1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements scf.parallel to scf.for + async.execute conversion pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
15 #include "mlir/Dialect/Async/IR/Async.h"
16 #include "mlir/Dialect/Async/Passes.h"
17 #include "mlir/Dialect/Async/Transforms.h"
18 #include "mlir/Dialect/SCF/SCF.h"
19 #include "mlir/Dialect/StandardOps/IR/Ops.h"
20 #include "mlir/IR/BlockAndValueMapping.h"
21 #include "mlir/IR/ImplicitLocOpBuilder.h"
22 #include "mlir/IR/Matchers.h"
23 #include "mlir/IR/PatternMatch.h"
24 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
25 #include "mlir/Transforms/RegionUtils.h"
26 
27 using namespace mlir;
28 using namespace mlir::async;
29 
30 #define DEBUG_TYPE "async-parallel-for"
31 
32 namespace {
33 
34 // Rewrite scf.parallel operation into multiple concurrent async.execute
35 // operations over non overlapping subranges of the original loop.
36 //
37 // Example:
38 //
39 //   scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) {
40 //     "do_some_compute"(%i, %j): () -> ()
41 //   }
42 //
43 // Converted to:
44 //
45 //   // Parallel compute function that executes the parallel body region for
46 //   // a subset of the parallel iteration space defined by the one-dimensional
47 //   // compute block index.
48 //   func parallel_compute_function(%block_index : index, %block_size : index,
49 //                                  <parallel operation properties>, ...) {
50 //     // Compute multi-dimensional loop bounds for %block_index.
51 //     %block_lbi, %block_lbj = ...
52 //     %block_ubi, %block_ubj = ...
53 //
54 //     // Clone parallel operation body into the scf.for loop nest.
55 //     scf.for %i = %blockLbi to %blockUbi {
56 //       scf.for %j = block_lbj to %block_ubj {
57 //         "do_some_compute"(%i, %j): () -> ()
58 //       }
59 //     }
60 //   }
61 //
62 // And a dispatch function depending on the `asyncDispatch` option.
63 //
64 // When async dispatch is on: (pseudocode)
65 //
66 //   %block_size = ... compute parallel compute block size
67 //   %block_count = ... compute the number of compute blocks
68 //
69 //   func @async_dispatch(%block_start : index, %block_end : index, ...) {
70 //     // Keep splitting block range until we reached a range of size 1.
71 //     while (%block_end - %block_start > 1) {
72 //       %mid_index = block_start + (block_end - block_start) / 2;
73 //       async.execute { call @async_dispatch(%mid_index, %block_end); }
74 //       %block_end = %mid_index
75 //     }
76 //
77 //     // Call parallel compute function for a single block.
78 //     call @parallel_compute_fn(%block_start, %block_size, ...);
79 //   }
80 //
81 //   // Launch async dispatch for [0, block_count) range.
82 //   call @async_dispatch(%c0, %block_count);
83 //
84 // When async dispatch is off:
85 //
86 //   %block_size = ... compute parallel compute block size
87 //   %block_count = ... compute the number of compute blocks
88 //
89 //   scf.for %block_index = %c0 to %block_count {
90 //      call @parallel_compute_fn(%block_index, %block_size, ...)
91 //   }
92 //
93 struct AsyncParallelForPass
94     : public AsyncParallelForBase<AsyncParallelForPass> {
95   AsyncParallelForPass() = default;
96 
97   AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads,
98                        int32_t minTaskSize) {
99     this->asyncDispatch = asyncDispatch;
100     this->numWorkerThreads = numWorkerThreads;
101     this->minTaskSize = minTaskSize;
102   }
103 
104   void runOnOperation() override;
105 };
106 
107 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> {
108 public:
109   AsyncParallelForRewrite(
110       MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads,
111       AsyncMinTaskSizeComputationFunction computeMinTaskSize)
112       : OpRewritePattern(ctx), asyncDispatch(asyncDispatch),
113         numWorkerThreads(numWorkerThreads),
114         computeMinTaskSize(computeMinTaskSize) {}
115 
116   LogicalResult matchAndRewrite(scf::ParallelOp op,
117                                 PatternRewriter &rewriter) const override;
118 
119 private:
120   bool asyncDispatch;
121   int32_t numWorkerThreads;
122   AsyncMinTaskSizeComputationFunction computeMinTaskSize;
123 };
124 
125 struct ParallelComputeFunctionType {
126   FunctionType type;
127   SmallVector<Value> captures;
128 };
129 
130 // Helper struct to parse parallel compute function argument list.
131 struct ParallelComputeFunctionArgs {
132   BlockArgument blockIndex();
133   BlockArgument blockSize();
134   ArrayRef<BlockArgument> tripCounts();
135   ArrayRef<BlockArgument> lowerBounds();
136   ArrayRef<BlockArgument> upperBounds();
137   ArrayRef<BlockArgument> steps();
138   ArrayRef<BlockArgument> captures();
139 
140   unsigned numLoops;
141   ArrayRef<BlockArgument> args;
142 };
143 
144 struct ParallelComputeFunctionBounds {
145   SmallVector<IntegerAttr> tripCounts;
146   SmallVector<IntegerAttr> lowerBounds;
147   SmallVector<IntegerAttr> upperBounds;
148   SmallVector<IntegerAttr> steps;
149 };
150 
151 struct ParallelComputeFunction {
152   unsigned numLoops;
153   FuncOp func;
154   llvm::SmallVector<Value> captures;
155 };
156 
157 } // namespace
158 
159 BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; }
160 BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; }
161 
162 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() {
163   return args.drop_front(2).take_front(numLoops);
164 }
165 
166 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() {
167   return args.drop_front(2 + 1 * numLoops).take_front(numLoops);
168 }
169 
170 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() {
171   return args.drop_front(2 + 2 * numLoops).take_front(numLoops);
172 }
173 
174 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() {
175   return args.drop_front(2 + 3 * numLoops).take_front(numLoops);
176 }
177 
178 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() {
179   return args.drop_front(2 + 4 * numLoops);
180 }
181 
182 template <typename ValueRange>
183 static SmallVector<IntegerAttr> integerConstants(ValueRange values) {
184   SmallVector<IntegerAttr> attrs(values.size());
185   for (unsigned i = 0; i < values.size(); ++i)
186     matchPattern(values[i], m_Constant(&attrs[i]));
187   return attrs;
188 }
189 
190 // Converts one-dimensional iteration index in the [0, tripCount) interval
191 // into multidimensional iteration coordinate.
192 static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index,
193                                       ArrayRef<Value> tripCounts) {
194   SmallVector<Value> coords(tripCounts.size());
195   assert(!tripCounts.empty() && "tripCounts must be not empty");
196 
197   for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) {
198     coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]);
199     index = b.create<arith::DivSIOp>(index, tripCounts[i]);
200   }
201 
202   return coords;
203 }
204 
205 // Returns a function type and implicit captures for a parallel compute
206 // function. We'll need a list of implicit captures to setup block and value
207 // mapping when we'll clone the body of the parallel operation.
208 static ParallelComputeFunctionType
209 getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) {
210   // Values implicitly captured by the parallel operation.
211   llvm::SetVector<Value> captures;
212   getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures);
213 
214   SmallVector<Type> inputs;
215   inputs.reserve(2 + 4 * op.getNumLoops() + captures.size());
216 
217   Type indexTy = rewriter.getIndexType();
218 
219   // One-dimensional iteration space defined by the block index and size.
220   inputs.push_back(indexTy); // blockIndex
221   inputs.push_back(indexTy); // blockSize
222 
223   // Multi-dimensional parallel iteration space defined by the loop trip counts.
224   for (unsigned i = 0; i < op.getNumLoops(); ++i)
225     inputs.push_back(indexTy); // loop tripCount
226 
227   // Parallel operation lower bound, upper bound and step. Lower bound, upper
228   // bound and step passed as contiguous arguments:
229   //   call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...)
230   for (unsigned i = 0; i < op.getNumLoops(); ++i) {
231     inputs.push_back(indexTy); // lower bound
232     inputs.push_back(indexTy); // upper bound
233     inputs.push_back(indexTy); // step
234   }
235 
236   // Types of the implicit captures.
237   for (Value capture : captures)
238     inputs.push_back(capture.getType());
239 
240   // Convert captures to vector for later convenience.
241   SmallVector<Value> capturesVector(captures.begin(), captures.end());
242   return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector};
243 }
244 
245 // Create a parallel compute fuction from the parallel operation.
246 static ParallelComputeFunction createParallelComputeFunction(
247     scf::ParallelOp op, ParallelComputeFunctionBounds bounds,
248     unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) {
249   OpBuilder::InsertionGuard guard(rewriter);
250   ImplicitLocOpBuilder b(op.getLoc(), rewriter);
251 
252   ModuleOp module = op->getParentOfType<ModuleOp>();
253 
254   ParallelComputeFunctionType computeFuncType =
255       getParallelComputeFunctionType(op, rewriter);
256 
257   FunctionType type = computeFuncType.type;
258   FuncOp func = FuncOp::create(op.getLoc(),
259                                numBlockAlignedInnerLoops > 0
260                                    ? "parallel_compute_fn_with_aligned_loops"
261                                    : "parallel_compute_fn",
262                                type);
263   func.setPrivate();
264 
265   // Insert function into the module symbol table and assign it unique name.
266   SymbolTable symbolTable(module);
267   symbolTable.insert(func);
268   rewriter.getListener()->notifyOperationInserted(func);
269 
270   // Create function entry block.
271   Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs());
272   b.setInsertionPointToEnd(block);
273 
274   ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()};
275 
276   // Block iteration position defined by the block index and size.
277   BlockArgument blockIndex = args.blockIndex();
278   BlockArgument blockSize = args.blockSize();
279 
280   // Constants used below.
281   Value c0 = b.create<arith::ConstantIndexOp>(0);
282   Value c1 = b.create<arith::ConstantIndexOp>(1);
283 
284   // Materialize known constants as constant operation in the function body.
285   auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) {
286     return llvm::to_vector(
287         llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value {
288           if (IntegerAttr attr = std::get<1>(tuple))
289             return b.create<ConstantOp>(attr);
290           return std::get<0>(tuple);
291         }));
292   };
293 
294   // Multi-dimensional parallel iteration space defined by the loop trip counts.
295   auto tripCounts = values(args.tripCounts(), bounds.tripCounts);
296 
297   // Parallel operation lower bound and step.
298   auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds);
299   auto steps = values(args.steps(), bounds.steps);
300 
301   // Remaining arguments are implicit captures of the parallel operation.
302   ArrayRef<BlockArgument> captures = args.captures();
303 
304   // Compute a product of trip counts to get the size of the flattened
305   // one-dimensional iteration space.
306   Value tripCount = tripCounts[0];
307   for (unsigned i = 1; i < tripCounts.size(); ++i)
308     tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
309 
310   // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]:
311   //   blockFirstIndex = blockIndex * blockSize
312   Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize);
313 
314   // The last one-dimensional index in the block defined by the `blockIndex`:
315   //   blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1
316   Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize);
317   Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount);
318   Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1);
319 
320   // Convert one-dimensional indices to multi-dimensional coordinates.
321   auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts);
322   auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts);
323 
324   // Compute loops upper bounds derived from the block last coordinates:
325   //   blockEndCoord[i] = blockLastCoord[i] + 1
326   //
327   // Block first and last coordinates can be the same along the outer compute
328   // dimension when inner compute dimension contains multiple blocks.
329   SmallVector<Value> blockEndCoord(op.getNumLoops());
330   for (size_t i = 0; i < blockLastCoord.size(); ++i)
331     blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1);
332 
333   // Construct a loop nest out of scf.for operations that will iterate over
334   // all coordinates in [blockFirstCoord, blockLastCoord] range.
335   using LoopBodyBuilder =
336       std::function<void(OpBuilder &, Location, Value, ValueRange)>;
337   using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>;
338 
339   // Parallel region induction variables computed from the multi-dimensional
340   // iteration coordinate using parallel operation bounds and step:
341   //
342   //   computeBlockInductionVars[loopIdx] =
343   //       lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx]
344   SmallVector<Value> computeBlockInductionVars(op.getNumLoops());
345 
346   // We need to know if we are in the first or last iteration of the
347   // multi-dimensional loop for each loop in the nest, so we can decide what
348   // loop bounds should we use for the nested loops: bounds defined by compute
349   // block interval, or bounds defined by the parallel operation.
350   //
351   // Example: 2d parallel operation
352   //                   i   j
353   //   loop sizes:   [50, 50]
354   //   first coord:  [25, 25]
355   //   last coord:   [30, 30]
356   //
357   // If `i` is equal to 25 then iteration over `j` should start at 25, when `i`
358   // is between 25 and 30 it should start at 0. The upper bound for `j` should
359   // be 50, except when `i` is equal to 30, then it should also be 30.
360   //
361   // Value at ith position specifies if all loops in [0, i) range of the loop
362   // nest are in the first/last iteration.
363   SmallVector<Value> isBlockFirstCoord(op.getNumLoops());
364   SmallVector<Value> isBlockLastCoord(op.getNumLoops());
365 
366   // Builds inner loop nest inside async.execute operation that does all the
367   // work concurrently.
368   LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder {
369     return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv,
370                         ValueRange args) {
371       ImplicitLocOpBuilder nb(loc, nestedBuilder);
372 
373       // Compute induction variable for `loopIdx`.
374       computeBlockInductionVars[loopIdx] = nb.create<arith::AddIOp>(
375           lowerBounds[loopIdx], nb.create<arith::MulIOp>(iv, steps[loopIdx]));
376 
377       // Check if we are inside first or last iteration of the loop.
378       isBlockFirstCoord[loopIdx] = nb.create<arith::CmpIOp>(
379           arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]);
380       isBlockLastCoord[loopIdx] = nb.create<arith::CmpIOp>(
381           arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]);
382 
383       // Check if the previous loop is in its first or last iteration.
384       if (loopIdx > 0) {
385         isBlockFirstCoord[loopIdx] = nb.create<arith::AndIOp>(
386             isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]);
387         isBlockLastCoord[loopIdx] = nb.create<arith::AndIOp>(
388             isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]);
389       }
390 
391       // Keep building loop nest.
392       if (loopIdx < op.getNumLoops() - 1) {
393         if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) {
394           // For block aligned loops we always iterate starting from 0 up to
395           // the loop trip counts.
396           nb.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(),
397                                 workLoopBuilder(loopIdx + 1));
398 
399         } else {
400           // Select nested loop lower/upper bounds depending on our position in
401           // the multi-dimensional iteration space.
402           auto lb = nb.create<SelectOp>(isBlockFirstCoord[loopIdx],
403                                         blockFirstCoord[loopIdx + 1], c0);
404 
405           auto ub = nb.create<SelectOp>(isBlockLastCoord[loopIdx],
406                                         blockEndCoord[loopIdx + 1],
407                                         tripCounts[loopIdx + 1]);
408 
409           nb.create<scf::ForOp>(lb, ub, c1, ValueRange(),
410                                 workLoopBuilder(loopIdx + 1));
411         }
412 
413         nb.create<scf::YieldOp>(loc);
414         return;
415       }
416 
417       // Copy the body of the parallel op into the inner-most loop.
418       BlockAndValueMapping mapping;
419       mapping.map(op.getInductionVars(), computeBlockInductionVars);
420       mapping.map(computeFuncType.captures, captures);
421 
422       for (auto &bodyOp : op.getLoopBody().getOps())
423         nb.clone(bodyOp, mapping);
424     };
425   };
426 
427   b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(),
428                        workLoopBuilder(0));
429   b.create<ReturnOp>(ValueRange());
430 
431   return {op.getNumLoops(), func, std::move(computeFuncType.captures)};
432 }
433 
434 // Creates recursive async dispatch function for the given parallel compute
435 // function. Dispatch function keeps splitting block range into halves until it
436 // reaches a single block, and then excecutes it inline.
437 //
438 // Function pseudocode (mix of C++ and MLIR):
439 //
440 //   func @async_dispatch(%block_start : index, %block_end : index, ...) {
441 //
442 //     // Keep splitting block range until we reached a range of size 1.
443 //     while (%block_end - %block_start > 1) {
444 //       %mid_index = block_start + (block_end - block_start) / 2;
445 //       async.execute { call @async_dispatch(%mid_index, %block_end); }
446 //       %block_end = %mid_index
447 //     }
448 //
449 //     // Call parallel compute function for a single block.
450 //     call @parallel_compute_fn(%block_start, %block_size, ...);
451 //   }
452 //
453 static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc,
454                                           PatternRewriter &rewriter) {
455   OpBuilder::InsertionGuard guard(rewriter);
456   Location loc = computeFunc.func.getLoc();
457   ImplicitLocOpBuilder b(loc, rewriter);
458 
459   ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>();
460 
461   ArrayRef<Type> computeFuncInputTypes =
462       computeFunc.func.type().cast<FunctionType>().getInputs();
463 
464   // Compared to the parallel compute function async dispatch function takes
465   // additional !async.group argument. Also instead of a single `blockIndex` it
466   // takes `blockStart` and `blockEnd` arguments to define the range of
467   // dispatched blocks.
468   SmallVector<Type> inputTypes;
469   inputTypes.push_back(async::GroupType::get(rewriter.getContext()));
470   inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument
471   inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end());
472 
473   FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange());
474   FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type);
475   func.setPrivate();
476 
477   // Insert function into the module symbol table and assign it unique name.
478   SymbolTable symbolTable(module);
479   symbolTable.insert(func);
480   rewriter.getListener()->notifyOperationInserted(func);
481 
482   // Create function entry block.
483   Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs());
484   b.setInsertionPointToEnd(block);
485 
486   Type indexTy = b.getIndexType();
487   Value c1 = b.create<arith::ConstantIndexOp>(1);
488   Value c2 = b.create<arith::ConstantIndexOp>(2);
489 
490   // Get the async group that will track async dispatch completion.
491   Value group = block->getArgument(0);
492 
493   // Get the block iteration range: [blockStart, blockEnd)
494   Value blockStart = block->getArgument(1);
495   Value blockEnd = block->getArgument(2);
496 
497   // Create a work splitting while loop for the [blockStart, blockEnd) range.
498   SmallVector<Type> types = {indexTy, indexTy};
499   SmallVector<Value> operands = {blockStart, blockEnd};
500 
501   // Create a recursive dispatch loop.
502   scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands);
503   Block *before = b.createBlock(&whileOp.getBefore(), {}, types);
504   Block *after = b.createBlock(&whileOp.getAfter(), {}, types);
505 
506   // Setup dispatch loop condition block: decide if we need to go into the
507   // `after` block and launch one more async dispatch.
508   {
509     b.setInsertionPointToEnd(before);
510     Value start = before->getArgument(0);
511     Value end = before->getArgument(1);
512     Value distance = b.create<arith::SubIOp>(end, start);
513     Value dispatch =
514         b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1);
515     b.create<scf::ConditionOp>(dispatch, before->getArguments());
516   }
517 
518   // Setup the async dispatch loop body: recursively call dispatch function
519   // for the seconds half of the original range and go to the next iteration.
520   {
521     b.setInsertionPointToEnd(after);
522     Value start = after->getArgument(0);
523     Value end = after->getArgument(1);
524     Value distance = b.create<arith::SubIOp>(end, start);
525     Value halfDistance = b.create<arith::DivSIOp>(distance, c2);
526     Value midIndex = b.create<arith::AddIOp>(start, halfDistance);
527 
528     // Call parallel compute function inside the async.execute region.
529     auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
530                                   Location executeLoc, ValueRange executeArgs) {
531       // Update the original `blockStart` and `blockEnd` with new range.
532       SmallVector<Value> operands{block->getArguments().begin(),
533                                   block->getArguments().end()};
534       operands[1] = midIndex;
535       operands[2] = end;
536 
537       executeBuilder.create<CallOp>(executeLoc, func.sym_name(),
538                                     func.getCallableResults(), operands);
539       executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
540     };
541 
542     // Create async.execute operation to dispatch half of the block range.
543     auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
544                                        executeBodyBuilder);
545     b.create<AddToGroupOp>(indexTy, execute.token(), group);
546     b.create<scf::YieldOp>(ValueRange({start, midIndex}));
547   }
548 
549   // After dispatching async operations to process the tail of the block range
550   // call the parallel compute function for the first block of the range.
551   b.setInsertionPointAfter(whileOp);
552 
553   // Drop async dispatch specific arguments: async group, block start and end.
554   auto forwardedInputs = block->getArguments().drop_front(3);
555   SmallVector<Value> computeFuncOperands = {blockStart};
556   computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end());
557 
558   b.create<CallOp>(computeFunc.func.sym_name(),
559                    computeFunc.func.getCallableResults(), computeFuncOperands);
560   b.create<ReturnOp>(ValueRange());
561 
562   return func;
563 }
564 
565 // Launch async dispatch of the parallel compute function.
566 static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
567                             ParallelComputeFunction &parallelComputeFunction,
568                             scf::ParallelOp op, Value blockSize,
569                             Value blockCount,
570                             const SmallVector<Value> &tripCounts) {
571   MLIRContext *ctx = op->getContext();
572 
573   // Add one more level of indirection to dispatch parallel compute functions
574   // using async operations and recursive work splitting.
575   FuncOp asyncDispatchFunction =
576       createAsyncDispatchFunction(parallelComputeFunction, rewriter);
577 
578   Value c0 = b.create<arith::ConstantIndexOp>(0);
579   Value c1 = b.create<arith::ConstantIndexOp>(1);
580 
581   // Appends operands shared by async dispatch and parallel compute functions to
582   // the given operands vector.
583   auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) {
584     operands.append(tripCounts);
585     operands.append(op.getLowerBound().begin(), op.getLowerBound().end());
586     operands.append(op.getUpperBound().begin(), op.getUpperBound().end());
587     operands.append(op.getStep().begin(), op.getStep().end());
588     operands.append(parallelComputeFunction.captures);
589   };
590 
591   // Check if the block size is one, in this case we can skip the async dispatch
592   // completely. If this will be known statically, then canonicalization will
593   // erase async group operations.
594   Value isSingleBlock =
595       b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1);
596 
597   auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
598     ImplicitLocOpBuilder nb(loc, nestedBuilder);
599 
600     // Call parallel compute function for the single block.
601     SmallVector<Value> operands = {c0, blockSize};
602     appendBlockComputeOperands(operands);
603 
604     nb.create<CallOp>(parallelComputeFunction.func.sym_name(),
605                       parallelComputeFunction.func.getCallableResults(),
606                       operands);
607     nb.create<scf::YieldOp>();
608   };
609 
610   auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
611     // Create an async.group to wait on all async tokens from the concurrent
612     // execution of multiple parallel compute function. First block will be
613     // executed synchronously in the caller thread.
614     Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
615     Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
616 
617     ImplicitLocOpBuilder nb(loc, nestedBuilder);
618 
619     // Launch async dispatch function for [0, blockCount) range.
620     SmallVector<Value> operands = {group, c0, blockCount, blockSize};
621     appendBlockComputeOperands(operands);
622 
623     nb.create<CallOp>(asyncDispatchFunction.sym_name(),
624                       asyncDispatchFunction.getCallableResults(), operands);
625 
626     // Wait for the completion of all parallel compute operations.
627     b.create<AwaitAllOp>(group);
628 
629     nb.create<scf::YieldOp>();
630   };
631 
632   // Dispatch either single block compute function, or launch async dispatch.
633   b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch);
634 }
635 
636 // Dispatch parallel compute functions by submitting all async compute tasks
637 // from a simple for loop in the caller thread.
638 static void
639 doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
640                      ParallelComputeFunction &parallelComputeFunction,
641                      scf::ParallelOp op, Value blockSize, Value blockCount,
642                      const SmallVector<Value> &tripCounts) {
643   MLIRContext *ctx = op->getContext();
644 
645   FuncOp compute = parallelComputeFunction.func;
646 
647   Value c0 = b.create<arith::ConstantIndexOp>(0);
648   Value c1 = b.create<arith::ConstantIndexOp>(1);
649 
650   // Create an async.group to wait on all async tokens from the concurrent
651   // execution of multiple parallel compute function. First block will be
652   // executed synchronously in the caller thread.
653   Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
654   Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
655 
656   // Call parallel compute function for all blocks.
657   using LoopBodyBuilder =
658       std::function<void(OpBuilder &, Location, Value, ValueRange)>;
659 
660   // Returns parallel compute function operands to process the given block.
661   auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> {
662     SmallVector<Value> computeFuncOperands = {blockIndex, blockSize};
663     computeFuncOperands.append(tripCounts);
664     computeFuncOperands.append(op.getLowerBound().begin(),
665                                op.getLowerBound().end());
666     computeFuncOperands.append(op.getUpperBound().begin(),
667                                op.getUpperBound().end());
668     computeFuncOperands.append(op.getStep().begin(), op.getStep().end());
669     computeFuncOperands.append(parallelComputeFunction.captures);
670     return computeFuncOperands;
671   };
672 
673   // Induction variable is the index of the block: [0, blockCount).
674   LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc,
675                                     Value iv, ValueRange args) {
676     ImplicitLocOpBuilder nb(loc, loopBuilder);
677 
678     // Call parallel compute function inside the async.execute region.
679     auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
680                                   Location executeLoc, ValueRange executeArgs) {
681       executeBuilder.create<CallOp>(executeLoc, compute.sym_name(),
682                                     compute.getCallableResults(),
683                                     computeFuncOperands(iv));
684       executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
685     };
686 
687     // Create async.execute operation to launch parallel computate function.
688     auto execute = nb.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
689                                         executeBodyBuilder);
690     nb.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group);
691     nb.create<scf::YieldOp>();
692   };
693 
694   // Iterate over all compute blocks and launch parallel compute operations.
695   b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder);
696 
697   // Call parallel compute function for the first block in the caller thread.
698   b.create<CallOp>(compute.sym_name(), compute.getCallableResults(),
699                    computeFuncOperands(c0));
700 
701   // Wait for the completion of all async compute operations.
702   b.create<AwaitAllOp>(group);
703 }
704 
705 LogicalResult
706 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op,
707                                          PatternRewriter &rewriter) const {
708   // We do not currently support rewrite for parallel op with reductions.
709   if (op.getNumReductions() != 0)
710     return failure();
711 
712   ImplicitLocOpBuilder b(op.getLoc(), rewriter);
713 
714   // Computing minTaskSize emits IR and can be implemented as executing a cost
715   // model on the body of the scf.parallel. Thus it needs to be computed before
716   // the body of the scf.parallel has been manipulated.
717   Value minTaskSize = computeMinTaskSize(b, op);
718 
719   // Make sure that all constants will be inside the parallel operation body to
720   // reduce the number of parallel compute function arguments.
721   cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter);
722 
723   // Compute trip count for each loop induction variable:
724   //   tripCount = ceil_div(upperBound - lowerBound, step);
725   SmallVector<Value> tripCounts(op.getNumLoops());
726   for (size_t i = 0; i < op.getNumLoops(); ++i) {
727     auto lb = op.getLowerBound()[i];
728     auto ub = op.getUpperBound()[i];
729     auto step = op.getStep()[i];
730     auto range = b.createOrFold<arith::SubIOp>(ub, lb);
731     tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step);
732   }
733 
734   // Compute a product of trip counts to get the 1-dimensional iteration space
735   // for the scf.parallel operation.
736   Value tripCount = tripCounts[0];
737   for (size_t i = 1; i < tripCounts.size(); ++i)
738     tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
739 
740   // Short circuit no-op parallel loops (zero iterations) that can arise from
741   // the memrefs with dynamic dimension(s) equal to zero.
742   Value c0 = b.create<arith::ConstantIndexOp>(0);
743   Value isZeroIterations =
744       b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0);
745 
746   // Do absolutely nothing if the trip count is zero.
747   auto noOp = [&](OpBuilder &nestedBuilder, Location loc) {
748     nestedBuilder.create<scf::YieldOp>(loc);
749   };
750 
751   // Compute the parallel block size and dispatch concurrent tasks computing
752   // results for each block.
753   auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) {
754     ImplicitLocOpBuilder nb(loc, nestedBuilder);
755 
756     // Collect statically known constants defining the loop nest in the parallel
757     // compute function. LLVM can't always push constants across the non-trivial
758     // async dispatch call graph, by providing these values explicitly we can
759     // choose to build more efficient loop nest, and rely on a better constant
760     // folding, loop unrolling and vectorization.
761     ParallelComputeFunctionBounds staticBounds = {
762         integerConstants(tripCounts),
763         integerConstants(op.getLowerBound()),
764         integerConstants(op.getUpperBound()),
765         integerConstants(op.getStep()),
766     };
767 
768     // Find how many inner iteration dimensions are statically known, and their
769     // product is smaller than the `512`. We align the parallel compute block
770     // size by the product of statically known dimensions, so that we can
771     // guarantee that the inner loops executes from 0 to the loop trip counts
772     // and we can elide dynamic loop boundaries, and give LLVM an opportunity to
773     // unroll the loops. The constant `512` is arbitrary, it should depend on
774     // how many iterations LLVM will typically decide to unroll.
775     static constexpr int64_t maxIterations = 512;
776 
777     // The number of inner loops with statically known number of iterations less
778     // than the `maxIterations` value.
779     int numUnrollableLoops = 0;
780 
781     auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; };
782 
783     SmallVector<int64_t> numIterations(op.getNumLoops());
784     numIterations.back() = getInt(staticBounds.tripCounts.back());
785 
786     for (int i = op.getNumLoops() - 2; i >= 0; --i) {
787       int64_t tripCount = getInt(staticBounds.tripCounts[i]);
788       int64_t innerIterations = numIterations[i + 1];
789       numIterations[i] = tripCount * innerIterations;
790 
791       // Update the number of inner loops that we can potentially unroll.
792       if (innerIterations > 0 && innerIterations <= maxIterations)
793         numUnrollableLoops++;
794     }
795 
796     // With large number of threads the value of creating many compute blocks
797     // is reduced because the problem typically becomes memory bound. For small
798     // number of threads it helps with stragglers.
799     float overshardingFactor = numWorkerThreads <= 4    ? 8.0
800                                : numWorkerThreads <= 8  ? 4.0
801                                : numWorkerThreads <= 16 ? 2.0
802                                : numWorkerThreads <= 32 ? 1.0
803                                : numWorkerThreads <= 64 ? 0.8
804                                                         : 0.6;
805 
806     // Do not overload worker threads with too many compute blocks.
807     Value maxComputeBlocks = b.create<arith::ConstantIndexOp>(
808         std::max(1, static_cast<int>(numWorkerThreads * overshardingFactor)));
809 
810     // Compute parallel block size from the parallel problem size:
811     //   blockSize = min(tripCount,
812     //                   max(ceil_div(tripCount, maxComputeBlocks),
813     //                       minTaskSize))
814     Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks);
815     Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize);
816     Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1);
817 
818     ParallelComputeFunction notUnrollableParallelComputeFunction =
819         createParallelComputeFunction(op, staticBounds, 0, rewriter);
820 
821     // Dispatch parallel compute function using async recursive work splitting,
822     // or by submitting compute task sequentially from a caller thread.
823     auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch;
824 
825     // Create a parallel compute function that takes a block id and computes
826     // the parallel operation body for a subset of iteration space.
827 
828     // Compute the number of parallel compute blocks.
829     Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize);
830 
831     // Unroll when numUnrollableLoops > 0 && blockSize >= maxIterations.
832     bool staticShouldUnroll = numUnrollableLoops > 0;
833     auto dispatchNotUnrollable = [&](OpBuilder &nestedBuilder, Location loc) {
834       ImplicitLocOpBuilder nb(loc, nestedBuilder);
835       doDispatch(b, rewriter, notUnrollableParallelComputeFunction, op,
836                  blockSize, blockCount, tripCounts);
837       nb.create<scf::YieldOp>();
838     };
839 
840     if (staticShouldUnroll) {
841       Value dynamicShouldUnroll = b.create<arith::CmpIOp>(
842           arith::CmpIPredicate::sge, blockSize,
843           b.create<arith::ConstantIndexOp>(maxIterations));
844 
845       ParallelComputeFunction unrollableParallelComputeFunction =
846           createParallelComputeFunction(op, staticBounds, numUnrollableLoops,
847                                         rewriter);
848 
849       auto dispatchUnrollable = [&](OpBuilder &nestedBuilder, Location loc) {
850         ImplicitLocOpBuilder nb(loc, nestedBuilder);
851         // Align the block size to be a multiple of the statically known
852         // number of iterations in the inner loops.
853         Value numIters = nb.create<arith::ConstantIndexOp>(
854             numIterations[op.getNumLoops() - numUnrollableLoops]);
855         Value alignedBlockSize = nb.create<arith::MulIOp>(
856             nb.create<arith::CeilDivSIOp>(blockSize, numIters), numIters);
857         doDispatch(b, rewriter, unrollableParallelComputeFunction, op,
858                    alignedBlockSize, blockCount, tripCounts);
859         nb.create<scf::YieldOp>();
860       };
861 
862       b.create<scf::IfOp>(TypeRange(), dynamicShouldUnroll, dispatchUnrollable,
863                           dispatchNotUnrollable);
864       nb.create<scf::YieldOp>();
865     } else {
866       dispatchNotUnrollable(nb, loc);
867     }
868   };
869 
870   // Replace the `scf.parallel` operation with the parallel compute function.
871   b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch);
872 
873   // Parallel operation was replaced with a block iteration loop.
874   rewriter.eraseOp(op);
875 
876   return success();
877 }
878 
879 void AsyncParallelForPass::runOnOperation() {
880   MLIRContext *ctx = &getContext();
881 
882   RewritePatternSet patterns(ctx);
883   populateAsyncParallelForPatterns(
884       patterns, asyncDispatch, numWorkerThreads,
885       [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) {
886         return builder.create<arith::ConstantIndexOp>(minTaskSize);
887       });
888   if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
889     signalPassFailure();
890 }
891 
892 std::unique_ptr<Pass> mlir::createAsyncParallelForPass() {
893   return std::make_unique<AsyncParallelForPass>();
894 }
895 
896 std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch,
897                                                        int32_t numWorkerThreads,
898                                                        int32_t minTaskSize) {
899   return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads,
900                                                 minTaskSize);
901 }
902 
903 void mlir::async::populateAsyncParallelForPatterns(
904     RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads,
905     AsyncMinTaskSizeComputationFunction computeMinTaskSize) {
906   MLIRContext *ctx = patterns.getContext();
907   patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads,
908                                         computeMinTaskSize);
909 }
910