1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements scf.parallel to scf.for + async.execute conversion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 15 #include "mlir/Dialect/Async/IR/Async.h" 16 #include "mlir/Dialect/Async/Passes.h" 17 #include "mlir/Dialect/SCF/SCF.h" 18 #include "mlir/Dialect/StandardOps/IR/Ops.h" 19 #include "mlir/IR/BlockAndValueMapping.h" 20 #include "mlir/IR/ImplicitLocOpBuilder.h" 21 #include "mlir/IR/Matchers.h" 22 #include "mlir/IR/PatternMatch.h" 23 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 24 #include "mlir/Transforms/RegionUtils.h" 25 26 using namespace mlir; 27 using namespace mlir::async; 28 29 #define DEBUG_TYPE "async-parallel-for" 30 31 namespace { 32 33 // Rewrite scf.parallel operation into multiple concurrent async.execute 34 // operations over non overlapping subranges of the original loop. 35 // 36 // Example: 37 // 38 // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) { 39 // "do_some_compute"(%i, %j): () -> () 40 // } 41 // 42 // Converted to: 43 // 44 // // Parallel compute function that executes the parallel body region for 45 // // a subset of the parallel iteration space defined by the one-dimensional 46 // // compute block index. 47 // func parallel_compute_function(%block_index : index, %block_size : index, 48 // <parallel operation properties>, ...) { 49 // // Compute multi-dimensional loop bounds for %block_index. 50 // %block_lbi, %block_lbj = ... 51 // %block_ubi, %block_ubj = ... 52 // 53 // // Clone parallel operation body into the scf.for loop nest. 54 // scf.for %i = %blockLbi to %blockUbi { 55 // scf.for %j = block_lbj to %block_ubj { 56 // "do_some_compute"(%i, %j): () -> () 57 // } 58 // } 59 // } 60 // 61 // And a dispatch function depending on the `asyncDispatch` option. 62 // 63 // When async dispatch is on: (pseudocode) 64 // 65 // %block_size = ... compute parallel compute block size 66 // %block_count = ... compute the number of compute blocks 67 // 68 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 69 // // Keep splitting block range until we reached a range of size 1. 70 // while (%block_end - %block_start > 1) { 71 // %mid_index = block_start + (block_end - block_start) / 2; 72 // async.execute { call @async_dispatch(%mid_index, %block_end); } 73 // %block_end = %mid_index 74 // } 75 // 76 // // Call parallel compute function for a single block. 77 // call @parallel_compute_fn(%block_start, %block_size, ...); 78 // } 79 // 80 // // Launch async dispatch for [0, block_count) range. 81 // call @async_dispatch(%c0, %block_count); 82 // 83 // When async dispatch is off: 84 // 85 // %block_size = ... compute parallel compute block size 86 // %block_count = ... compute the number of compute blocks 87 // 88 // scf.for %block_index = %c0 to %block_count { 89 // call @parallel_compute_fn(%block_index, %block_size, ...) 90 // } 91 // 92 struct AsyncParallelForPass 93 : public AsyncParallelForBase<AsyncParallelForPass> { 94 AsyncParallelForPass() = default; 95 96 AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads, 97 int32_t minTaskSize) { 98 this->asyncDispatch = asyncDispatch; 99 this->numWorkerThreads = numWorkerThreads; 100 this->minTaskSize = minTaskSize; 101 } 102 103 void runOnOperation() override; 104 }; 105 106 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> { 107 public: 108 AsyncParallelForRewrite(MLIRContext *ctx, bool asyncDispatch, 109 int32_t numWorkerThreads, int32_t minTaskSize) 110 : OpRewritePattern(ctx), asyncDispatch(asyncDispatch), 111 numWorkerThreads(numWorkerThreads), minTaskSize(minTaskSize) {} 112 113 LogicalResult matchAndRewrite(scf::ParallelOp op, 114 PatternRewriter &rewriter) const override; 115 116 private: 117 bool asyncDispatch; 118 int32_t numWorkerThreads; 119 int32_t minTaskSize; 120 }; 121 122 struct ParallelComputeFunctionType { 123 FunctionType type; 124 SmallVector<Value> captures; 125 }; 126 127 // Helper struct to parse parallel compute function argument list. 128 struct ParallelComputeFunctionArgs { 129 BlockArgument blockIndex(); 130 BlockArgument blockSize(); 131 ArrayRef<BlockArgument> tripCounts(); 132 ArrayRef<BlockArgument> lowerBounds(); 133 ArrayRef<BlockArgument> upperBounds(); 134 ArrayRef<BlockArgument> steps(); 135 ArrayRef<BlockArgument> captures(); 136 137 unsigned numLoops; 138 ArrayRef<BlockArgument> args; 139 }; 140 141 struct ParallelComputeFunctionBounds { 142 SmallVector<IntegerAttr> tripCounts; 143 SmallVector<IntegerAttr> lowerBounds; 144 SmallVector<IntegerAttr> upperBounds; 145 SmallVector<IntegerAttr> steps; 146 }; 147 148 struct ParallelComputeFunction { 149 unsigned numLoops; 150 FuncOp func; 151 llvm::SmallVector<Value> captures; 152 }; 153 154 } // namespace 155 156 BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; } 157 BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; } 158 159 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() { 160 return args.drop_front(2).take_front(numLoops); 161 } 162 163 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() { 164 return args.drop_front(2 + 1 * numLoops).take_front(numLoops); 165 } 166 167 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() { 168 return args.drop_front(2 + 2 * numLoops).take_front(numLoops); 169 } 170 171 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() { 172 return args.drop_front(2 + 3 * numLoops).take_front(numLoops); 173 } 174 175 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() { 176 return args.drop_front(2 + 4 * numLoops); 177 } 178 179 template <typename ValueRange> 180 static SmallVector<IntegerAttr> integerConstants(ValueRange values) { 181 SmallVector<IntegerAttr> attrs(values.size()); 182 for (unsigned i = 0; i < values.size(); ++i) 183 matchPattern(values[i], m_Constant(&attrs[i])); 184 return attrs; 185 } 186 187 // Converts one-dimensional iteration index in the [0, tripCount) interval 188 // into multidimensional iteration coordinate. 189 static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index, 190 ArrayRef<Value> tripCounts) { 191 SmallVector<Value> coords(tripCounts.size()); 192 assert(!tripCounts.empty() && "tripCounts must be not empty"); 193 194 for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) { 195 coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]); 196 index = b.create<arith::DivSIOp>(index, tripCounts[i]); 197 } 198 199 return coords; 200 } 201 202 // Returns a function type and implicit captures for a parallel compute 203 // function. We'll need a list of implicit captures to setup block and value 204 // mapping when we'll clone the body of the parallel operation. 205 static ParallelComputeFunctionType 206 getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) { 207 // Values implicitly captured by the parallel operation. 208 llvm::SetVector<Value> captures; 209 getUsedValuesDefinedAbove(op.region(), op.region(), captures); 210 211 SmallVector<Type> inputs; 212 inputs.reserve(2 + 4 * op.getNumLoops() + captures.size()); 213 214 Type indexTy = rewriter.getIndexType(); 215 216 // One-dimensional iteration space defined by the block index and size. 217 inputs.push_back(indexTy); // blockIndex 218 inputs.push_back(indexTy); // blockSize 219 220 // Multi-dimensional parallel iteration space defined by the loop trip counts. 221 for (unsigned i = 0; i < op.getNumLoops(); ++i) 222 inputs.push_back(indexTy); // loop tripCount 223 224 // Parallel operation lower bound, upper bound and step. Lower bound, upper 225 // bound and step passed as contiguous arguments: 226 // call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...) 227 for (unsigned i = 0; i < op.getNumLoops(); ++i) { 228 inputs.push_back(indexTy); // lower bound 229 inputs.push_back(indexTy); // upper bound 230 inputs.push_back(indexTy); // step 231 } 232 233 // Types of the implicit captures. 234 for (Value capture : captures) 235 inputs.push_back(capture.getType()); 236 237 // Convert captures to vector for later convenience. 238 SmallVector<Value> capturesVector(captures.begin(), captures.end()); 239 return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector}; 240 } 241 242 // Create a parallel compute fuction from the parallel operation. 243 static ParallelComputeFunction 244 createParallelComputeFunction(scf::ParallelOp op, 245 ParallelComputeFunctionBounds bounds, 246 PatternRewriter &rewriter) { 247 OpBuilder::InsertionGuard guard(rewriter); 248 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 249 250 ModuleOp module = op->getParentOfType<ModuleOp>(); 251 252 ParallelComputeFunctionType computeFuncType = 253 getParallelComputeFunctionType(op, rewriter); 254 255 FunctionType type = computeFuncType.type; 256 FuncOp func = FuncOp::create(op.getLoc(), "parallel_compute_fn", type); 257 func.setPrivate(); 258 259 // Insert function into the module symbol table and assign it unique name. 260 SymbolTable symbolTable(module); 261 symbolTable.insert(func); 262 rewriter.getListener()->notifyOperationInserted(func); 263 264 // Create function entry block. 265 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs()); 266 b.setInsertionPointToEnd(block); 267 268 ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()}; 269 270 // Block iteration position defined by the block index and size. 271 BlockArgument blockIndex = args.blockIndex(); 272 BlockArgument blockSize = args.blockSize(); 273 274 // Constants used below. 275 Value c0 = b.create<arith::ConstantIndexOp>(0); 276 Value c1 = b.create<arith::ConstantIndexOp>(1); 277 278 // Materialize known constants as constant operation in the function body. 279 auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) { 280 return llvm::to_vector( 281 llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value { 282 if (IntegerAttr attr = std::get<1>(tuple)) 283 return b.create<ConstantOp>(attr); 284 return std::get<0>(tuple); 285 })); 286 }; 287 288 // Multi-dimensional parallel iteration space defined by the loop trip counts. 289 auto tripCounts = values(args.tripCounts(), bounds.tripCounts); 290 291 // Parallel operation lower bound and step. 292 auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds); 293 auto steps = values(args.steps(), bounds.steps); 294 295 // Remaining arguments are implicit captures of the parallel operation. 296 ArrayRef<BlockArgument> captures = args.captures(); 297 298 // Compute a product of trip counts to get the size of the flattened 299 // one-dimensional iteration space. 300 Value tripCount = tripCounts[0]; 301 for (unsigned i = 1; i < tripCounts.size(); ++i) 302 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 303 304 // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]: 305 // blockFirstIndex = blockIndex * blockSize 306 Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize); 307 308 // The last one-dimensional index in the block defined by the `blockIndex`: 309 // blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1 310 Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize); 311 Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount); 312 Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1); 313 314 // Convert one-dimensional indices to multi-dimensional coordinates. 315 auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts); 316 auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts); 317 318 // Compute loops upper bounds derived from the block last coordinates: 319 // blockEndCoord[i] = blockLastCoord[i] + 1 320 // 321 // Block first and last coordinates can be the same along the outer compute 322 // dimension when inner compute dimension contains multiple blocks. 323 SmallVector<Value> blockEndCoord(op.getNumLoops()); 324 for (size_t i = 0; i < blockLastCoord.size(); ++i) 325 blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1); 326 327 // Construct a loop nest out of scf.for operations that will iterate over 328 // all coordinates in [blockFirstCoord, blockLastCoord] range. 329 using LoopBodyBuilder = 330 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 331 using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>; 332 333 // Parallel region induction variables computed from the multi-dimensional 334 // iteration coordinate using parallel operation bounds and step: 335 // 336 // computeBlockInductionVars[loopIdx] = 337 // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx] 338 SmallVector<Value> computeBlockInductionVars(op.getNumLoops()); 339 340 // We need to know if we are in the first or last iteration of the 341 // multi-dimensional loop for each loop in the nest, so we can decide what 342 // loop bounds should we use for the nested loops: bounds defined by compute 343 // block interval, or bounds defined by the parallel operation. 344 // 345 // Example: 2d parallel operation 346 // i j 347 // loop sizes: [50, 50] 348 // first coord: [25, 25] 349 // last coord: [30, 30] 350 // 351 // If `i` is equal to 25 then iteration over `j` should start at 25, when `i` 352 // is between 25 and 30 it should start at 0. The upper bound for `j` should 353 // be 50, except when `i` is equal to 30, then it should also be 30. 354 // 355 // Value at ith position specifies if all loops in [0, i) range of the loop 356 // nest are in the first/last iteration. 357 SmallVector<Value> isBlockFirstCoord(op.getNumLoops()); 358 SmallVector<Value> isBlockLastCoord(op.getNumLoops()); 359 360 // Builds inner loop nest inside async.execute operation that does all the 361 // work concurrently. 362 LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { 363 return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv, 364 ValueRange args) { 365 ImplicitLocOpBuilder nb(loc, nestedBuilder); 366 367 // Compute induction variable for `loopIdx`. 368 computeBlockInductionVars[loopIdx] = nb.create<arith::AddIOp>( 369 lowerBounds[loopIdx], nb.create<arith::MulIOp>(iv, steps[loopIdx])); 370 371 // Check if we are inside first or last iteration of the loop. 372 isBlockFirstCoord[loopIdx] = nb.create<arith::CmpIOp>( 373 arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]); 374 isBlockLastCoord[loopIdx] = nb.create<arith::CmpIOp>( 375 arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]); 376 377 // Check if the previous loop is in its first or last iteration. 378 if (loopIdx > 0) { 379 isBlockFirstCoord[loopIdx] = nb.create<arith::AndIOp>( 380 isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]); 381 isBlockLastCoord[loopIdx] = nb.create<arith::AndIOp>( 382 isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]); 383 } 384 385 // Keep building loop nest. 386 if (loopIdx < op.getNumLoops() - 1) { 387 // Select nested loop lower/upper bounds depending on our position in 388 // the multi-dimensional iteration space. 389 auto lb = nb.create<SelectOp>(isBlockFirstCoord[loopIdx], 390 blockFirstCoord[loopIdx + 1], c0); 391 392 auto ub = nb.create<SelectOp>(isBlockLastCoord[loopIdx], 393 blockEndCoord[loopIdx + 1], 394 tripCounts[loopIdx + 1]); 395 396 nb.create<scf::ForOp>(lb, ub, c1, ValueRange(), 397 workLoopBuilder(loopIdx + 1)); 398 nb.create<scf::YieldOp>(loc); 399 return; 400 } 401 402 // Copy the body of the parallel op into the inner-most loop. 403 BlockAndValueMapping mapping; 404 mapping.map(op.getInductionVars(), computeBlockInductionVars); 405 mapping.map(computeFuncType.captures, captures); 406 407 for (auto &bodyOp : op.getLoopBody().getOps()) 408 nb.clone(bodyOp, mapping); 409 }; 410 }; 411 412 b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(), 413 workLoopBuilder(0)); 414 b.create<ReturnOp>(ValueRange()); 415 416 return {op.getNumLoops(), func, std::move(computeFuncType.captures)}; 417 } 418 419 // Creates recursive async dispatch function for the given parallel compute 420 // function. Dispatch function keeps splitting block range into halves until it 421 // reaches a single block, and then excecutes it inline. 422 // 423 // Function pseudocode (mix of C++ and MLIR): 424 // 425 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 426 // 427 // // Keep splitting block range until we reached a range of size 1. 428 // while (%block_end - %block_start > 1) { 429 // %mid_index = block_start + (block_end - block_start) / 2; 430 // async.execute { call @async_dispatch(%mid_index, %block_end); } 431 // %block_end = %mid_index 432 // } 433 // 434 // // Call parallel compute function for a single block. 435 // call @parallel_compute_fn(%block_start, %block_size, ...); 436 // } 437 // 438 static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc, 439 PatternRewriter &rewriter) { 440 OpBuilder::InsertionGuard guard(rewriter); 441 Location loc = computeFunc.func.getLoc(); 442 ImplicitLocOpBuilder b(loc, rewriter); 443 444 ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>(); 445 446 ArrayRef<Type> computeFuncInputTypes = 447 computeFunc.func.type().cast<FunctionType>().getInputs(); 448 449 // Compared to the parallel compute function async dispatch function takes 450 // additional !async.group argument. Also instead of a single `blockIndex` it 451 // takes `blockStart` and `blockEnd` arguments to define the range of 452 // dispatched blocks. 453 SmallVector<Type> inputTypes; 454 inputTypes.push_back(async::GroupType::get(rewriter.getContext())); 455 inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument 456 inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end()); 457 458 FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange()); 459 FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type); 460 func.setPrivate(); 461 462 // Insert function into the module symbol table and assign it unique name. 463 SymbolTable symbolTable(module); 464 symbolTable.insert(func); 465 rewriter.getListener()->notifyOperationInserted(func); 466 467 // Create function entry block. 468 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs()); 469 b.setInsertionPointToEnd(block); 470 471 Type indexTy = b.getIndexType(); 472 Value c1 = b.create<arith::ConstantIndexOp>(1); 473 Value c2 = b.create<arith::ConstantIndexOp>(2); 474 475 // Get the async group that will track async dispatch completion. 476 Value group = block->getArgument(0); 477 478 // Get the block iteration range: [blockStart, blockEnd) 479 Value blockStart = block->getArgument(1); 480 Value blockEnd = block->getArgument(2); 481 482 // Create a work splitting while loop for the [blockStart, blockEnd) range. 483 SmallVector<Type> types = {indexTy, indexTy}; 484 SmallVector<Value> operands = {blockStart, blockEnd}; 485 486 // Create a recursive dispatch loop. 487 scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands); 488 Block *before = b.createBlock(&whileOp.before(), {}, types); 489 Block *after = b.createBlock(&whileOp.after(), {}, types); 490 491 // Setup dispatch loop condition block: decide if we need to go into the 492 // `after` block and launch one more async dispatch. 493 { 494 b.setInsertionPointToEnd(before); 495 Value start = before->getArgument(0); 496 Value end = before->getArgument(1); 497 Value distance = b.create<arith::SubIOp>(end, start); 498 Value dispatch = 499 b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1); 500 b.create<scf::ConditionOp>(dispatch, before->getArguments()); 501 } 502 503 // Setup the async dispatch loop body: recursively call dispatch function 504 // for the seconds half of the original range and go to the next iteration. 505 { 506 b.setInsertionPointToEnd(after); 507 Value start = after->getArgument(0); 508 Value end = after->getArgument(1); 509 Value distance = b.create<arith::SubIOp>(end, start); 510 Value halfDistance = b.create<arith::DivSIOp>(distance, c2); 511 Value midIndex = b.create<arith::AddIOp>(start, halfDistance); 512 513 // Call parallel compute function inside the async.execute region. 514 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 515 Location executeLoc, ValueRange executeArgs) { 516 // Update the original `blockStart` and `blockEnd` with new range. 517 SmallVector<Value> operands{block->getArguments().begin(), 518 block->getArguments().end()}; 519 operands[1] = midIndex; 520 operands[2] = end; 521 522 executeBuilder.create<CallOp>(executeLoc, func.sym_name(), 523 func.getCallableResults(), operands); 524 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 525 }; 526 527 // Create async.execute operation to dispatch half of the block range. 528 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 529 executeBodyBuilder); 530 b.create<AddToGroupOp>(indexTy, execute.token(), group); 531 b.create<scf::YieldOp>(ValueRange({start, midIndex})); 532 } 533 534 // After dispatching async operations to process the tail of the block range 535 // call the parallel compute function for the first block of the range. 536 b.setInsertionPointAfter(whileOp); 537 538 // Drop async dispatch specific arguments: async group, block start and end. 539 auto forwardedInputs = block->getArguments().drop_front(3); 540 SmallVector<Value> computeFuncOperands = {blockStart}; 541 computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end()); 542 543 b.create<CallOp>(computeFunc.func.sym_name(), 544 computeFunc.func.getCallableResults(), computeFuncOperands); 545 b.create<ReturnOp>(ValueRange()); 546 547 return func; 548 } 549 550 // Launch async dispatch of the parallel compute function. 551 static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 552 ParallelComputeFunction ¶llelComputeFunction, 553 scf::ParallelOp op, Value blockSize, 554 Value blockCount, 555 const SmallVector<Value> &tripCounts) { 556 MLIRContext *ctx = op->getContext(); 557 558 // Add one more level of indirection to dispatch parallel compute functions 559 // using async operations and recursive work splitting. 560 FuncOp asyncDispatchFunction = 561 createAsyncDispatchFunction(parallelComputeFunction, rewriter); 562 563 Value c0 = b.create<arith::ConstantIndexOp>(0); 564 Value c1 = b.create<arith::ConstantIndexOp>(1); 565 566 // Appends operands shared by async dispatch and parallel compute functions to 567 // the given operands vector. 568 auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) { 569 operands.append(tripCounts); 570 operands.append(op.lowerBound().begin(), op.lowerBound().end()); 571 operands.append(op.upperBound().begin(), op.upperBound().end()); 572 operands.append(op.step().begin(), op.step().end()); 573 operands.append(parallelComputeFunction.captures); 574 }; 575 576 // Check if the block size is one, in this case we can skip the async dispatch 577 // completely. If this will be known statically, then canonicalization will 578 // erase async group operations. 579 Value isSingleBlock = 580 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1); 581 582 auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 583 ImplicitLocOpBuilder nb(loc, nestedBuilder); 584 585 // Call parallel compute function for the single block. 586 SmallVector<Value> operands = {c0, blockSize}; 587 appendBlockComputeOperands(operands); 588 589 nb.create<CallOp>(parallelComputeFunction.func.sym_name(), 590 parallelComputeFunction.func.getCallableResults(), 591 operands); 592 nb.create<scf::YieldOp>(); 593 }; 594 595 auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 596 // Create an async.group to wait on all async tokens from the concurrent 597 // execution of multiple parallel compute function. First block will be 598 // executed synchronously in the caller thread. 599 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 600 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 601 602 ImplicitLocOpBuilder nb(loc, nestedBuilder); 603 604 // Launch async dispatch function for [0, blockCount) range. 605 SmallVector<Value> operands = {group, c0, blockCount, blockSize}; 606 appendBlockComputeOperands(operands); 607 608 nb.create<CallOp>(asyncDispatchFunction.sym_name(), 609 asyncDispatchFunction.getCallableResults(), operands); 610 611 // Wait for the completion of all parallel compute operations. 612 b.create<AwaitAllOp>(group); 613 614 nb.create<scf::YieldOp>(); 615 }; 616 617 // Dispatch either single block compute function, or launch async dispatch. 618 b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch); 619 } 620 621 // Dispatch parallel compute functions by submitting all async compute tasks 622 // from a simple for loop in the caller thread. 623 static void 624 doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 625 ParallelComputeFunction ¶llelComputeFunction, 626 scf::ParallelOp op, Value blockSize, Value blockCount, 627 const SmallVector<Value> &tripCounts) { 628 MLIRContext *ctx = op->getContext(); 629 630 FuncOp compute = parallelComputeFunction.func; 631 632 Value c0 = b.create<arith::ConstantIndexOp>(0); 633 Value c1 = b.create<arith::ConstantIndexOp>(1); 634 635 // Create an async.group to wait on all async tokens from the concurrent 636 // execution of multiple parallel compute function. First block will be 637 // executed synchronously in the caller thread. 638 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 639 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 640 641 // Call parallel compute function for all blocks. 642 using LoopBodyBuilder = 643 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 644 645 // Returns parallel compute function operands to process the given block. 646 auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> { 647 SmallVector<Value> computeFuncOperands = {blockIndex, blockSize}; 648 computeFuncOperands.append(tripCounts); 649 computeFuncOperands.append(op.lowerBound().begin(), op.lowerBound().end()); 650 computeFuncOperands.append(op.upperBound().begin(), op.upperBound().end()); 651 computeFuncOperands.append(op.step().begin(), op.step().end()); 652 computeFuncOperands.append(parallelComputeFunction.captures); 653 return computeFuncOperands; 654 }; 655 656 // Induction variable is the index of the block: [0, blockCount). 657 LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc, 658 Value iv, ValueRange args) { 659 ImplicitLocOpBuilder nb(loc, loopBuilder); 660 661 // Call parallel compute function inside the async.execute region. 662 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 663 Location executeLoc, ValueRange executeArgs) { 664 executeBuilder.create<CallOp>(executeLoc, compute.sym_name(), 665 compute.getCallableResults(), 666 computeFuncOperands(iv)); 667 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 668 }; 669 670 // Create async.execute operation to launch parallel computate function. 671 auto execute = nb.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 672 executeBodyBuilder); 673 nb.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group); 674 nb.create<scf::YieldOp>(); 675 }; 676 677 // Iterate over all compute blocks and launch parallel compute operations. 678 b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder); 679 680 // Call parallel compute function for the first block in the caller thread. 681 b.create<CallOp>(compute.sym_name(), compute.getCallableResults(), 682 computeFuncOperands(c0)); 683 684 // Wait for the completion of all async compute operations. 685 b.create<AwaitAllOp>(group); 686 } 687 688 LogicalResult 689 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op, 690 PatternRewriter &rewriter) const { 691 // We do not currently support rewrite for parallel op with reductions. 692 if (op.getNumReductions() != 0) 693 return failure(); 694 695 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 696 697 // Make sure that all constants will be inside the parallel operation body to 698 // reduce the number of parallel compute function arguments. 699 cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter); 700 701 // Compute trip count for each loop induction variable: 702 // tripCount = ceil_div(upperBound - lowerBound, step); 703 SmallVector<Value> tripCounts(op.getNumLoops()); 704 for (size_t i = 0; i < op.getNumLoops(); ++i) { 705 auto lb = op.lowerBound()[i]; 706 auto ub = op.upperBound()[i]; 707 auto step = op.step()[i]; 708 auto range = b.createOrFold<arith::SubIOp>(ub, lb); 709 tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step); 710 } 711 712 // Compute a product of trip counts to get the 1-dimensional iteration space 713 // for the scf.parallel operation. 714 Value tripCount = tripCounts[0]; 715 for (size_t i = 1; i < tripCounts.size(); ++i) 716 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 717 718 // Short circuit no-op parallel loops (zero iterations) that can arise from 719 // the memrefs with dynamic dimension(s) equal to zero. 720 Value c0 = b.create<arith::ConstantIndexOp>(0); 721 Value isZeroIterations = 722 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0); 723 724 // Do absolutely nothing if the trip count is zero. 725 auto noOp = [&](OpBuilder &nestedBuilder, Location loc) { 726 nestedBuilder.create<scf::YieldOp>(loc); 727 }; 728 729 // Compute the parallel block size and dispatch concurrent tasks computing 730 // results for each block. 731 auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) { 732 ImplicitLocOpBuilder nb(loc, nestedBuilder); 733 734 // With large number of threads the value of creating many compute blocks 735 // is reduced because the problem typically becomes memory bound. For small 736 // number of threads it helps with stragglers. 737 float overshardingFactor = numWorkerThreads <= 4 ? 8.0 738 : numWorkerThreads <= 8 ? 4.0 739 : numWorkerThreads <= 16 ? 2.0 740 : numWorkerThreads <= 32 ? 1.0 741 : numWorkerThreads <= 64 ? 0.8 742 : 0.6; 743 744 // Do not overload worker threads with too many compute blocks. 745 Value maxComputeBlocks = b.create<arith::ConstantIndexOp>( 746 std::max(1, static_cast<int>(numWorkerThreads * overshardingFactor))); 747 748 // Target block size from the pass parameters. 749 Value minTaskSizeCst = b.create<arith::ConstantIndexOp>(minTaskSize); 750 751 // Compute parallel block size from the parallel problem size: 752 // blockSize = min(tripCount, 753 // max(ceil_div(tripCount, maxComputeBlocks), 754 // ceil_div(minTaskSize, bodySize))) 755 Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks); 756 Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSizeCst); 757 Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1); 758 Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize); 759 760 // Collect statically known constants defining the loop nest in the parallel 761 // compute function. LLVM can't always push constants across the non-trivial 762 // async dispatch call graph, by providing these values explicitly we can 763 // choose to build more efficient loop nest, and rely on a better constant 764 // folding, loop unrolling and vectorization. 765 ParallelComputeFunctionBounds staticBounds = { 766 integerConstants(tripCounts), 767 integerConstants(op.lowerBound()), 768 integerConstants(op.upperBound()), 769 integerConstants(op.step()), 770 }; 771 772 // Create a parallel compute function that takes a block id and computes the 773 // parallel operation body for a subset of iteration space. 774 ParallelComputeFunction parallelComputeFunction = 775 createParallelComputeFunction(op, staticBounds, rewriter); 776 777 // Dispatch parallel compute function using async recursive work splitting, 778 // or by submitting compute task sequentially from a caller thread. 779 if (asyncDispatch) { 780 doAsyncDispatch(b, rewriter, parallelComputeFunction, op, blockSize, 781 blockCount, tripCounts); 782 } else { 783 doSequentialDispatch(b, rewriter, parallelComputeFunction, op, blockSize, 784 blockCount, tripCounts); 785 } 786 787 nb.create<scf::YieldOp>(); 788 }; 789 790 // Replace the `scf.parallel` operation with the parallel compute function. 791 b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch); 792 793 // Parallel operation was replaced with a block iteration loop. 794 rewriter.eraseOp(op); 795 796 return success(); 797 } 798 799 void AsyncParallelForPass::runOnOperation() { 800 MLIRContext *ctx = &getContext(); 801 802 RewritePatternSet patterns(ctx); 803 patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads, 804 minTaskSize); 805 806 if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)))) 807 signalPassFailure(); 808 } 809 810 std::unique_ptr<Pass> mlir::createAsyncParallelForPass() { 811 return std::make_unique<AsyncParallelForPass>(); 812 } 813 814 std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch, 815 int32_t numWorkerThreads, 816 int32_t minTaskSize) { 817 return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads, 818 minTaskSize); 819 } 820