     scf.for %i = %blockLbi to %blockUbi {
53 //       scf.for %j = block_lbj to %block_ubj {
54 //         "do_some_compute"(%i, %j): () -> ()
55 //       }
56 //     }
57 //   }
58 //
59 // And a dispatch function depending on the `asyncDispatch` option.
60 //
61 // When async dispatch is on: (pseudocode)
62 //
63 //   %block_size = ... compute parallel compute block size
64 //   %block_count = ... compute the number of compute blocks
65 //
66 //   func @async_dispatch(%block_start : index, %block_end : index, ...) {
67 //     // Keep splitting block range until we reached a range of size 1.
68 //     while (%block_end - %block_start > 1) {
69 //       %mid_index = block_start + (block_end - block_start) / 2;
70 //       async.execute { call @async_dispatch(%mid_index, %block_end); }
71 //       %block_end = %mid_index
72 //     }
73 //
74 //     // Call parallel compute function for a single block.
75 //     call @parallel_compute_fn(%block_start, %block_size, ...);
76 //   }
77 //
78 //   // Launch async dispatch for [0, block_count) range.
79 //   call @async_dispatch(%c0, %block_count);
80 //
81 // When async dispatch is off:
82 //
83 //   %block_size = ... compute parallel compute block size
84 //   %block_count = ... compute the number of compute blocks
85 //
86 //   scf.for %block_index = %c0 to %block_count {
87 //      call @parallel_compute_fn(%block_index, %block_size, ...)
88 //   }
89 //
90 struct AsyncParallelForPass
91     : public AsyncParallelForBase<AsyncParallelForPass> {
92   AsyncParallelForPass() = default;
93 
94   AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads,
95                        int32_t targetBlockSize) {
96     this->asyncDispatch = asyncDispatch;
97     this->numWorkerThreads = numWorkerThreads;
98     this->targetBlockSize = targetBlockSize;
99   }
100 
101   void runOnOperation() override;
102 };
103 
104 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> {
105 public:
106   AsyncParallelForRewrite(MLIRContext *ctx, bool asyncDispatch,
107                           int32_t numWorkerThreads, int32_t targetBlockSize)
108       : OpRewritePattern(ctx), asyncDispatch(asyncDispatch),
109         numWorkerThreads(numWorkerThreads), targetBlockSize(targetBlockSize) {}
110 
111   LogicalResult matchAndRewrite(scf::ParallelOp op,
112                                 PatternRewriter &rewriter) const override;
113 
114 private:
115   // The maximum number of tasks per worker thread when sharding parallel op.
116   static constexpr int32_t kMaxOversharding = 4;
117 
118   bool asyncDispatch;
119   int32_t numWorkerThreads;
120   int32_t targetBlockSize;
121 };
122 
123 struct ParallelComputeFunctionType {
124   FunctionType type;
125   llvm::SmallVector<Value> captures;
126 };
127 
128 struct ParallelComputeFunction {
129   FuncOp func;
130   llvm::SmallVector<Value> captures;
131 };
132 
133 } // namespace
134 
135 // Converts one-dimensional iteration index in the [0, tripCount) interval
136 // into multidimensional iteration coordinate.
137 static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index,
138                                       ArrayRef<Value> tripCounts) {
139   SmallVector<Value> coords(tripCounts.size());
140   assert(!tripCounts.empty() && "tripCounts must be not empty");
141 
142   for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) {
143     coords[i] = b.create<SignedRemIOp>(index, tripCounts[i]);
144     index = b.create<SignedDivIOp>(index, tripCounts[i]);
145   }
146 
147   return coords;
148 }
149 
150 // Returns a function type and implicit captures for a parallel compute
151 // function. We'll need a list of implicit captures to setup block and value
152 // mapping when we'll clone the body of the parallel operation.
153 static ParallelComputeFunctionType
154 getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) {
155   // Values implicitly captured by the parallel operation.
156   llvm::SetVector<Value> captures;
157   getUsedValuesDefinedAbove(op.region(), op.region(), captures);
158 
159   llvm::SmallVector<Type> inputs;
160   inputs.reserve(2 + 4 * op.getNumLoops() + captures.size());
161 
162   Type indexTy = rewriter.getIndexType();
163 
164   // One-dimensional iteration space defined by the block index and size.
165   inputs.push_back(indexTy); // blockIndex
166   inputs.push_back(indexTy); // blockSize
167 
168   // Multi-dimensional parallel iteration space defined by the loop trip counts.
169   for (unsigned i = 0; i < op.getNumLoops(); ++i)
170     inputs.push_back(indexTy); // loop tripCount
171 
172   // Parallel operation lower bound, upper bound and step.
173   for (unsigned i = 0; i < op.getNumLoops(); ++i) {
174     inputs.push_back(indexTy); // lower bound
175     inputs.push_back(indexTy); // upper bound
176     inputs.push_back(indexTy); // step
177   }
178 
179   // Types of the implicit captures.
180   for (Value capture : captures)
181     inputs.push_back(capture.getType());
182 
183   // Convert captures to vector for later convenience.
184   SmallVector<Value> capturesVector(captures.begin(), captures.end());
185   return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector};
186 }
187 
188 // Create a parallel compute fuction from the parallel operation.
189 static ParallelComputeFunction
190 createParallelComputeFunction(scf::ParallelOp op, PatternRewriter &rewriter) {
191   OpBuilder::InsertionGuard guard(rewriter);
192   ImplicitLocOpBuilder b(op.getLoc(), rewriter);
193 
194   ModuleOp module = op->getParentOfType<ModuleOp>();
195 
196   ParallelComputeFunctionType computeFuncType =
197       getParallelComputeFunctionType(op, rewriter);
198 
199   FunctionType type = computeFuncType.type;
200   FuncOp func = FuncOp::create(op.getLoc(), "parallel_compute_fn", type);
201   func.setPrivate();
202 
203   // Insert function into the module symbol table and assign it unique name.
204   SymbolTable symbolTable(module);
205   symbolTable.insert(func);
206   rewriter.getListener()->notifyOperationInserted(func);
207 
208   // Create function entry block.
209   Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs());
210   b.setInsertionPointToEnd(block);
211 
212   unsigned offset = 0; // argument offset for arguments decoding
213 
214   // Returns `numArguments` arguments starting from `offset` and updates offset
215   // by moving forward to the next argument.
216   auto getArguments = [&](unsigned numArguments) -> ArrayRef<Value> {
217     auto args = block->getArguments();
218     auto slice = args.drop_front(offset).take_front(numArguments);
219     offset += numArguments;
220     return {slice.begin(), slice.end()};
221   };
222 
223   // Block iteration position defined by the block index and size.
224   Value blockIndex = block->getArgument(offset++);
225   Value blockSize = block->getArgument(offset++);
226 
227   // Constants used below.
228   Value c0 = b.create<ConstantIndexOp>(0);
229   Value c1 = b.create<ConstantIndexOp>(1);
230 
231   // Multi-dimensional parallel iteration space defined by the loop trip counts.
232   ArrayRef<Value> tripCounts = getArguments(op.getNumLoops());
233 
234   // Compute a product of trip counts to get the size of the flattened
235   // one-dimensional iteration space.
236   Value tripCount = tripCounts[0];
237   for (unsigned i = 1; i < tripCounts.size(); ++i)
238     tripCount = b.create<MulIOp>(tripCount, tripCounts[i]);
239 
240   // Parallel operation lower bound and step.
241   ArrayRef<Value> lowerBound = getArguments(op.getNumLoops());
242   offset += op.getNumLoops(); // skip upper bound arguments
243   ArrayRef<Value> step = getArguments(op.getNumLoops());
244 
245   // Remaining arguments are implicit captures of the parallel operation.
246   ArrayRef<Value> captures = getArguments(block->getNumArguments() - offset);
247 
248   // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]:
249   //   blockFirstIndex = blockIndex * blockSize
250   Value blockFirstIndex = b.create<MulIOp>(blockIndex, blockSize);
251 
252   // The last one-dimensional index in the block defined by the `blockIndex`:
253   //   blockLastIndex = max(blockFirstIndex + blockSize, tripCount) - 1
254   Value blockEnd0 = b.create<AddIOp>(blockFirstIndex, blockSize);
255   Value blockEnd1 = b.create<CmpIOp>(CmpIPredicate::sge, blockEnd0, tripCount);
256   Value blockEnd2 = b.create<SelectOp>(blockEnd1, tripCount, blockEnd0);
257   Value blockLastIndex = b.create<SubIOp>(blockEnd2, c1);
258 
259   // Convert one-dimensional indices to multi-dimensional coordinates.
260   auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts);
261   auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts);
262 
263   // Compute loops upper bounds derived from the block last coordinates:
264   //   blockEndCoord[i] = blockLastCoord[i] + 1
265   //
266   // Block first and last coordinates can be the same along the outer compute
267   // dimension when inner compute dimension contains multiple blocks.
268   SmallVector<Value> blockEndCoord(op.getNumLoops());
269   for (size_t i = 0; i < blockLastCoord.size(); ++i)
270     blockEndCoord[i] = b.create<AddIOp>(blockLastCoord[i], c1);
271 
272   // Construct a loop nest out of scf.for operations that will iterate over
273   // all coordinates in [blockFirstCoord, blockLastCoord] range.
274   using LoopBodyBuilder =
275       std::function<void(OpBuilder &, Location, Value, ValueRange)>;
276   using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>;
277 
278   // Parallel region induction variables computed from the multi-dimensional
279   // iteration coordinate using parallel operation bounds and step:
280   //
281   //   computeBlockInductionVars[loopIdx] =
282   //       lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopDdx]
283   SmallVector<Value> computeBlockInductionVars(op.getNumLoops());
284 
285   // We need to know if we are in the first or last iteration of the
286   // multi-dimensional loop for each loop in the nest, so we can decide what
287   // loop bounds should we use for the nested loops: bounds defined by compute
288   // block interval, or bounds defined by the parallel operation.
289   //
290   // Example: 2d parallel operation
291   //                   i   j
292   //   loop sizes:   [50, 50]
293   //   first coord:  [25, 25]
294   //   last coord:   [30, 30]
295   //
296   // If `i` is equal to 25 then iteration over `j` should start at 25, when `i`
297   // is between 25 and 30 it should start at 0. The upper bound for `j` should
298   // be 50, except when `i` is equal to 30, then it should also be 30.
299   //
300   // Value at ith position specifies if all loops in [0, i) range of the loop
301   // nest are in the first/last iteration.
302   SmallVector<Value> isBlockFirstCoord(op.getNumLoops());
303   SmallVector<Value> isBlockLastCoord(op.getNumLoops());
304 
305   // Builds inner loop nest inside async.execute operation that does all the
306   // work concurrently.
307   LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder {
308     return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv,
309                         ValueRange args) {
310       ImplicitLocOpBuilder nb(loc, nestedBuilder);
311 
312       // Compute induction variable for `loopIdx`.
313       computeBlockInductionVars[loopIdx] = nb.create<AddIOp>(
314           lowerBound[loopIdx], nb.create<MulIOp>(iv, step[loopIdx]));
315 
316       // Check if we are inside first or last iteration of the loop.
317       isBlockFirstCoord[loopIdx] =
318           nb.create<CmpIOp>(CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]);
319       isBlockLastCoord[loopIdx] =
320           nb.create<CmpIOp>(CmpIPredicate::eq, iv, blockLastCoord[loopIdx]);
321 
322       // Check if the previous loop is in its first or last iteration.
323       if (loopIdx > 0) {
324         isBlockFirstCoord[loopIdx] = nb.create<AndOp>(
325             isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]);
326         isBlockLastCoord[loopIdx] = nb.create<AndOp>(
327             isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]);
328       }
329 
330       // Keep building loop nest.
331       if (loopIdx < op.getNumLoops() - 1) {
332         // Select nested loop lower/upper bounds depending on out position in
333         // the multi-dimensional iteration space.
334         auto lb = nb.create<SelectOp>(isBlockFirstCoord[loopIdx],
335                                       blockFirstCoord[loopIdx + 1], c0);
336 
337         auto ub = nb.create<SelectOp>(isBlockLastCoord[loopIdx],
338                                       blockEndCoord[loopIdx + 1],
339                                       tripCounts[loopIdx + 1]);
340 
341         nb.create<scf::ForOp>(lb, ub, c1, ValueRange(),
342                               workLoopBuilder(loopIdx + 1));
343         nb.create<scf::YieldOp>(loc);
344         return;
345       }
346 
347       // Copy the body of the parallel op into the inner-most loop.
348       BlockAndValueMapping mapping;
349       mapping.map(op.getInductionVars(), computeBlockInductionVars);
350       mapping.map(computeFuncType.captures, captures);
351 
352       for (auto &bodyOp : op.getLoopBody().getOps())
353         nb.clone(bodyOp, mapping);
354     };
355   };
356 
357   b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(),
358                        workLoopBuilder(0));
359   b.create<ReturnOp>(ValueRange());
360 
361   return {func, std::move(computeFuncType.captures)};
362 }
363 
364 // Creates recursive async dispatch function for the given parallel compute
365 // function. Dispatch function keeps splitting block range into halves until it
366 // reaches a single block, and then excecutes it inline.
367 //
368 // Function pseudocode (mix of C++ and MLIR):
369 //
370 //   func @async_dispatch(%block_start : index, %block_end : index, ...) {
371 //
372 //     // Keep splitting block range until we reached a range of size 1.
373 //     while (%block_end - %block_start > 1) {
374 //       %mid_index = block_start + (block_end - block_start) / 2;
375 //       async.execute { call @async_dispatch(%mid_index, %block_end); }
376 //       %block_end = %mid_index
377 //     }
378 //
379 //     // Call parallel compute function for a single block.
380 //     call @parallel_compute_fn(%block_start, %block_size, ...);
381 //   }
382 //
383 static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc,
384                                           PatternRewriter &rewriter) {
385   OpBuilder::InsertionGuard guard(rewriter);
386   Location loc = computeFunc.func.getLoc();
387   ImplicitLocOpBuilder b(loc, rewriter);
388 
389   ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>();
390 
391   ArrayRef<Type> computeFuncInputTypes =
392       computeFunc.func.type().cast<FunctionType>().getInputs();
393 
394   // Compared to the parallel compute function async dispatch function takes
395   // additional !async.group argument. Also instead of a single `blockIndex` it
396   // takes `blockStart` and `blockEnd` arguments to define the range of
397   // dispatched blocks.
398   SmallVector<Type> inputTypes;
399   inputTypes.push_back(async::GroupType::get(rewriter.getContext()));
400   inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument
401   inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end());
402 
403   FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange());
404   FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type);
405   func.setPrivate();
406 
407   // Insert function into the module symbol table and assign it unique name.
408   SymbolTable symbolTable(module);
409   symbolTable.insert(func);
410   rewriter.getListener()->notifyOperationInserted(func);
411 
412   // Create function entry block.
413   Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs());
414   b.setInsertionPointToEnd(block);
415 
416   Type indexTy = b.getIndexType();
417   Value c1 = b.create<ConstantIndexOp>(1);
418   Value c2 = b.create<ConstantIndexOp>(2);
419 
420   // Get the async group that will track async dispatch completion.
421   Value group = block->getArgument(0);
422 
423   // Get the block iteration range: [blockStart, blockEnd)
424   Value blockStart = block->getArgument(1);
425   Value blockEnd = block->getArgument(2);
426 
427   // Create a work splitting while loop for the [blockStart, blockEnd) range.
428   SmallVector<Type> types = {indexTy, indexTy};
429   SmallVector<Value> operands = {blockStart, blockEnd};
430 
431   // Create a recursive dispatch loop.
432   scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands);
433   Block *before = b.createBlock(&whileOp.before(), {}, types);
434   Block *after = b.createBlock(&whileOp.after(), {}, types);
435 
436   // Setup dispatch loop condition block: decide if we need to go into the
437   // `after` block and launch one more async dispatch.
438   {
439     b.setInsertionPointToEnd(before);
440     Value start = before->getArgument(0);
441     Value end = before->getArgument(1);
442     Value distance = b.create<SubIOp>(end, start);
443     Value dispatch = b.create<CmpIOp>(CmpIPredicate::sgt, distance, c1);
444     b.create<scf::ConditionOp>(dispatch, before->getArguments());
445   }
446 
447   // Setup the async dispatch loop body: recursively call dispatch function
448   // for the seconds half of the original range and go to the next iteration.
449   {
450     b.setInsertionPointToEnd(after);
451     Value start = after->getArgument(0);
452     Value end = after->getArgument(1);
453     Value distance = b.create<SubIOp>(end, start);
454     Value halfDistance = b.create<SignedDivIOp>(distance, c2);
455     Value midIndex = b.create<AddIOp>(start, halfDistance);
456 
457     // Call parallel compute function inside the async.execute region.
458     auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
459                                   Location executeLoc, ValueRange executeArgs) {
460       // Update the original `blockStart` and `blockEnd` with new range.
461       SmallVector<Value> operands{block->getArguments().begin(),
462                                   block->getArguments().end()};
463       operands[1] = midIndex;
464       operands[2] = end;
465 
466       executeBuilder.create<CallOp>(executeLoc, func.sym_name(),
467                                     func.getCallableResults(), operands);
468       executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
469     };
470 
471     // Create async.execute operation to dispatch half of the block range.
472     auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
473                                        executeBodyBuilder);
474     b.create<AddToGroupOp>(indexTy, execute.token(), group);
475     b.create<scf::YieldOp>(ValueRange({start, midIndex}));
476   }
477 
478   // After dispatching async operations to process the tail of the block range
479   // call the parallel compute function for the first block of the range.
480   b.setInsertionPointAfter(whileOp);
481 
482   // Drop async dispatch specific arguments: async group, block start and end.
483   auto forwardedInputs = block->getArguments().drop_front(3);
484   SmallVector<Value> computeFuncOperands = {blockStart};
485   computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end());
486 
487   b.create<CallOp>(computeFunc.func.sym_name(),
488                    computeFunc.func.getCallableResults(), computeFuncOperands);
489   b.create<ReturnOp>(ValueRange());
490 
491   return func;
492 }
493 
494 // Launch async dispatch of the parallel compute function.
495 static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
496                             ParallelComputeFunction &parallelComputeFunction,
497                             scf::ParallelOp op, Value blockSize,
498                             Value blockCount,
499                             const SmallVector<Value> &tripCounts) {
500   MLIRContext *ctx = op->getContext();
501 
502   // Add one more level of indirection to dispatch parallel compute functions
503   // using async operations and recursive work splitting.
504   FuncOp asyncDispatchFunction =
505       createAsyncDispatchFunction(parallelComputeFunction, rewriter);
506 
507   Value c0 = b.create<ConstantIndexOp>(0);
508   Value c1 = b.create<ConstantIndexOp>(1);
509 
510   // Create an async.group to wait on all async tokens from the concurrent
511   // execution of multiple parallel compute function. First block will be
512   // executed synchronously in the caller thread.
513   Value groupSize = b.create<SubIOp>(blockCount, c1);
514   Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
515 
516   // Pack the async dispath function operands to launch the work splitting.
517   SmallVector<Value> asyncDispatchOperands = {group, c0, blockCount, blockSize};
518   asyncDispatchOperands.append(tripCounts);
519   asyncDispatchOperands.append(op.lowerBound().begin(), op.lowerBound().end());
520   asyncDispatchOperands.append(op.upperBound().begin(), op.upperBound().end());
521   asyncDispatchOperands.append(op.step().begin(), op.step().end());
522   asyncDispatchOperands.append(parallelComputeFunction.captures);
523 
524   // Launch async dispatch function for [0, blockCount) range.
525   b.create<CallOp>(asyncDispatchFunction.sym_name(),
526                    asyncDispatchFunction.getCallableResults(),
527                    asyncDispatchOperands);
528 
529   // Wait for the completion of all parallel compute operations.
530   b.create<AwaitAllOp>(group);
531 }
532 
533 // Dispatch parallel compute functions by submitting all async compute tasks
534 // from a simple for loop in the caller thread.
535 static void
536 doSequantialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
537                      ParallelComputeFunction &parallelComputeFunction,
538                      scf::ParallelOp op, Value blockSize, Value blockCount,
539                      const SmallVector<Value> &tripCounts) {
540   MLIRContext *ctx = op->getContext();
541 
542   FuncOp compute = parallelComputeFunction.func;
543 
544   Value c0 = b.create<ConstantIndexOp>(0);
545   Value c1 = b.create<ConstantIndexOp>(1);
546 
547   // Create an async.group to wait on all async tokens from the concurrent
548   // execution of multiple parallel compute function. First block will be
549   // executed synchronously in the caller thread.
550   Value groupSize = b.create<SubIOp>(blockCount, c1);
551   Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
552 
553   // Call parallel compute function for all blocks.
554   using LoopBodyBuilder =
555       std::function<void(OpBuilder &, Location, Value, ValueRange)>;
556 
557   // Returns parallel compute function operands to process the given block.
558   auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> {
559     SmallVector<Value> computeFuncOperands = {blockIndex, blockSize};
560     computeFuncOperands.append(tripCounts);
561     computeFuncOperands.append(op.lowerBound().begin(), op.lowerBound().end());
562     computeFuncOperands.append(op.upperBound().begin(), op.upperBound().end());
563     computeFuncOperands.append(op.step().begin(), op.step().end());
564     computeFuncOperands.append(parallelComputeFunction.captures);
565     return computeFuncOperands;
566   };
567 
568   // Induction variable is the index of the block: [0, blockCount).
569   LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc,
570                                     Value iv, ValueRange args) {
571     ImplicitLocOpBuilder nb(loc, loopBuilder);
572 
573     // Call parallel compute function inside the async.execute region.
574     auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
575                                   Location executeLoc, ValueRange executeArgs) {
576       executeBuilder.create<CallOp>(executeLoc, compute.sym_name(),
577                                     compute.getCallableResults(),
578                                     computeFuncOperands(iv));
579       executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
580     };
581 
582     // Create async.execute operation to launch parallel computate function.
583     auto execute = nb.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
584                                         executeBodyBuilder);
585     nb.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group);
586     nb.create<scf::YieldOp>();
587   };
588 
589   // Iterate over all compute blocks and launch parallel compute operations.
590   b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder);
591 
592   // Call parallel compute function for the first block in the caller thread.
593   b.create<CallOp>(compute.sym_name(), compute.getCallableResults(),
594                    computeFuncOperands(c0));
595 
596   // Wait for the completion of all async compute operations.
597   b.create<AwaitAllOp>(group);
598 }
599 
600 LogicalResult
601 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op,
602                                          PatternRewriter &rewriter) const {
603   // We do not currently support rewrite for parallel op with reductions.
604   if (op.getNumReductions() != 0)
605     return failure();
606 
607   ImplicitLocOpBuilder b(op.getLoc(), rewriter);
608 
609   // Compute trip count for each loop induction variable:
610   //   tripCount = ceil_div(upperBound - lowerBound, step);
611   SmallVector<Value> tripCounts(op.getNumLoops());
612   for (size_t i = 0; i < op.getNumLoops(); ++i) {
613     auto lb = op.lowerBound()[i];
614     auto ub = op.upperBound()[i];
615     auto step = op.step()[i];
616     auto range = b.create<SubIOp>(ub, lb);
617     tripCounts[i] = b.create<SignedCeilDivIOp>(range, step);
618   }
619 
620   // Compute a product of trip counts to get the 1-dimensional iteration space
621   // for the scf.parallel operation.
622   Value tripCount = tripCounts[0];
623   for (size_t i = 1; i < tripCounts.size(); ++i)
624     tripCount = b.create<MulIOp>(tripCount, tripCounts[i]);
625 
626   // Do not overload worker threads with too many compute blocks.
627   Value maxComputeBlocks =
628       b.create<ConstantIndexOp>(numWorkerThreads * kMaxOversharding);
629 
630   // Target block size from the pass parameters.
631   Value targetComputeBlockSize = b.create<ConstantIndexOp>(targetBlockSize);
632 
633   // Compute parallel block size from the parallel problem size:
634   //   blockSize = min(tripCount,
635   //                   max(ceil_div(tripCount, maxComputeBlocks),
636   //                       targetComputeBlockSize))
637   Value bs0 = b.create<SignedCeilDivIOp>(tripCount, maxComputeBlocks);
638   Value bs1 = b.create<CmpIOp>(CmpIPredicate::sge, bs0, targetComputeBlockSize);
639   Value bs2 = b.create<SelectOp>(bs1, bs0, targetComputeBlockSize);
640   Value bs3 = b.create<CmpIOp>(CmpIPredicate::sle, tripCount, bs2);
641   Value blockSize = b.create<SelectOp>(bs3, tripCount, bs2);
642   Value blockCount = b.create<SignedCeilDivIOp>(tripCount, blockSize);
643 
644   // Create a parallel compute function that takes a block id and computes the
645   // parallel operation body for a subset of iteration space.
646   ParallelComputeFunction parallelComputeFunction =
647       createParallelComputeFunction(op, rewriter);
648 
649   // Dispatch parallel compute function using async recursive work splitting, or
650   // by submitting compute task sequentially from a caller thread.
651   if (asyncDispatch) {
652     doAsyncDispatch(b, rewriter, parallelComputeFunction, op, blockSize,
653                     blockCount, tripCounts);
654   } else {
655     doSequantialDispatch(b, rewriter, parallelComputeFunction, op, blockSize,
656                          blockCount, tripCounts);
657   }
658 
659   // Parallel operation was replaced with a block iteration loop.
660   rewriter.eraseOp(op);
661 
662   return success();
663 }
664 
665 void AsyncParallelForPass::runOnOperation() {
666   MLIRContext *ctx = &getContext();
667 
668   RewritePatternSet patterns(ctx);
669   patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads,
670                                         targetBlockSize);
671 
672   if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
673     signalPassFailure();
674 }
675 
676 std::unique_ptr<Pass> mlir::createAsyncParallelForPass() {
677   return std::make_unique<AsyncParallelForPass>();
678 }
679 
680 std::unique_ptr<Pass>
681 mlir::createAsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads,
682                                  int32_t targetBlockSize) {
683   return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads,
684                                                 targetBlockSize);
685 }
686