1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements scf.parallel to scf.for + async.execute conversion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 15 #include "mlir/Dialect/Async/IR/Async.h" 16 #include "mlir/Dialect/Async/Passes.h" 17 #include "mlir/Dialect/SCF/SCF.h" 18 #include "mlir/Dialect/StandardOps/IR/Ops.h" 19 #include "mlir/IR/BlockAndValueMapping.h" 20 #include "mlir/IR/ImplicitLocOpBuilder.h" 21 #include "mlir/IR/PatternMatch.h" 22 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 23 #include "mlir/Transforms/RegionUtils.h" 24 25 using namespace mlir; 26 using namespace mlir::async; 27 28 #define DEBUG_TYPE "async-parallel-for" 29 30 namespace { 31 32 // Rewrite scf.parallel operation into multiple concurrent async.execute 33 // operations over non overlapping subranges of the original loop. 34 // 35 // Example: 36 // 37 // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) { 38 // "do_some_compute"(%i, %j): () -> () 39 // } 40 // 41 // Converted to: 42 // 43 // // Parallel compute function that executes the parallel body region for 44 // // a subset of the parallel iteration space defined by the one-dimensional 45 // // compute block index. 46 // func parallel_compute_function(%block_index : index, %block_size : index, 47 // <parallel operation properties>, ...) { 48 // // Compute multi-dimensional loop bounds for %block_index. 49 // %block_lbi, %block_lbj = ... 50 // %block_ubi, %block_ubj = ... 51 // 52 // // Clone parallel operation body into the scf.for loop nest. 53 // scf.for %i = %blockLbi to %blockUbi { 54 // scf.for %j = block_lbj to %block_ubj { 55 // "do_some_compute"(%i, %j): () -> () 56 // } 57 // } 58 // } 59 // 60 // And a dispatch function depending on the `asyncDispatch` option. 61 // 62 // When async dispatch is on: (pseudocode) 63 // 64 // %block_size = ... compute parallel compute block size 65 // %block_count = ... compute the number of compute blocks 66 // 67 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 68 // // Keep splitting block range until we reached a range of size 1. 69 // while (%block_end - %block_start > 1) { 70 // %mid_index = block_start + (block_end - block_start) / 2; 71 // async.execute { call @async_dispatch(%mid_index, %block_end); } 72 // %block_end = %mid_index 73 // } 74 // 75 // // Call parallel compute function for a single block. 76 // call @parallel_compute_fn(%block_start, %block_size, ...); 77 // } 78 // 79 // // Launch async dispatch for [0, block_count) range. 80 // call @async_dispatch(%c0, %block_count); 81 // 82 // When async dispatch is off: 83 // 84 // %block_size = ... compute parallel compute block size 85 // %block_count = ... compute the number of compute blocks 86 // 87 // scf.for %block_index = %c0 to %block_count { 88 // call @parallel_compute_fn(%block_index, %block_size, ...) 89 // } 90 // 91 struct AsyncParallelForPass 92 : public AsyncParallelForBase<AsyncParallelForPass> { 93 AsyncParallelForPass() = default; 94 95 AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads, 96 int32_t minTaskSize) { 97 this->asyncDispatch = asyncDispatch; 98 this->numWorkerThreads = numWorkerThreads; 99 this->minTaskSize = minTaskSize; 100 } 101 102 void runOnOperation() override; 103 }; 104 105 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> { 106 public: 107 AsyncParallelForRewrite(MLIRContext *ctx, bool asyncDispatch, 108 int32_t numWorkerThreads, int32_t minTaskSize) 109 : OpRewritePattern(ctx), asyncDispatch(asyncDispatch), 110 numWorkerThreads(numWorkerThreads), minTaskSize(minTaskSize) {} 111 112 LogicalResult matchAndRewrite(scf::ParallelOp op, 113 PatternRewriter &rewriter) const override; 114 115 private: 116 bool asyncDispatch; 117 int32_t numWorkerThreads; 118 int32_t minTaskSize; 119 }; 120 121 struct ParallelComputeFunctionType { 122 FunctionType type; 123 llvm::SmallVector<Value> captures; 124 }; 125 126 struct ParallelComputeFunction { 127 FuncOp func; 128 llvm::SmallVector<Value> captures; 129 }; 130 131 } // namespace 132 133 // Converts one-dimensional iteration index in the [0, tripCount) interval 134 // into multidimensional iteration coordinate. 135 static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index, 136 ArrayRef<Value> tripCounts) { 137 SmallVector<Value> coords(tripCounts.size()); 138 assert(!tripCounts.empty() && "tripCounts must be not empty"); 139 140 for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) { 141 coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]); 142 index = b.create<arith::DivSIOp>(index, tripCounts[i]); 143 } 144 145 return coords; 146 } 147 148 // Returns a function type and implicit captures for a parallel compute 149 // function. We'll need a list of implicit captures to setup block and value 150 // mapping when we'll clone the body of the parallel operation. 151 static ParallelComputeFunctionType 152 getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) { 153 // Values implicitly captured by the parallel operation. 154 llvm::SetVector<Value> captures; 155 getUsedValuesDefinedAbove(op.region(), op.region(), captures); 156 157 llvm::SmallVector<Type> inputs; 158 inputs.reserve(2 + 4 * op.getNumLoops() + captures.size()); 159 160 Type indexTy = rewriter.getIndexType(); 161 162 // One-dimensional iteration space defined by the block index and size. 163 inputs.push_back(indexTy); // blockIndex 164 inputs.push_back(indexTy); // blockSize 165 166 // Multi-dimensional parallel iteration space defined by the loop trip counts. 167 for (unsigned i = 0; i < op.getNumLoops(); ++i) 168 inputs.push_back(indexTy); // loop tripCount 169 170 // Parallel operation lower bound, upper bound and step. 171 for (unsigned i = 0; i < op.getNumLoops(); ++i) { 172 inputs.push_back(indexTy); // lower bound 173 inputs.push_back(indexTy); // upper bound 174 inputs.push_back(indexTy); // step 175 } 176 177 // Types of the implicit captures. 178 for (Value capture : captures) 179 inputs.push_back(capture.getType()); 180 181 // Convert captures to vector for later convenience. 182 SmallVector<Value> capturesVector(captures.begin(), captures.end()); 183 return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector}; 184 } 185 186 // Create a parallel compute fuction from the parallel operation. 187 static ParallelComputeFunction 188 createParallelComputeFunction(scf::ParallelOp op, PatternRewriter &rewriter) { 189 OpBuilder::InsertionGuard guard(rewriter); 190 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 191 192 ModuleOp module = op->getParentOfType<ModuleOp>(); 193 194 // Make sure that all constants will be inside the parallel operation body to 195 // reduce the number of parallel compute function arguments. 196 cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter); 197 198 ParallelComputeFunctionType computeFuncType = 199 getParallelComputeFunctionType(op, rewriter); 200 201 FunctionType type = computeFuncType.type; 202 FuncOp func = FuncOp::create(op.getLoc(), "parallel_compute_fn", type); 203 func.setPrivate(); 204 205 // Insert function into the module symbol table and assign it unique name. 206 SymbolTable symbolTable(module); 207 symbolTable.insert(func); 208 rewriter.getListener()->notifyOperationInserted(func); 209 210 // Create function entry block. 211 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs()); 212 b.setInsertionPointToEnd(block); 213 214 unsigned offset = 0; // argument offset for arguments decoding 215 216 // Returns `numArguments` arguments starting from `offset` and updates offset 217 // by moving forward to the next argument. 218 auto getArguments = [&](unsigned numArguments) -> ArrayRef<Value> { 219 auto args = block->getArguments(); 220 auto slice = args.drop_front(offset).take_front(numArguments); 221 offset += numArguments; 222 return {slice.begin(), slice.end()}; 223 }; 224 225 // Block iteration position defined by the block index and size. 226 Value blockIndex = block->getArgument(offset++); 227 Value blockSize = block->getArgument(offset++); 228 229 // Constants used below. 230 Value c0 = b.create<arith::ConstantIndexOp>(0); 231 Value c1 = b.create<arith::ConstantIndexOp>(1); 232 233 // Multi-dimensional parallel iteration space defined by the loop trip counts. 234 ArrayRef<Value> tripCounts = getArguments(op.getNumLoops()); 235 236 // Compute a product of trip counts to get the size of the flattened 237 // one-dimensional iteration space. 238 Value tripCount = tripCounts[0]; 239 for (unsigned i = 1; i < tripCounts.size(); ++i) 240 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 241 242 // Parallel operation lower bound and step. 243 ArrayRef<Value> lowerBound = getArguments(op.getNumLoops()); 244 offset += op.getNumLoops(); // skip upper bound arguments 245 ArrayRef<Value> step = getArguments(op.getNumLoops()); 246 247 // Remaining arguments are implicit captures of the parallel operation. 248 ArrayRef<Value> captures = getArguments(block->getNumArguments() - offset); 249 250 // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]: 251 // blockFirstIndex = blockIndex * blockSize 252 Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize); 253 254 // The last one-dimensional index in the block defined by the `blockIndex`: 255 // blockLastIndex = max(blockFirstIndex + blockSize, tripCount) - 1 256 Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize); 257 Value blockEnd1 = 258 b.create<arith::CmpIOp>(arith::CmpIPredicate::sge, blockEnd0, tripCount); 259 Value blockEnd2 = b.create<SelectOp>(blockEnd1, tripCount, blockEnd0); 260 Value blockLastIndex = b.create<arith::SubIOp>(blockEnd2, c1); 261 262 // Convert one-dimensional indices to multi-dimensional coordinates. 263 auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts); 264 auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts); 265 266 // Compute loops upper bounds derived from the block last coordinates: 267 // blockEndCoord[i] = blockLastCoord[i] + 1 268 // 269 // Block first and last coordinates can be the same along the outer compute 270 // dimension when inner compute dimension contains multiple blocks. 271 SmallVector<Value> blockEndCoord(op.getNumLoops()); 272 for (size_t i = 0; i < blockLastCoord.size(); ++i) 273 blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1); 274 275 // Construct a loop nest out of scf.for operations that will iterate over 276 // all coordinates in [blockFirstCoord, blockLastCoord] range. 277 using LoopBodyBuilder = 278 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 279 using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>; 280 281 // Parallel region induction variables computed from the multi-dimensional 282 // iteration coordinate using parallel operation bounds and step: 283 // 284 // computeBlockInductionVars[loopIdx] = 285 // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopDdx] 286 SmallVector<Value> computeBlockInductionVars(op.getNumLoops()); 287 288 // We need to know if we are in the first or last iteration of the 289 // multi-dimensional loop for each loop in the nest, so we can decide what 290 // loop bounds should we use for the nested loops: bounds defined by compute 291 // block interval, or bounds defined by the parallel operation. 292 // 293 // Example: 2d parallel operation 294 // i j 295 // loop sizes: [50, 50] 296 // first coord: [25, 25] 297 // last coord: [30, 30] 298 // 299 // If `i` is equal to 25 then iteration over `j` should start at 25, when `i` 300 // is between 25 and 30 it should start at 0. The upper bound for `j` should 301 // be 50, except when `i` is equal to 30, then it should also be 30. 302 // 303 // Value at ith position specifies if all loops in [0, i) range of the loop 304 // nest are in the first/last iteration. 305 SmallVector<Value> isBlockFirstCoord(op.getNumLoops()); 306 SmallVector<Value> isBlockLastCoord(op.getNumLoops()); 307 308 // Builds inner loop nest inside async.execute operation that does all the 309 // work concurrently. 310 LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { 311 return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv, 312 ValueRange args) { 313 ImplicitLocOpBuilder nb(loc, nestedBuilder); 314 315 // Compute induction variable for `loopIdx`. 316 computeBlockInductionVars[loopIdx] = nb.create<arith::AddIOp>( 317 lowerBound[loopIdx], nb.create<arith::MulIOp>(iv, step[loopIdx])); 318 319 // Check if we are inside first or last iteration of the loop. 320 isBlockFirstCoord[loopIdx] = nb.create<arith::CmpIOp>( 321 arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]); 322 isBlockLastCoord[loopIdx] = nb.create<arith::CmpIOp>( 323 arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]); 324 325 // Check if the previous loop is in its first or last iteration. 326 if (loopIdx > 0) { 327 isBlockFirstCoord[loopIdx] = nb.create<arith::AndIOp>( 328 isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]); 329 isBlockLastCoord[loopIdx] = nb.create<arith::AndIOp>( 330 isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]); 331 } 332 333 // Keep building loop nest. 334 if (loopIdx < op.getNumLoops() - 1) { 335 // Select nested loop lower/upper bounds depending on out position in 336 // the multi-dimensional iteration space. 337 auto lb = nb.create<SelectOp>(isBlockFirstCoord[loopIdx], 338 blockFirstCoord[loopIdx + 1], c0); 339 340 auto ub = nb.create<SelectOp>(isBlockLastCoord[loopIdx], 341 blockEndCoord[loopIdx + 1], 342 tripCounts[loopIdx + 1]); 343 344 nb.create<scf::ForOp>(lb, ub, c1, ValueRange(), 345 workLoopBuilder(loopIdx + 1)); 346 nb.create<scf::YieldOp>(loc); 347 return; 348 } 349 350 // Copy the body of the parallel op into the inner-most loop. 351 BlockAndValueMapping mapping; 352 mapping.map(op.getInductionVars(), computeBlockInductionVars); 353 mapping.map(computeFuncType.captures, captures); 354 355 for (auto &bodyOp : op.getLoopBody().getOps()) 356 nb.clone(bodyOp, mapping); 357 }; 358 }; 359 360 b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(), 361 workLoopBuilder(0)); 362 b.create<ReturnOp>(ValueRange()); 363 364 return {func, std::move(computeFuncType.captures)}; 365 } 366 367 // Creates recursive async dispatch function for the given parallel compute 368 // function. Dispatch function keeps splitting block range into halves until it 369 // reaches a single block, and then excecutes it inline. 370 // 371 // Function pseudocode (mix of C++ and MLIR): 372 // 373 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 374 // 375 // // Keep splitting block range until we reached a range of size 1. 376 // while (%block_end - %block_start > 1) { 377 // %mid_index = block_start + (block_end - block_start) / 2; 378 // async.execute { call @async_dispatch(%mid_index, %block_end); } 379 // %block_end = %mid_index 380 // } 381 // 382 // // Call parallel compute function for a single block. 383 // call @parallel_compute_fn(%block_start, %block_size, ...); 384 // } 385 // 386 static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc, 387 PatternRewriter &rewriter) { 388 OpBuilder::InsertionGuard guard(rewriter); 389 Location loc = computeFunc.func.getLoc(); 390 ImplicitLocOpBuilder b(loc, rewriter); 391 392 ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>(); 393 394 ArrayRef<Type> computeFuncInputTypes = 395 computeFunc.func.type().cast<FunctionType>().getInputs(); 396 397 // Compared to the parallel compute function async dispatch function takes 398 // additional !async.group argument. Also instead of a single `blockIndex` it 399 // takes `blockStart` and `blockEnd` arguments to define the range of 400 // dispatched blocks. 401 SmallVector<Type> inputTypes; 402 inputTypes.push_back(async::GroupType::get(rewriter.getContext())); 403 inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument 404 inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end()); 405 406 FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange()); 407 FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type); 408 func.setPrivate(); 409 410 // Insert function into the module symbol table and assign it unique name. 411 SymbolTable symbolTable(module); 412 symbolTable.insert(func); 413 rewriter.getListener()->notifyOperationInserted(func); 414 415 // Create function entry block. 416 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs()); 417 b.setInsertionPointToEnd(block); 418 419 Type indexTy = b.getIndexType(); 420 Value c1 = b.create<arith::ConstantIndexOp>(1); 421 Value c2 = b.create<arith::ConstantIndexOp>(2); 422 423 // Get the async group that will track async dispatch completion. 424 Value group = block->getArgument(0); 425 426 // Get the block iteration range: [blockStart, blockEnd) 427 Value blockStart = block->getArgument(1); 428 Value blockEnd = block->getArgument(2); 429 430 // Create a work splitting while loop for the [blockStart, blockEnd) range. 431 SmallVector<Type> types = {indexTy, indexTy}; 432 SmallVector<Value> operands = {blockStart, blockEnd}; 433 434 // Create a recursive dispatch loop. 435 scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands); 436 Block *before = b.createBlock(&whileOp.before(), {}, types); 437 Block *after = b.createBlock(&whileOp.after(), {}, types); 438 439 // Setup dispatch loop condition block: decide if we need to go into the 440 // `after` block and launch one more async dispatch. 441 { 442 b.setInsertionPointToEnd(before); 443 Value start = before->getArgument(0); 444 Value end = before->getArgument(1); 445 Value distance = b.create<arith::SubIOp>(end, start); 446 Value dispatch = 447 b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1); 448 b.create<scf::ConditionOp>(dispatch, before->getArguments()); 449 } 450 451 // Setup the async dispatch loop body: recursively call dispatch function 452 // for the seconds half of the original range and go to the next iteration. 453 { 454 b.setInsertionPointToEnd(after); 455 Value start = after->getArgument(0); 456 Value end = after->getArgument(1); 457 Value distance = b.create<arith::SubIOp>(end, start); 458 Value halfDistance = b.create<arith::DivSIOp>(distance, c2); 459 Value midIndex = b.create<arith::AddIOp>(start, halfDistance); 460 461 // Call parallel compute function inside the async.execute region. 462 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 463 Location executeLoc, ValueRange executeArgs) { 464 // Update the original `blockStart` and `blockEnd` with new range. 465 SmallVector<Value> operands{block->getArguments().begin(), 466 block->getArguments().end()}; 467 operands[1] = midIndex; 468 operands[2] = end; 469 470 executeBuilder.create<CallOp>(executeLoc, func.sym_name(), 471 func.getCallableResults(), operands); 472 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 473 }; 474 475 // Create async.execute operation to dispatch half of the block range. 476 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 477 executeBodyBuilder); 478 b.create<AddToGroupOp>(indexTy, execute.token(), group); 479 b.create<scf::YieldOp>(ValueRange({start, midIndex})); 480 } 481 482 // After dispatching async operations to process the tail of the block range 483 // call the parallel compute function for the first block of the range. 484 b.setInsertionPointAfter(whileOp); 485 486 // Drop async dispatch specific arguments: async group, block start and end. 487 auto forwardedInputs = block->getArguments().drop_front(3); 488 SmallVector<Value> computeFuncOperands = {blockStart}; 489 computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end()); 490 491 b.create<CallOp>(computeFunc.func.sym_name(), 492 computeFunc.func.getCallableResults(), computeFuncOperands); 493 b.create<ReturnOp>(ValueRange()); 494 495 return func; 496 } 497 498 // Launch async dispatch of the parallel compute function. 499 static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 500 ParallelComputeFunction ¶llelComputeFunction, 501 scf::ParallelOp op, Value blockSize, 502 Value blockCount, 503 const SmallVector<Value> &tripCounts) { 504 MLIRContext *ctx = op->getContext(); 505 506 // Add one more level of indirection to dispatch parallel compute functions 507 // using async operations and recursive work splitting. 508 FuncOp asyncDispatchFunction = 509 createAsyncDispatchFunction(parallelComputeFunction, rewriter); 510 511 Value c0 = b.create<arith::ConstantIndexOp>(0); 512 Value c1 = b.create<arith::ConstantIndexOp>(1); 513 514 // Appends operands shared by async dispatch and parallel compute functions to 515 // the given operands vector. 516 auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) { 517 operands.append(tripCounts); 518 operands.append(op.lowerBound().begin(), op.lowerBound().end()); 519 operands.append(op.upperBound().begin(), op.upperBound().end()); 520 operands.append(op.step().begin(), op.step().end()); 521 operands.append(parallelComputeFunction.captures); 522 }; 523 524 // Check if the block size is one, in this case we can skip the async dispatch 525 // completely. If this will be known statically, then canonicalization will 526 // erase async group operations. 527 Value isSingleBlock = 528 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1); 529 530 auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 531 ImplicitLocOpBuilder nb(loc, nestedBuilder); 532 533 // Call parallel compute function for the single block. 534 SmallVector<Value> operands = {c0, blockSize}; 535 appendBlockComputeOperands(operands); 536 537 nb.create<CallOp>(parallelComputeFunction.func.sym_name(), 538 parallelComputeFunction.func.getCallableResults(), 539 operands); 540 nb.create<scf::YieldOp>(); 541 }; 542 543 auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 544 // Create an async.group to wait on all async tokens from the concurrent 545 // execution of multiple parallel compute function. First block will be 546 // executed synchronously in the caller thread. 547 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 548 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 549 550 ImplicitLocOpBuilder nb(loc, nestedBuilder); 551 552 // Launch async dispatch function for [0, blockCount) range. 553 SmallVector<Value> operands = {group, c0, blockCount, blockSize}; 554 appendBlockComputeOperands(operands); 555 556 nb.create<CallOp>(asyncDispatchFunction.sym_name(), 557 asyncDispatchFunction.getCallableResults(), operands); 558 559 // Wait for the completion of all parallel compute operations. 560 b.create<AwaitAllOp>(group); 561 562 nb.create<scf::YieldOp>(); 563 }; 564 565 // Dispatch either single block compute function, or launch async dispatch. 566 b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch); 567 } 568 569 // Dispatch parallel compute functions by submitting all async compute tasks 570 // from a simple for loop in the caller thread. 571 static void 572 doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 573 ParallelComputeFunction ¶llelComputeFunction, 574 scf::ParallelOp op, Value blockSize, Value blockCount, 575 const SmallVector<Value> &tripCounts) { 576 MLIRContext *ctx = op->getContext(); 577 578 FuncOp compute = parallelComputeFunction.func; 579 580 Value c0 = b.create<arith::ConstantIndexOp>(0); 581 Value c1 = b.create<arith::ConstantIndexOp>(1); 582 583 // Create an async.group to wait on all async tokens from the concurrent 584 // execution of multiple parallel compute function. First block will be 585 // executed synchronously in the caller thread. 586 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 587 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 588 589 // Call parallel compute function for all blocks. 590 using LoopBodyBuilder = 591 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 592 593 // Returns parallel compute function operands to process the given block. 594 auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> { 595 SmallVector<Value> computeFuncOperands = {blockIndex, blockSize}; 596 computeFuncOperands.append(tripCounts); 597 computeFuncOperands.append(op.lowerBound().begin(), op.lowerBound().end()); 598 computeFuncOperands.append(op.upperBound().begin(), op.upperBound().end()); 599 computeFuncOperands.append(op.step().begin(), op.step().end()); 600 computeFuncOperands.append(parallelComputeFunction.captures); 601 return computeFuncOperands; 602 }; 603 604 // Induction variable is the index of the block: [0, blockCount). 605 LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc, 606 Value iv, ValueRange args) { 607 ImplicitLocOpBuilder nb(loc, loopBuilder); 608 609 // Call parallel compute function inside the async.execute region. 610 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 611 Location executeLoc, ValueRange executeArgs) { 612 executeBuilder.create<CallOp>(executeLoc, compute.sym_name(), 613 compute.getCallableResults(), 614 computeFuncOperands(iv)); 615 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 616 }; 617 618 // Create async.execute operation to launch parallel computate function. 619 auto execute = nb.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 620 executeBodyBuilder); 621 nb.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group); 622 nb.create<scf::YieldOp>(); 623 }; 624 625 // Iterate over all compute blocks and launch parallel compute operations. 626 b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder); 627 628 // Call parallel compute function for the first block in the caller thread. 629 b.create<CallOp>(compute.sym_name(), compute.getCallableResults(), 630 computeFuncOperands(c0)); 631 632 // Wait for the completion of all async compute operations. 633 b.create<AwaitAllOp>(group); 634 } 635 636 LogicalResult 637 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op, 638 PatternRewriter &rewriter) const { 639 // We do not currently support rewrite for parallel op with reductions. 640 if (op.getNumReductions() != 0) 641 return failure(); 642 643 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 644 645 // Compute trip count for each loop induction variable: 646 // tripCount = ceil_div(upperBound - lowerBound, step); 647 SmallVector<Value> tripCounts(op.getNumLoops()); 648 for (size_t i = 0; i < op.getNumLoops(); ++i) { 649 auto lb = op.lowerBound()[i]; 650 auto ub = op.upperBound()[i]; 651 auto step = op.step()[i]; 652 auto range = b.create<arith::SubIOp>(ub, lb); 653 tripCounts[i] = b.create<arith::CeilDivSIOp>(range, step); 654 } 655 656 // Compute a product of trip counts to get the 1-dimensional iteration space 657 // for the scf.parallel operation. 658 Value tripCount = tripCounts[0]; 659 for (size_t i = 1; i < tripCounts.size(); ++i) 660 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 661 662 // Short circuit no-op parallel loops (zero iterations) that can arise from 663 // the memrefs with dynamic dimension(s) equal to zero. 664 Value c0 = b.create<arith::ConstantIndexOp>(0); 665 Value isZeroIterations = 666 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0); 667 668 // Do absolutely nothing if the trip count is zero. 669 auto noOp = [&](OpBuilder &nestedBuilder, Location loc) { 670 nestedBuilder.create<scf::YieldOp>(loc); 671 }; 672 673 // Compute the parallel block size and dispatch concurrent tasks computing 674 // results for each block. 675 auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) { 676 ImplicitLocOpBuilder nb(loc, nestedBuilder); 677 678 // With large number of threads the value of creating many compute blocks 679 // is reduced because the problem typically becomes memory bound. For small 680 // number of threads it helps with stragglers. 681 float overshardingFactor = numWorkerThreads <= 4 ? 8.0 682 : numWorkerThreads <= 8 ? 4.0 683 : numWorkerThreads <= 16 ? 2.0 684 : numWorkerThreads <= 32 ? 1.0 685 : numWorkerThreads <= 64 ? 0.8 686 : 0.6; 687 688 // Do not overload worker threads with too many compute blocks. 689 Value maxComputeBlocks = b.create<arith::ConstantIndexOp>( 690 std::max(1, static_cast<int>(numWorkerThreads * overshardingFactor))); 691 692 // Target block size from the pass parameters. 693 Value minTaskSizeCst = b.create<arith::ConstantIndexOp>(minTaskSize); 694 695 // Compute parallel block size from the parallel problem size: 696 // blockSize = min(tripCount, 697 // max(ceil_div(tripCount, maxComputeBlocks), 698 // ceil_div(minTaskSize, bodySize))) 699 Value bs0 = b.create<arith::DivSIOp>(tripCount, maxComputeBlocks); 700 Value bs1 = 701 b.create<arith::CmpIOp>(arith::CmpIPredicate::sge, bs0, minTaskSizeCst); 702 Value bs2 = b.create<SelectOp>(bs1, bs0, minTaskSizeCst); 703 Value bs3 = 704 b.create<arith::CmpIOp>(arith::CmpIPredicate::sle, tripCount, bs2); 705 Value blockSize0 = b.create<SelectOp>(bs3, tripCount, bs2); 706 Value blockCount0 = b.create<arith::CeilDivSIOp>(tripCount, blockSize0); 707 708 // Compute balanced block size for the estimated block count. 709 Value blockSize = b.create<arith::CeilDivSIOp>(tripCount, blockCount0); 710 Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize); 711 712 // Create a parallel compute function that takes a block id and computes the 713 // parallel operation body for a subset of iteration space. 714 ParallelComputeFunction parallelComputeFunction = 715 createParallelComputeFunction(op, rewriter); 716 717 // Dispatch parallel compute function using async recursive work splitting, 718 // or by submitting compute task sequentially from a caller thread. 719 if (asyncDispatch) { 720 doAsyncDispatch(b, rewriter, parallelComputeFunction, op, blockSize, 721 blockCount, tripCounts); 722 } else { 723 doSequentialDispatch(b, rewriter, parallelComputeFunction, op, blockSize, 724 blockCount, tripCounts); 725 } 726 727 nb.create<scf::YieldOp>(); 728 }; 729 730 // Replace the `scf.parallel` operation with the parallel compute function. 731 b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch); 732 733 // Parallel operation was replaced with a block iteration loop. 734 rewriter.eraseOp(op); 735 736 return success(); 737 } 738 739 void AsyncParallelForPass::runOnOperation() { 740 MLIRContext *ctx = &getContext(); 741 742 RewritePatternSet patterns(ctx); 743 patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads, 744 minTaskSize); 745 746 if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)))) 747 signalPassFailure(); 748 } 749 750 std::unique_ptr<Pass> mlir::createAsyncParallelForPass() { 751 return std::make_unique<AsyncParallelForPass>(); 752 } 753 754 std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch, 755 int32_t numWorkerThreads, 756 int32_t minTaskSize) { 757 return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads, 758 minTaskSize); 759 } 760