1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements scf.parallel to scf.for + async.execute conversion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <utility> 14 15 #include "PassDetail.h" 16 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17 #include "mlir/Dialect/Async/IR/Async.h" 18 #include "mlir/Dialect/Async/Passes.h" 19 #include "mlir/Dialect/Async/Transforms.h" 20 #include "mlir/Dialect/SCF/SCF.h" 21 #include "mlir/Dialect/StandardOps/IR/Ops.h" 22 #include "mlir/IR/BlockAndValueMapping.h" 23 #include "mlir/IR/ImplicitLocOpBuilder.h" 24 #include "mlir/IR/Matchers.h" 25 #include "mlir/IR/PatternMatch.h" 26 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 27 #include "mlir/Transforms/RegionUtils.h" 28 29 using namespace mlir; 30 using namespace mlir::async; 31 32 #define DEBUG_TYPE "async-parallel-for" 33 34 namespace { 35 36 // Rewrite scf.parallel operation into multiple concurrent async.execute 37 // operations over non overlapping subranges of the original loop. 38 // 39 // Example: 40 // 41 // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) { 42 // "do_some_compute"(%i, %j): () -> () 43 // } 44 // 45 // Converted to: 46 // 47 // // Parallel compute function that executes the parallel body region for 48 // // a subset of the parallel iteration space defined by the one-dimensional 49 // // compute block index. 50 // func parallel_compute_function(%block_index : index, %block_size : index, 51 // <parallel operation properties>, ...) { 52 // // Compute multi-dimensional loop bounds for %block_index. 53 // %block_lbi, %block_lbj = ... 54 // %block_ubi, %block_ubj = ... 55 // 56 // // Clone parallel operation body into the scf.for loop nest. 57 // scf.for %i = %blockLbi to %blockUbi { 58 // scf.for %j = block_lbj to %block_ubj { 59 // "do_some_compute"(%i, %j): () -> () 60 // } 61 // } 62 // } 63 // 64 // And a dispatch function depending on the `asyncDispatch` option. 65 // 66 // When async dispatch is on: (pseudocode) 67 // 68 // %block_size = ... compute parallel compute block size 69 // %block_count = ... compute the number of compute blocks 70 // 71 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 72 // // Keep splitting block range until we reached a range of size 1. 73 // while (%block_end - %block_start > 1) { 74 // %mid_index = block_start + (block_end - block_start) / 2; 75 // async.execute { call @async_dispatch(%mid_index, %block_end); } 76 // %block_end = %mid_index 77 // } 78 // 79 // // Call parallel compute function for a single block. 80 // call @parallel_compute_fn(%block_start, %block_size, ...); 81 // } 82 // 83 // // Launch async dispatch for [0, block_count) range. 84 // call @async_dispatch(%c0, %block_count); 85 // 86 // When async dispatch is off: 87 // 88 // %block_size = ... compute parallel compute block size 89 // %block_count = ... compute the number of compute blocks 90 // 91 // scf.for %block_index = %c0 to %block_count { 92 // call @parallel_compute_fn(%block_index, %block_size, ...) 93 // } 94 // 95 struct AsyncParallelForPass 96 : public AsyncParallelForBase<AsyncParallelForPass> { 97 AsyncParallelForPass() = default; 98 99 AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads, 100 int32_t minTaskSize) { 101 this->asyncDispatch = asyncDispatch; 102 this->numWorkerThreads = numWorkerThreads; 103 this->minTaskSize = minTaskSize; 104 } 105 106 void runOnOperation() override; 107 }; 108 109 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> { 110 public: 111 AsyncParallelForRewrite( 112 MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads, 113 AsyncMinTaskSizeComputationFunction computeMinTaskSize) 114 : OpRewritePattern(ctx), asyncDispatch(asyncDispatch), 115 numWorkerThreads(numWorkerThreads), 116 computeMinTaskSize(std::move(computeMinTaskSize)) {} 117 118 LogicalResult matchAndRewrite(scf::ParallelOp op, 119 PatternRewriter &rewriter) const override; 120 121 private: 122 bool asyncDispatch; 123 int32_t numWorkerThreads; 124 AsyncMinTaskSizeComputationFunction computeMinTaskSize; 125 }; 126 127 struct ParallelComputeFunctionType { 128 FunctionType type; 129 SmallVector<Value> captures; 130 }; 131 132 // Helper struct to parse parallel compute function argument list. 133 struct ParallelComputeFunctionArgs { 134 BlockArgument blockIndex(); 135 BlockArgument blockSize(); 136 ArrayRef<BlockArgument> tripCounts(); 137 ArrayRef<BlockArgument> lowerBounds(); 138 ArrayRef<BlockArgument> upperBounds(); 139 ArrayRef<BlockArgument> steps(); 140 ArrayRef<BlockArgument> captures(); 141 142 unsigned numLoops; 143 ArrayRef<BlockArgument> args; 144 }; 145 146 struct ParallelComputeFunctionBounds { 147 SmallVector<IntegerAttr> tripCounts; 148 SmallVector<IntegerAttr> lowerBounds; 149 SmallVector<IntegerAttr> upperBounds; 150 SmallVector<IntegerAttr> steps; 151 }; 152 153 struct ParallelComputeFunction { 154 unsigned numLoops; 155 FuncOp func; 156 llvm::SmallVector<Value> captures; 157 }; 158 159 } // namespace 160 161 BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; } 162 BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; } 163 164 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() { 165 return args.drop_front(2).take_front(numLoops); 166 } 167 168 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() { 169 return args.drop_front(2 + 1 * numLoops).take_front(numLoops); 170 } 171 172 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() { 173 return args.drop_front(2 + 2 * numLoops).take_front(numLoops); 174 } 175 176 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() { 177 return args.drop_front(2 + 3 * numLoops).take_front(numLoops); 178 } 179 180 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() { 181 return args.drop_front(2 + 4 * numLoops); 182 } 183 184 template <typename ValueRange> 185 static SmallVector<IntegerAttr> integerConstants(ValueRange values) { 186 SmallVector<IntegerAttr> attrs(values.size()); 187 for (unsigned i = 0; i < values.size(); ++i) 188 matchPattern(values[i], m_Constant(&attrs[i])); 189 return attrs; 190 } 191 192 // Converts one-dimensional iteration index in the [0, tripCount) interval 193 // into multidimensional iteration coordinate. 194 static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index, 195 ArrayRef<Value> tripCounts) { 196 SmallVector<Value> coords(tripCounts.size()); 197 assert(!tripCounts.empty() && "tripCounts must be not empty"); 198 199 for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) { 200 coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]); 201 index = b.create<arith::DivSIOp>(index, tripCounts[i]); 202 } 203 204 return coords; 205 } 206 207 // Returns a function type and implicit captures for a parallel compute 208 // function. We'll need a list of implicit captures to setup block and value 209 // mapping when we'll clone the body of the parallel operation. 210 static ParallelComputeFunctionType 211 getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) { 212 // Values implicitly captured by the parallel operation. 213 llvm::SetVector<Value> captures; 214 getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures); 215 216 SmallVector<Type> inputs; 217 inputs.reserve(2 + 4 * op.getNumLoops() + captures.size()); 218 219 Type indexTy = rewriter.getIndexType(); 220 221 // One-dimensional iteration space defined by the block index and size. 222 inputs.push_back(indexTy); // blockIndex 223 inputs.push_back(indexTy); // blockSize 224 225 // Multi-dimensional parallel iteration space defined by the loop trip counts. 226 for (unsigned i = 0; i < op.getNumLoops(); ++i) 227 inputs.push_back(indexTy); // loop tripCount 228 229 // Parallel operation lower bound, upper bound and step. Lower bound, upper 230 // bound and step passed as contiguous arguments: 231 // call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...) 232 for (unsigned i = 0; i < op.getNumLoops(); ++i) { 233 inputs.push_back(indexTy); // lower bound 234 inputs.push_back(indexTy); // upper bound 235 inputs.push_back(indexTy); // step 236 } 237 238 // Types of the implicit captures. 239 for (Value capture : captures) 240 inputs.push_back(capture.getType()); 241 242 // Convert captures to vector for later convenience. 243 SmallVector<Value> capturesVector(captures.begin(), captures.end()); 244 return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector}; 245 } 246 247 // Create a parallel compute fuction from the parallel operation. 248 static ParallelComputeFunction createParallelComputeFunction( 249 scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds, 250 unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) { 251 OpBuilder::InsertionGuard guard(rewriter); 252 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 253 254 ModuleOp module = op->getParentOfType<ModuleOp>(); 255 256 ParallelComputeFunctionType computeFuncType = 257 getParallelComputeFunctionType(op, rewriter); 258 259 FunctionType type = computeFuncType.type; 260 FuncOp func = FuncOp::create(op.getLoc(), 261 numBlockAlignedInnerLoops > 0 262 ? "parallel_compute_fn_with_aligned_loops" 263 : "parallel_compute_fn", 264 type); 265 func.setPrivate(); 266 267 // Insert function into the module symbol table and assign it unique name. 268 SymbolTable symbolTable(module); 269 symbolTable.insert(func); 270 rewriter.getListener()->notifyOperationInserted(func); 271 272 // Create function entry block. 273 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs()); 274 b.setInsertionPointToEnd(block); 275 276 ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()}; 277 278 // Block iteration position defined by the block index and size. 279 BlockArgument blockIndex = args.blockIndex(); 280 BlockArgument blockSize = args.blockSize(); 281 282 // Constants used below. 283 Value c0 = b.create<arith::ConstantIndexOp>(0); 284 Value c1 = b.create<arith::ConstantIndexOp>(1); 285 286 // Materialize known constants as constant operation in the function body. 287 auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) { 288 return llvm::to_vector( 289 llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value { 290 if (IntegerAttr attr = std::get<1>(tuple)) 291 return b.create<ConstantOp>(attr); 292 return std::get<0>(tuple); 293 })); 294 }; 295 296 // Multi-dimensional parallel iteration space defined by the loop trip counts. 297 auto tripCounts = values(args.tripCounts(), bounds.tripCounts); 298 299 // Parallel operation lower bound and step. 300 auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds); 301 auto steps = values(args.steps(), bounds.steps); 302 303 // Remaining arguments are implicit captures of the parallel operation. 304 ArrayRef<BlockArgument> captures = args.captures(); 305 306 // Compute a product of trip counts to get the size of the flattened 307 // one-dimensional iteration space. 308 Value tripCount = tripCounts[0]; 309 for (unsigned i = 1; i < tripCounts.size(); ++i) 310 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 311 312 // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]: 313 // blockFirstIndex = blockIndex * blockSize 314 Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize); 315 316 // The last one-dimensional index in the block defined by the `blockIndex`: 317 // blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1 318 Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize); 319 Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount); 320 Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1); 321 322 // Convert one-dimensional indices to multi-dimensional coordinates. 323 auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts); 324 auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts); 325 326 // Compute loops upper bounds derived from the block last coordinates: 327 // blockEndCoord[i] = blockLastCoord[i] + 1 328 // 329 // Block first and last coordinates can be the same along the outer compute 330 // dimension when inner compute dimension contains multiple blocks. 331 SmallVector<Value> blockEndCoord(op.getNumLoops()); 332 for (size_t i = 0; i < blockLastCoord.size(); ++i) 333 blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1); 334 335 // Construct a loop nest out of scf.for operations that will iterate over 336 // all coordinates in [blockFirstCoord, blockLastCoord] range. 337 using LoopBodyBuilder = 338 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 339 using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>; 340 341 // Parallel region induction variables computed from the multi-dimensional 342 // iteration coordinate using parallel operation bounds and step: 343 // 344 // computeBlockInductionVars[loopIdx] = 345 // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx] 346 SmallVector<Value> computeBlockInductionVars(op.getNumLoops()); 347 348 // We need to know if we are in the first or last iteration of the 349 // multi-dimensional loop for each loop in the nest, so we can decide what 350 // loop bounds should we use for the nested loops: bounds defined by compute 351 // block interval, or bounds defined by the parallel operation. 352 // 353 // Example: 2d parallel operation 354 // i j 355 // loop sizes: [50, 50] 356 // first coord: [25, 25] 357 // last coord: [30, 30] 358 // 359 // If `i` is equal to 25 then iteration over `j` should start at 25, when `i` 360 // is between 25 and 30 it should start at 0. The upper bound for `j` should 361 // be 50, except when `i` is equal to 30, then it should also be 30. 362 // 363 // Value at ith position specifies if all loops in [0, i) range of the loop 364 // nest are in the first/last iteration. 365 SmallVector<Value> isBlockFirstCoord(op.getNumLoops()); 366 SmallVector<Value> isBlockLastCoord(op.getNumLoops()); 367 368 // Builds inner loop nest inside async.execute operation that does all the 369 // work concurrently. 370 LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { 371 return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv, 372 ValueRange args) { 373 ImplicitLocOpBuilder nb(loc, nestedBuilder); 374 375 // Compute induction variable for `loopIdx`. 376 computeBlockInductionVars[loopIdx] = nb.create<arith::AddIOp>( 377 lowerBounds[loopIdx], nb.create<arith::MulIOp>(iv, steps[loopIdx])); 378 379 // Check if we are inside first or last iteration of the loop. 380 isBlockFirstCoord[loopIdx] = nb.create<arith::CmpIOp>( 381 arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]); 382 isBlockLastCoord[loopIdx] = nb.create<arith::CmpIOp>( 383 arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]); 384 385 // Check if the previous loop is in its first or last iteration. 386 if (loopIdx > 0) { 387 isBlockFirstCoord[loopIdx] = nb.create<arith::AndIOp>( 388 isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]); 389 isBlockLastCoord[loopIdx] = nb.create<arith::AndIOp>( 390 isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]); 391 } 392 393 // Keep building loop nest. 394 if (loopIdx < op.getNumLoops() - 1) { 395 if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) { 396 // For block aligned loops we always iterate starting from 0 up to 397 // the loop trip counts. 398 nb.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(), 399 workLoopBuilder(loopIdx + 1)); 400 401 } else { 402 // Select nested loop lower/upper bounds depending on our position in 403 // the multi-dimensional iteration space. 404 auto lb = nb.create<SelectOp>(isBlockFirstCoord[loopIdx], 405 blockFirstCoord[loopIdx + 1], c0); 406 407 auto ub = nb.create<SelectOp>(isBlockLastCoord[loopIdx], 408 blockEndCoord[loopIdx + 1], 409 tripCounts[loopIdx + 1]); 410 411 nb.create<scf::ForOp>(lb, ub, c1, ValueRange(), 412 workLoopBuilder(loopIdx + 1)); 413 } 414 415 nb.create<scf::YieldOp>(loc); 416 return; 417 } 418 419 // Copy the body of the parallel op into the inner-most loop. 420 BlockAndValueMapping mapping; 421 mapping.map(op.getInductionVars(), computeBlockInductionVars); 422 mapping.map(computeFuncType.captures, captures); 423 424 for (auto &bodyOp : op.getLoopBody().getOps()) 425 nb.clone(bodyOp, mapping); 426 }; 427 }; 428 429 b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(), 430 workLoopBuilder(0)); 431 b.create<ReturnOp>(ValueRange()); 432 433 return {op.getNumLoops(), func, std::move(computeFuncType.captures)}; 434 } 435 436 // Creates recursive async dispatch function for the given parallel compute 437 // function. Dispatch function keeps splitting block range into halves until it 438 // reaches a single block, and then excecutes it inline. 439 // 440 // Function pseudocode (mix of C++ and MLIR): 441 // 442 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 443 // 444 // // Keep splitting block range until we reached a range of size 1. 445 // while (%block_end - %block_start > 1) { 446 // %mid_index = block_start + (block_end - block_start) / 2; 447 // async.execute { call @async_dispatch(%mid_index, %block_end); } 448 // %block_end = %mid_index 449 // } 450 // 451 // // Call parallel compute function for a single block. 452 // call @parallel_compute_fn(%block_start, %block_size, ...); 453 // } 454 // 455 static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc, 456 PatternRewriter &rewriter) { 457 OpBuilder::InsertionGuard guard(rewriter); 458 Location loc = computeFunc.func.getLoc(); 459 ImplicitLocOpBuilder b(loc, rewriter); 460 461 ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>(); 462 463 ArrayRef<Type> computeFuncInputTypes = 464 computeFunc.func.type().cast<FunctionType>().getInputs(); 465 466 // Compared to the parallel compute function async dispatch function takes 467 // additional !async.group argument. Also instead of a single `blockIndex` it 468 // takes `blockStart` and `blockEnd` arguments to define the range of 469 // dispatched blocks. 470 SmallVector<Type> inputTypes; 471 inputTypes.push_back(async::GroupType::get(rewriter.getContext())); 472 inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument 473 inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end()); 474 475 FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange()); 476 FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type); 477 func.setPrivate(); 478 479 // Insert function into the module symbol table and assign it unique name. 480 SymbolTable symbolTable(module); 481 symbolTable.insert(func); 482 rewriter.getListener()->notifyOperationInserted(func); 483 484 // Create function entry block. 485 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs()); 486 b.setInsertionPointToEnd(block); 487 488 Type indexTy = b.getIndexType(); 489 Value c1 = b.create<arith::ConstantIndexOp>(1); 490 Value c2 = b.create<arith::ConstantIndexOp>(2); 491 492 // Get the async group that will track async dispatch completion. 493 Value group = block->getArgument(0); 494 495 // Get the block iteration range: [blockStart, blockEnd) 496 Value blockStart = block->getArgument(1); 497 Value blockEnd = block->getArgument(2); 498 499 // Create a work splitting while loop for the [blockStart, blockEnd) range. 500 SmallVector<Type> types = {indexTy, indexTy}; 501 SmallVector<Value> operands = {blockStart, blockEnd}; 502 503 // Create a recursive dispatch loop. 504 scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands); 505 Block *before = b.createBlock(&whileOp.getBefore(), {}, types); 506 Block *after = b.createBlock(&whileOp.getAfter(), {}, types); 507 508 // Setup dispatch loop condition block: decide if we need to go into the 509 // `after` block and launch one more async dispatch. 510 { 511 b.setInsertionPointToEnd(before); 512 Value start = before->getArgument(0); 513 Value end = before->getArgument(1); 514 Value distance = b.create<arith::SubIOp>(end, start); 515 Value dispatch = 516 b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1); 517 b.create<scf::ConditionOp>(dispatch, before->getArguments()); 518 } 519 520 // Setup the async dispatch loop body: recursively call dispatch function 521 // for the seconds half of the original range and go to the next iteration. 522 { 523 b.setInsertionPointToEnd(after); 524 Value start = after->getArgument(0); 525 Value end = after->getArgument(1); 526 Value distance = b.create<arith::SubIOp>(end, start); 527 Value halfDistance = b.create<arith::DivSIOp>(distance, c2); 528 Value midIndex = b.create<arith::AddIOp>(start, halfDistance); 529 530 // Call parallel compute function inside the async.execute region. 531 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 532 Location executeLoc, ValueRange executeArgs) { 533 // Update the original `blockStart` and `blockEnd` with new range. 534 SmallVector<Value> operands{block->getArguments().begin(), 535 block->getArguments().end()}; 536 operands[1] = midIndex; 537 operands[2] = end; 538 539 executeBuilder.create<CallOp>(executeLoc, func.sym_name(), 540 func.getCallableResults(), operands); 541 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 542 }; 543 544 // Create async.execute operation to dispatch half of the block range. 545 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 546 executeBodyBuilder); 547 b.create<AddToGroupOp>(indexTy, execute.token(), group); 548 b.create<scf::YieldOp>(ValueRange({start, midIndex})); 549 } 550 551 // After dispatching async operations to process the tail of the block range 552 // call the parallel compute function for the first block of the range. 553 b.setInsertionPointAfter(whileOp); 554 555 // Drop async dispatch specific arguments: async group, block start and end. 556 auto forwardedInputs = block->getArguments().drop_front(3); 557 SmallVector<Value> computeFuncOperands = {blockStart}; 558 computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end()); 559 560 b.create<CallOp>(computeFunc.func.sym_name(), 561 computeFunc.func.getCallableResults(), computeFuncOperands); 562 b.create<ReturnOp>(ValueRange()); 563 564 return func; 565 } 566 567 // Launch async dispatch of the parallel compute function. 568 static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 569 ParallelComputeFunction ¶llelComputeFunction, 570 scf::ParallelOp op, Value blockSize, 571 Value blockCount, 572 const SmallVector<Value> &tripCounts) { 573 MLIRContext *ctx = op->getContext(); 574 575 // Add one more level of indirection to dispatch parallel compute functions 576 // using async operations and recursive work splitting. 577 FuncOp asyncDispatchFunction = 578 createAsyncDispatchFunction(parallelComputeFunction, rewriter); 579 580 Value c0 = b.create<arith::ConstantIndexOp>(0); 581 Value c1 = b.create<arith::ConstantIndexOp>(1); 582 583 // Appends operands shared by async dispatch and parallel compute functions to 584 // the given operands vector. 585 auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) { 586 operands.append(tripCounts); 587 operands.append(op.getLowerBound().begin(), op.getLowerBound().end()); 588 operands.append(op.getUpperBound().begin(), op.getUpperBound().end()); 589 operands.append(op.getStep().begin(), op.getStep().end()); 590 operands.append(parallelComputeFunction.captures); 591 }; 592 593 // Check if the block size is one, in this case we can skip the async dispatch 594 // completely. If this will be known statically, then canonicalization will 595 // erase async group operations. 596 Value isSingleBlock = 597 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1); 598 599 auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 600 ImplicitLocOpBuilder nb(loc, nestedBuilder); 601 602 // Call parallel compute function for the single block. 603 SmallVector<Value> operands = {c0, blockSize}; 604 appendBlockComputeOperands(operands); 605 606 nb.create<CallOp>(parallelComputeFunction.func.sym_name(), 607 parallelComputeFunction.func.getCallableResults(), 608 operands); 609 nb.create<scf::YieldOp>(); 610 }; 611 612 auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 613 // Create an async.group to wait on all async tokens from the concurrent 614 // execution of multiple parallel compute function. First block will be 615 // executed synchronously in the caller thread. 616 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 617 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 618 619 ImplicitLocOpBuilder nb(loc, nestedBuilder); 620 621 // Launch async dispatch function for [0, blockCount) range. 622 SmallVector<Value> operands = {group, c0, blockCount, blockSize}; 623 appendBlockComputeOperands(operands); 624 625 nb.create<CallOp>(asyncDispatchFunction.sym_name(), 626 asyncDispatchFunction.getCallableResults(), operands); 627 628 // Wait for the completion of all parallel compute operations. 629 b.create<AwaitAllOp>(group); 630 631 nb.create<scf::YieldOp>(); 632 }; 633 634 // Dispatch either single block compute function, or launch async dispatch. 635 b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch); 636 } 637 638 // Dispatch parallel compute functions by submitting all async compute tasks 639 // from a simple for loop in the caller thread. 640 static void 641 doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 642 ParallelComputeFunction ¶llelComputeFunction, 643 scf::ParallelOp op, Value blockSize, Value blockCount, 644 const SmallVector<Value> &tripCounts) { 645 MLIRContext *ctx = op->getContext(); 646 647 FuncOp compute = parallelComputeFunction.func; 648 649 Value c0 = b.create<arith::ConstantIndexOp>(0); 650 Value c1 = b.create<arith::ConstantIndexOp>(1); 651 652 // Create an async.group to wait on all async tokens from the concurrent 653 // execution of multiple parallel compute function. First block will be 654 // executed synchronously in the caller thread. 655 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 656 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 657 658 // Call parallel compute function for all blocks. 659 using LoopBodyBuilder = 660 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 661 662 // Returns parallel compute function operands to process the given block. 663 auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> { 664 SmallVector<Value> computeFuncOperands = {blockIndex, blockSize}; 665 computeFuncOperands.append(tripCounts); 666 computeFuncOperands.append(op.getLowerBound().begin(), 667 op.getLowerBound().end()); 668 computeFuncOperands.append(op.getUpperBound().begin(), 669 op.getUpperBound().end()); 670 computeFuncOperands.append(op.getStep().begin(), op.getStep().end()); 671 computeFuncOperands.append(parallelComputeFunction.captures); 672 return computeFuncOperands; 673 }; 674 675 // Induction variable is the index of the block: [0, blockCount). 676 LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc, 677 Value iv, ValueRange args) { 678 ImplicitLocOpBuilder nb(loc, loopBuilder); 679 680 // Call parallel compute function inside the async.execute region. 681 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 682 Location executeLoc, ValueRange executeArgs) { 683 executeBuilder.create<CallOp>(executeLoc, compute.sym_name(), 684 compute.getCallableResults(), 685 computeFuncOperands(iv)); 686 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 687 }; 688 689 // Create async.execute operation to launch parallel computate function. 690 auto execute = nb.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 691 executeBodyBuilder); 692 nb.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group); 693 nb.create<scf::YieldOp>(); 694 }; 695 696 // Iterate over all compute blocks and launch parallel compute operations. 697 b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder); 698 699 // Call parallel compute function for the first block in the caller thread. 700 b.create<CallOp>(compute.sym_name(), compute.getCallableResults(), 701 computeFuncOperands(c0)); 702 703 // Wait for the completion of all async compute operations. 704 b.create<AwaitAllOp>(group); 705 } 706 707 LogicalResult 708 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op, 709 PatternRewriter &rewriter) const { 710 // We do not currently support rewrite for parallel op with reductions. 711 if (op.getNumReductions() != 0) 712 return failure(); 713 714 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 715 716 // Computing minTaskSize emits IR and can be implemented as executing a cost 717 // model on the body of the scf.parallel. Thus it needs to be computed before 718 // the body of the scf.parallel has been manipulated. 719 Value minTaskSize = computeMinTaskSize(b, op); 720 721 // Make sure that all constants will be inside the parallel operation body to 722 // reduce the number of parallel compute function arguments. 723 cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter); 724 725 // Compute trip count for each loop induction variable: 726 // tripCount = ceil_div(upperBound - lowerBound, step); 727 SmallVector<Value> tripCounts(op.getNumLoops()); 728 for (size_t i = 0; i < op.getNumLoops(); ++i) { 729 auto lb = op.getLowerBound()[i]; 730 auto ub = op.getUpperBound()[i]; 731 auto step = op.getStep()[i]; 732 auto range = b.createOrFold<arith::SubIOp>(ub, lb); 733 tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step); 734 } 735 736 // Compute a product of trip counts to get the 1-dimensional iteration space 737 // for the scf.parallel operation. 738 Value tripCount = tripCounts[0]; 739 for (size_t i = 1; i < tripCounts.size(); ++i) 740 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 741 742 // Short circuit no-op parallel loops (zero iterations) that can arise from 743 // the memrefs with dynamic dimension(s) equal to zero. 744 Value c0 = b.create<arith::ConstantIndexOp>(0); 745 Value isZeroIterations = 746 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0); 747 748 // Do absolutely nothing if the trip count is zero. 749 auto noOp = [&](OpBuilder &nestedBuilder, Location loc) { 750 nestedBuilder.create<scf::YieldOp>(loc); 751 }; 752 753 // Compute the parallel block size and dispatch concurrent tasks computing 754 // results for each block. 755 auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) { 756 ImplicitLocOpBuilder nb(loc, nestedBuilder); 757 758 // Collect statically known constants defining the loop nest in the parallel 759 // compute function. LLVM can't always push constants across the non-trivial 760 // async dispatch call graph, by providing these values explicitly we can 761 // choose to build more efficient loop nest, and rely on a better constant 762 // folding, loop unrolling and vectorization. 763 ParallelComputeFunctionBounds staticBounds = { 764 integerConstants(tripCounts), 765 integerConstants(op.getLowerBound()), 766 integerConstants(op.getUpperBound()), 767 integerConstants(op.getStep()), 768 }; 769 770 // Find how many inner iteration dimensions are statically known, and their 771 // product is smaller than the `512`. We align the parallel compute block 772 // size by the product of statically known dimensions, so that we can 773 // guarantee that the inner loops executes from 0 to the loop trip counts 774 // and we can elide dynamic loop boundaries, and give LLVM an opportunity to 775 // unroll the loops. The constant `512` is arbitrary, it should depend on 776 // how many iterations LLVM will typically decide to unroll. 777 static constexpr int64_t maxIterations = 512; 778 779 // The number of inner loops with statically known number of iterations less 780 // than the `maxIterations` value. 781 int numUnrollableLoops = 0; 782 783 auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; }; 784 785 SmallVector<int64_t> numIterations(op.getNumLoops()); 786 numIterations.back() = getInt(staticBounds.tripCounts.back()); 787 788 for (int i = op.getNumLoops() - 2; i >= 0; --i) { 789 int64_t tripCount = getInt(staticBounds.tripCounts[i]); 790 int64_t innerIterations = numIterations[i + 1]; 791 numIterations[i] = tripCount * innerIterations; 792 793 // Update the number of inner loops that we can potentially unroll. 794 if (innerIterations > 0 && innerIterations <= maxIterations) 795 numUnrollableLoops++; 796 } 797 798 // With large number of threads the value of creating many compute blocks 799 // is reduced because the problem typically becomes memory bound. For small 800 // number of threads it helps with stragglers. 801 float overshardingFactor = numWorkerThreads <= 4 ? 8.0 802 : numWorkerThreads <= 8 ? 4.0 803 : numWorkerThreads <= 16 ? 2.0 804 : numWorkerThreads <= 32 ? 1.0 805 : numWorkerThreads <= 64 ? 0.8 806 : 0.6; 807 808 // Do not overload worker threads with too many compute blocks. 809 Value maxComputeBlocks = b.create<arith::ConstantIndexOp>( 810 std::max(1, static_cast<int>(numWorkerThreads * overshardingFactor))); 811 812 // Compute parallel block size from the parallel problem size: 813 // blockSize = min(tripCount, 814 // max(ceil_div(tripCount, maxComputeBlocks), 815 // minTaskSize)) 816 Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks); 817 Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize); 818 Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1); 819 820 ParallelComputeFunction notUnrollableParallelComputeFunction = 821 createParallelComputeFunction(op, staticBounds, 0, rewriter); 822 823 // Dispatch parallel compute function using async recursive work splitting, 824 // or by submitting compute task sequentially from a caller thread. 825 auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch; 826 827 // Create a parallel compute function that takes a block id and computes 828 // the parallel operation body for a subset of iteration space. 829 830 // Compute the number of parallel compute blocks. 831 Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize); 832 833 // Unroll when numUnrollableLoops > 0 && blockSize >= maxIterations. 834 bool staticShouldUnroll = numUnrollableLoops > 0; 835 auto dispatchNotUnrollable = [&](OpBuilder &nestedBuilder, Location loc) { 836 ImplicitLocOpBuilder nb(loc, nestedBuilder); 837 doDispatch(b, rewriter, notUnrollableParallelComputeFunction, op, 838 blockSize, blockCount, tripCounts); 839 nb.create<scf::YieldOp>(); 840 }; 841 842 if (staticShouldUnroll) { 843 Value dynamicShouldUnroll = b.create<arith::CmpIOp>( 844 arith::CmpIPredicate::sge, blockSize, 845 b.create<arith::ConstantIndexOp>(maxIterations)); 846 847 ParallelComputeFunction unrollableParallelComputeFunction = 848 createParallelComputeFunction(op, staticBounds, numUnrollableLoops, 849 rewriter); 850 851 auto dispatchUnrollable = [&](OpBuilder &nestedBuilder, Location loc) { 852 ImplicitLocOpBuilder nb(loc, nestedBuilder); 853 // Align the block size to be a multiple of the statically known 854 // number of iterations in the inner loops. 855 Value numIters = nb.create<arith::ConstantIndexOp>( 856 numIterations[op.getNumLoops() - numUnrollableLoops]); 857 Value alignedBlockSize = nb.create<arith::MulIOp>( 858 nb.create<arith::CeilDivSIOp>(blockSize, numIters), numIters); 859 doDispatch(b, rewriter, unrollableParallelComputeFunction, op, 860 alignedBlockSize, blockCount, tripCounts); 861 nb.create<scf::YieldOp>(); 862 }; 863 864 b.create<scf::IfOp>(TypeRange(), dynamicShouldUnroll, dispatchUnrollable, 865 dispatchNotUnrollable); 866 nb.create<scf::YieldOp>(); 867 } else { 868 dispatchNotUnrollable(nb, loc); 869 } 870 }; 871 872 // Replace the `scf.parallel` operation with the parallel compute function. 873 b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch); 874 875 // Parallel operation was replaced with a block iteration loop. 876 rewriter.eraseOp(op); 877 878 return success(); 879 } 880 881 void AsyncParallelForPass::runOnOperation() { 882 MLIRContext *ctx = &getContext(); 883 884 RewritePatternSet patterns(ctx); 885 populateAsyncParallelForPatterns( 886 patterns, asyncDispatch, numWorkerThreads, 887 [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) { 888 return builder.create<arith::ConstantIndexOp>(minTaskSize); 889 }); 890 if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)))) 891 signalPassFailure(); 892 } 893 894 std::unique_ptr<Pass> mlir::createAsyncParallelForPass() { 895 return std::make_unique<AsyncParallelForPass>(); 896 } 897 898 std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch, 899 int32_t numWorkerThreads, 900 int32_t minTaskSize) { 901 return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads, 902 minTaskSize); 903 } 904 905 void mlir::async::populateAsyncParallelForPatterns( 906 RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads, 907 const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) { 908 MLIRContext *ctx = patterns.getContext(); 909 patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads, 910 computeMinTaskSize); 911 } 912