1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements scf.parallel to scf.for + async.execute conversion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 15 #include "mlir/Dialect/Async/IR/Async.h" 16 #include "mlir/Dialect/Async/Passes.h" 17 #include "mlir/Dialect/SCF/SCF.h" 18 #include "mlir/Dialect/StandardOps/IR/Ops.h" 19 #include "mlir/IR/BlockAndValueMapping.h" 20 #include "mlir/IR/ImplicitLocOpBuilder.h" 21 #include "mlir/IR/PatternMatch.h" 22 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 23 #include "mlir/Transforms/RegionUtils.h" 24 25 using namespace mlir; 26 using namespace mlir::async; 27 28 #define DEBUG_TYPE "async-parallel-for" 29 30 namespace { 31 32 // Rewrite scf.parallel operation into multiple concurrent async.execute 33 // operations over non overlapping subranges of the original loop. 34 // 35 // Example: 36 // 37 // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) { 38 // "do_some_compute"(%i, %j): () -> () 39 // } 40 // 41 // Converted to: 42 // 43 // // Parallel compute function that executes the parallel body region for 44 // // a subset of the parallel iteration space defined by the one-dimensional 45 // // compute block index. 46 // func parallel_compute_function(%block_index : index, %block_size : index, 47 // <parallel operation properties>, ...) { 48 // // Compute multi-dimensional loop bounds for %block_index. 49 // %block_lbi, %block_lbj = ... 50 // %block_ubi, %block_ubj = ... 51 // 52 // // Clone parallel operation body into the scf.for loop nest. 53 // scf.for %i = %blockLbi to %blockUbi { 54 // scf.for %j = block_lbj to %block_ubj { 55 // "do_some_compute"(%i, %j): () -> () 56 // } 57 // } 58 // } 59 // 60 // And a dispatch function depending on the `asyncDispatch` option. 61 // 62 // When async dispatch is on: (pseudocode) 63 // 64 // %block_size = ... compute parallel compute block size 65 // %block_count = ... compute the number of compute blocks 66 // 67 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 68 // // Keep splitting block range until we reached a range of size 1. 69 // while (%block_end - %block_start > 1) { 70 // %mid_index = block_start + (block_end - block_start) / 2; 71 // async.execute { call @async_dispatch(%mid_index, %block_end); } 72 // %block_end = %mid_index 73 // } 74 // 75 // // Call parallel compute function for a single block. 76 // call @parallel_compute_fn(%block_start, %block_size, ...); 77 // } 78 // 79 // // Launch async dispatch for [0, block_count) range. 80 // call @async_dispatch(%c0, %block_count); 81 // 82 // When async dispatch is off: 83 // 84 // %block_size = ... compute parallel compute block size 85 // %block_count = ... compute the number of compute blocks 86 // 87 // scf.for %block_index = %c0 to %block_count { 88 // call @parallel_compute_fn(%block_index, %block_size, ...) 89 // } 90 // 91 struct AsyncParallelForPass 92 : public AsyncParallelForBase<AsyncParallelForPass> { 93 AsyncParallelForPass() = default; 94 95 AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads, 96 int32_t minTaskSize) { 97 this->asyncDispatch = asyncDispatch; 98 this->numWorkerThreads = numWorkerThreads; 99 this->minTaskSize = minTaskSize; 100 } 101 102 void runOnOperation() override; 103 }; 104 105 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> { 106 public: 107 AsyncParallelForRewrite(MLIRContext *ctx, bool asyncDispatch, 108 int32_t numWorkerThreads, int32_t minTaskSize) 109 : OpRewritePattern(ctx), asyncDispatch(asyncDispatch), 110 numWorkerThreads(numWorkerThreads), minTaskSize(minTaskSize) {} 111 112 LogicalResult matchAndRewrite(scf::ParallelOp op, 113 PatternRewriter &rewriter) const override; 114 115 private: 116 bool asyncDispatch; 117 int32_t numWorkerThreads; 118 int32_t minTaskSize; 119 }; 120 121 struct ParallelComputeFunctionType { 122 FunctionType type; 123 llvm::SmallVector<Value> captures; 124 }; 125 126 struct ParallelComputeFunction { 127 FuncOp func; 128 llvm::SmallVector<Value> captures; 129 }; 130 131 } // namespace 132 133 // Converts one-dimensional iteration index in the [0, tripCount) interval 134 // into multidimensional iteration coordinate. 135 static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index, 136 ArrayRef<Value> tripCounts) { 137 SmallVector<Value> coords(tripCounts.size()); 138 assert(!tripCounts.empty() && "tripCounts must be not empty"); 139 140 for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) { 141 coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]); 142 index = b.create<arith::DivSIOp>(index, tripCounts[i]); 143 } 144 145 return coords; 146 } 147 148 // Returns a function type and implicit captures for a parallel compute 149 // function. We'll need a list of implicit captures to setup block and value 150 // mapping when we'll clone the body of the parallel operation. 151 static ParallelComputeFunctionType 152 getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) { 153 // Values implicitly captured by the parallel operation. 154 llvm::SetVector<Value> captures; 155 getUsedValuesDefinedAbove(op.region(), op.region(), captures); 156 157 llvm::SmallVector<Type> inputs; 158 inputs.reserve(2 + 4 * op.getNumLoops() + captures.size()); 159 160 Type indexTy = rewriter.getIndexType(); 161 162 // One-dimensional iteration space defined by the block index and size. 163 inputs.push_back(indexTy); // blockIndex 164 inputs.push_back(indexTy); // blockSize 165 166 // Multi-dimensional parallel iteration space defined by the loop trip counts. 167 for (unsigned i = 0; i < op.getNumLoops(); ++i) 168 inputs.push_back(indexTy); // loop tripCount 169 170 // Parallel operation lower bound, upper bound and step. 171 for (unsigned i = 0; i < op.getNumLoops(); ++i) { 172 inputs.push_back(indexTy); // lower bound 173 inputs.push_back(indexTy); // upper bound 174 inputs.push_back(indexTy); // step 175 } 176 177 // Types of the implicit captures. 178 for (Value capture : captures) 179 inputs.push_back(capture.getType()); 180 181 // Convert captures to vector for later convenience. 182 SmallVector<Value> capturesVector(captures.begin(), captures.end()); 183 return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector}; 184 } 185 186 // Create a parallel compute fuction from the parallel operation. 187 static ParallelComputeFunction 188 createParallelComputeFunction(scf::ParallelOp op, PatternRewriter &rewriter) { 189 OpBuilder::InsertionGuard guard(rewriter); 190 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 191 192 ModuleOp module = op->getParentOfType<ModuleOp>(); 193 194 // Make sure that all constants will be inside the parallel operation body to 195 // reduce the number of parallel compute function arguments. 196 cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter); 197 198 ParallelComputeFunctionType computeFuncType = 199 getParallelComputeFunctionType(op, rewriter); 200 201 FunctionType type = computeFuncType.type; 202 FuncOp func = FuncOp::create(op.getLoc(), "parallel_compute_fn", type); 203 func.setPrivate(); 204 205 // Insert function into the module symbol table and assign it unique name. 206 SymbolTable symbolTable(module); 207 symbolTable.insert(func); 208 rewriter.getListener()->notifyOperationInserted(func); 209 210 // Create function entry block. 211 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs()); 212 b.setInsertionPointToEnd(block); 213 214 unsigned offset = 0; // argument offset for arguments decoding 215 216 // Returns `numArguments` arguments starting from `offset` and updates offset 217 // by moving forward to the next argument. 218 auto getArguments = [&](unsigned numArguments) -> ArrayRef<Value> { 219 auto args = block->getArguments(); 220 auto slice = args.drop_front(offset).take_front(numArguments); 221 offset += numArguments; 222 return {slice.begin(), slice.end()}; 223 }; 224 225 // Block iteration position defined by the block index and size. 226 Value blockIndex = block->getArgument(offset++); 227 Value blockSize = block->getArgument(offset++); 228 229 // Constants used below. 230 Value c0 = b.create<arith::ConstantIndexOp>(0); 231 Value c1 = b.create<arith::ConstantIndexOp>(1); 232 233 // Multi-dimensional parallel iteration space defined by the loop trip counts. 234 ArrayRef<Value> tripCounts = getArguments(op.getNumLoops()); 235 236 // Compute a product of trip counts to get the size of the flattened 237 // one-dimensional iteration space. 238 Value tripCount = tripCounts[0]; 239 for (unsigned i = 1; i < tripCounts.size(); ++i) 240 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 241 242 // Parallel operation lower bound and step. 243 ArrayRef<Value> lowerBound = getArguments(op.getNumLoops()); 244 offset += op.getNumLoops(); // skip upper bound arguments 245 ArrayRef<Value> step = getArguments(op.getNumLoops()); 246 247 // Remaining arguments are implicit captures of the parallel operation. 248 ArrayRef<Value> captures = getArguments(block->getNumArguments() - offset); 249 250 // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]: 251 // blockFirstIndex = blockIndex * blockSize 252 Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize); 253 254 // The last one-dimensional index in the block defined by the `blockIndex`: 255 Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize); 256 Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount); 257 Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1); 258 259 // Convert one-dimensional indices to multi-dimensional coordinates. 260 auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts); 261 auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts); 262 263 // Compute loops upper bounds derived from the block last coordinates: 264 // blockEndCoord[i] = blockLastCoord[i] + 1 265 // 266 // Block first and last coordinates can be the same along the outer compute 267 // dimension when inner compute dimension contains multiple blocks. 268 SmallVector<Value> blockEndCoord(op.getNumLoops()); 269 for (size_t i = 0; i < blockLastCoord.size(); ++i) 270 blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1); 271 272 // Construct a loop nest out of scf.for operations that will iterate over 273 // all coordinates in [blockFirstCoord, blockLastCoord] range. 274 using LoopBodyBuilder = 275 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 276 using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>; 277 278 // Parallel region induction variables computed from the multi-dimensional 279 // iteration coordinate using parallel operation bounds and step: 280 // 281 // computeBlockInductionVars[loopIdx] = 282 // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopDdx] 283 SmallVector<Value> computeBlockInductionVars(op.getNumLoops()); 284 285 // We need to know if we are in the first or last iteration of the 286 // multi-dimensional loop for each loop in the nest, so we can decide what 287 // loop bounds should we use for the nested loops: bounds defined by compute 288 // block interval, or bounds defined by the parallel operation. 289 // 290 // Example: 2d parallel operation 291 // i j 292 // loop sizes: [50, 50] 293 // first coord: [25, 25] 294 // last coord: [30, 30] 295 // 296 // If `i` is equal to 25 then iteration over `j` should start at 25, when `i` 297 // is between 25 and 30 it should start at 0. The upper bound for `j` should 298 // be 50, except when `i` is equal to 30, then it should also be 30. 299 // 300 // Value at ith position specifies if all loops in [0, i) range of the loop 301 // nest are in the first/last iteration. 302 SmallVector<Value> isBlockFirstCoord(op.getNumLoops()); 303 SmallVector<Value> isBlockLastCoord(op.getNumLoops()); 304 305 // Builds inner loop nest inside async.execute operation that does all the 306 // work concurrently. 307 LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { 308 return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv, 309 ValueRange args) { 310 ImplicitLocOpBuilder nb(loc, nestedBuilder); 311 312 // Compute induction variable for `loopIdx`. 313 computeBlockInductionVars[loopIdx] = nb.create<arith::AddIOp>( 314 lowerBound[loopIdx], nb.create<arith::MulIOp>(iv, step[loopIdx])); 315 316 // Check if we are inside first or last iteration of the loop. 317 isBlockFirstCoord[loopIdx] = nb.create<arith::CmpIOp>( 318 arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]); 319 isBlockLastCoord[loopIdx] = nb.create<arith::CmpIOp>( 320 arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]); 321 322 // Check if the previous loop is in its first or last iteration. 323 if (loopIdx > 0) { 324 isBlockFirstCoord[loopIdx] = nb.create<arith::AndIOp>( 325 isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]); 326 isBlockLastCoord[loopIdx] = nb.create<arith::AndIOp>( 327 isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]); 328 } 329 330 // Keep building loop nest. 331 if (loopIdx < op.getNumLoops() - 1) { 332 // Select nested loop lower/upper bounds depending on out position in 333 // the multi-dimensional iteration space. 334 auto lb = nb.create<SelectOp>(isBlockFirstCoord[loopIdx], 335 blockFirstCoord[loopIdx + 1], c0); 336 337 auto ub = nb.create<SelectOp>(isBlockLastCoord[loopIdx], 338 blockEndCoord[loopIdx + 1], 339 tripCounts[loopIdx + 1]); 340 341 nb.create<scf::ForOp>(lb, ub, c1, ValueRange(), 342 workLoopBuilder(loopIdx + 1)); 343 nb.create<scf::YieldOp>(loc); 344 return; 345 } 346 347 // Copy the body of the parallel op into the inner-most loop. 348 BlockAndValueMapping mapping; 349 mapping.map(op.getInductionVars(), computeBlockInductionVars); 350 mapping.map(computeFuncType.captures, captures); 351 352 for (auto &bodyOp : op.getLoopBody().getOps()) 353 nb.clone(bodyOp, mapping); 354 }; 355 }; 356 357 b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(), 358 workLoopBuilder(0)); 359 b.create<ReturnOp>(ValueRange()); 360 361 return {func, std::move(computeFuncType.captures)}; 362 } 363 364 // Creates recursive async dispatch function for the given parallel compute 365 // function. Dispatch function keeps splitting block range into halves until it 366 // reaches a single block, and then excecutes it inline. 367 // 368 // Function pseudocode (mix of C++ and MLIR): 369 // 370 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 371 // 372 // // Keep splitting block range until we reached a range of size 1. 373 // while (%block_end - %block_start > 1) { 374 // %mid_index = block_start + (block_end - block_start) / 2; 375 // async.execute { call @async_dispatch(%mid_index, %block_end); } 376 // %block_end = %mid_index 377 // } 378 // 379 // // Call parallel compute function for a single block. 380 // call @parallel_compute_fn(%block_start, %block_size, ...); 381 // } 382 // 383 static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc, 384 PatternRewriter &rewriter) { 385 OpBuilder::InsertionGuard guard(rewriter); 386 Location loc = computeFunc.func.getLoc(); 387 ImplicitLocOpBuilder b(loc, rewriter); 388 389 ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>(); 390 391 ArrayRef<Type> computeFuncInputTypes = 392 computeFunc.func.type().cast<FunctionType>().getInputs(); 393 394 // Compared to the parallel compute function async dispatch function takes 395 // additional !async.group argument. Also instead of a single `blockIndex` it 396 // takes `blockStart` and `blockEnd` arguments to define the range of 397 // dispatched blocks. 398 SmallVector<Type> inputTypes; 399 inputTypes.push_back(async::GroupType::get(rewriter.getContext())); 400 inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument 401 inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end()); 402 403 FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange()); 404 FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type); 405 func.setPrivate(); 406 407 // Insert function into the module symbol table and assign it unique name. 408 SymbolTable symbolTable(module); 409 symbolTable.insert(func); 410 rewriter.getListener()->notifyOperationInserted(func); 411 412 // Create function entry block. 413 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs()); 414 b.setInsertionPointToEnd(block); 415 416 Type indexTy = b.getIndexType(); 417 Value c1 = b.create<arith::ConstantIndexOp>(1); 418 Value c2 = b.create<arith::ConstantIndexOp>(2); 419 420 // Get the async group that will track async dispatch completion. 421 Value group = block->getArgument(0); 422 423 // Get the block iteration range: [blockStart, blockEnd) 424 Value blockStart = block->getArgument(1); 425 Value blockEnd = block->getArgument(2); 426 427 // Create a work splitting while loop for the [blockStart, blockEnd) range. 428 SmallVector<Type> types = {indexTy, indexTy}; 429 SmallVector<Value> operands = {blockStart, blockEnd}; 430 431 // Create a recursive dispatch loop. 432 scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands); 433 Block *before = b.createBlock(&whileOp.before(), {}, types); 434 Block *after = b.createBlock(&whileOp.after(), {}, types); 435 436 // Setup dispatch loop condition block: decide if we need to go into the 437 // `after` block and launch one more async dispatch. 438 { 439 b.setInsertionPointToEnd(before); 440 Value start = before->getArgument(0); 441 Value end = before->getArgument(1); 442 Value distance = b.create<arith::SubIOp>(end, start); 443 Value dispatch = 444 b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1); 445 b.create<scf::ConditionOp>(dispatch, before->getArguments()); 446 } 447 448 // Setup the async dispatch loop body: recursively call dispatch function 449 // for the seconds half of the original range and go to the next iteration. 450 { 451 b.setInsertionPointToEnd(after); 452 Value start = after->getArgument(0); 453 Value end = after->getArgument(1); 454 Value distance = b.create<arith::SubIOp>(end, start); 455 Value halfDistance = b.create<arith::DivSIOp>(distance, c2); 456 Value midIndex = b.create<arith::AddIOp>(start, halfDistance); 457 458 // Call parallel compute function inside the async.execute region. 459 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 460 Location executeLoc, ValueRange executeArgs) { 461 // Update the original `blockStart` and `blockEnd` with new range. 462 SmallVector<Value> operands{block->getArguments().begin(), 463 block->getArguments().end()}; 464 operands[1] = midIndex; 465 operands[2] = end; 466 467 executeBuilder.create<CallOp>(executeLoc, func.sym_name(), 468 func.getCallableResults(), operands); 469 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 470 }; 471 472 // Create async.execute operation to dispatch half of the block range. 473 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 474 executeBodyBuilder); 475 b.create<AddToGroupOp>(indexTy, execute.token(), group); 476 b.create<scf::YieldOp>(ValueRange({start, midIndex})); 477 } 478 479 // After dispatching async operations to process the tail of the block range 480 // call the parallel compute function for the first block of the range. 481 b.setInsertionPointAfter(whileOp); 482 483 // Drop async dispatch specific arguments: async group, block start and end. 484 auto forwardedInputs = block->getArguments().drop_front(3); 485 SmallVector<Value> computeFuncOperands = {blockStart}; 486 computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end()); 487 488 b.create<CallOp>(computeFunc.func.sym_name(), 489 computeFunc.func.getCallableResults(), computeFuncOperands); 490 b.create<ReturnOp>(ValueRange()); 491 492 return func; 493 } 494 495 // Launch async dispatch of the parallel compute function. 496 static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 497 ParallelComputeFunction ¶llelComputeFunction, 498 scf::ParallelOp op, Value blockSize, 499 Value blockCount, 500 const SmallVector<Value> &tripCounts) { 501 MLIRContext *ctx = op->getContext(); 502 503 // Add one more level of indirection to dispatch parallel compute functions 504 // using async operations and recursive work splitting. 505 FuncOp asyncDispatchFunction = 506 createAsyncDispatchFunction(parallelComputeFunction, rewriter); 507 508 Value c0 = b.create<arith::ConstantIndexOp>(0); 509 Value c1 = b.create<arith::ConstantIndexOp>(1); 510 511 // Appends operands shared by async dispatch and parallel compute functions to 512 // the given operands vector. 513 auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) { 514 operands.append(tripCounts); 515 operands.append(op.lowerBound().begin(), op.lowerBound().end()); 516 operands.append(op.upperBound().begin(), op.upperBound().end()); 517 operands.append(op.step().begin(), op.step().end()); 518 operands.append(parallelComputeFunction.captures); 519 }; 520 521 // Check if the block size is one, in this case we can skip the async dispatch 522 // completely. If this will be known statically, then canonicalization will 523 // erase async group operations. 524 Value isSingleBlock = 525 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1); 526 527 auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 528 ImplicitLocOpBuilder nb(loc, nestedBuilder); 529 530 // Call parallel compute function for the single block. 531 SmallVector<Value> operands = {c0, blockSize}; 532 appendBlockComputeOperands(operands); 533 534 nb.create<CallOp>(parallelComputeFunction.func.sym_name(), 535 parallelComputeFunction.func.getCallableResults(), 536 operands); 537 nb.create<scf::YieldOp>(); 538 }; 539 540 auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 541 // Create an async.group to wait on all async tokens from the concurrent 542 // execution of multiple parallel compute function. First block will be 543 // executed synchronously in the caller thread. 544 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 545 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 546 547 ImplicitLocOpBuilder nb(loc, nestedBuilder); 548 549 // Launch async dispatch function for [0, blockCount) range. 550 SmallVector<Value> operands = {group, c0, blockCount, blockSize}; 551 appendBlockComputeOperands(operands); 552 553 nb.create<CallOp>(asyncDispatchFunction.sym_name(), 554 asyncDispatchFunction.getCallableResults(), operands); 555 556 // Wait for the completion of all parallel compute operations. 557 b.create<AwaitAllOp>(group); 558 559 nb.create<scf::YieldOp>(); 560 }; 561 562 // Dispatch either single block compute function, or launch async dispatch. 563 b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch); 564 } 565 566 // Dispatch parallel compute functions by submitting all async compute tasks 567 // from a simple for loop in the caller thread. 568 static void 569 doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 570 ParallelComputeFunction ¶llelComputeFunction, 571 scf::ParallelOp op, Value blockSize, Value blockCount, 572 const SmallVector<Value> &tripCounts) { 573 MLIRContext *ctx = op->getContext(); 574 575 FuncOp compute = parallelComputeFunction.func; 576 577 Value c0 = b.create<arith::ConstantIndexOp>(0); 578 Value c1 = b.create<arith::ConstantIndexOp>(1); 579 580 // Create an async.group to wait on all async tokens from the concurrent 581 // execution of multiple parallel compute function. First block will be 582 // executed synchronously in the caller thread. 583 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 584 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 585 586 // Call parallel compute function for all blocks. 587 using LoopBodyBuilder = 588 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 589 590 // Returns parallel compute function operands to process the given block. 591 auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> { 592 SmallVector<Value> computeFuncOperands = {blockIndex, blockSize}; 593 computeFuncOperands.append(tripCounts); 594 computeFuncOperands.append(op.lowerBound().begin(), op.lowerBound().end()); 595 computeFuncOperands.append(op.upperBound().begin(), op.upperBound().end()); 596 computeFuncOperands.append(op.step().begin(), op.step().end()); 597 computeFuncOperands.append(parallelComputeFunction.captures); 598 return computeFuncOperands; 599 }; 600 601 // Induction variable is the index of the block: [0, blockCount). 602 LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc, 603 Value iv, ValueRange args) { 604 ImplicitLocOpBuilder nb(loc, loopBuilder); 605 606 // Call parallel compute function inside the async.execute region. 607 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 608 Location executeLoc, ValueRange executeArgs) { 609 executeBuilder.create<CallOp>(executeLoc, compute.sym_name(), 610 compute.getCallableResults(), 611 computeFuncOperands(iv)); 612 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 613 }; 614 615 // Create async.execute operation to launch parallel computate function. 616 auto execute = nb.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 617 executeBodyBuilder); 618 nb.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group); 619 nb.create<scf::YieldOp>(); 620 }; 621 622 // Iterate over all compute blocks and launch parallel compute operations. 623 b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder); 624 625 // Call parallel compute function for the first block in the caller thread. 626 b.create<CallOp>(compute.sym_name(), compute.getCallableResults(), 627 computeFuncOperands(c0)); 628 629 // Wait for the completion of all async compute operations. 630 b.create<AwaitAllOp>(group); 631 } 632 633 LogicalResult 634 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op, 635 PatternRewriter &rewriter) const { 636 // We do not currently support rewrite for parallel op with reductions. 637 if (op.getNumReductions() != 0) 638 return failure(); 639 640 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 641 642 // Compute trip count for each loop induction variable: 643 // tripCount = ceil_div(upperBound - lowerBound, step); 644 SmallVector<Value> tripCounts(op.getNumLoops()); 645 for (size_t i = 0; i < op.getNumLoops(); ++i) { 646 auto lb = op.lowerBound()[i]; 647 auto ub = op.upperBound()[i]; 648 auto step = op.step()[i]; 649 auto range = b.create<arith::SubIOp>(ub, lb); 650 tripCounts[i] = b.create<arith::CeilDivSIOp>(range, step); 651 } 652 653 // Compute a product of trip counts to get the 1-dimensional iteration space 654 // for the scf.parallel operation. 655 Value tripCount = tripCounts[0]; 656 for (size_t i = 1; i < tripCounts.size(); ++i) 657 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 658 659 // Short circuit no-op parallel loops (zero iterations) that can arise from 660 // the memrefs with dynamic dimension(s) equal to zero. 661 Value c0 = b.create<arith::ConstantIndexOp>(0); 662 Value isZeroIterations = 663 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0); 664 665 // Do absolutely nothing if the trip count is zero. 666 auto noOp = [&](OpBuilder &nestedBuilder, Location loc) { 667 nestedBuilder.create<scf::YieldOp>(loc); 668 }; 669 670 // Compute the parallel block size and dispatch concurrent tasks computing 671 // results for each block. 672 auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) { 673 ImplicitLocOpBuilder nb(loc, nestedBuilder); 674 675 // With large number of threads the value of creating many compute blocks 676 // is reduced because the problem typically becomes memory bound. For small 677 // number of threads it helps with stragglers. 678 float overshardingFactor = numWorkerThreads <= 4 ? 8.0 679 : numWorkerThreads <= 8 ? 4.0 680 : numWorkerThreads <= 16 ? 2.0 681 : numWorkerThreads <= 32 ? 1.0 682 : numWorkerThreads <= 64 ? 0.8 683 : 0.6; 684 685 // Do not overload worker threads with too many compute blocks. 686 Value maxComputeBlocks = b.create<arith::ConstantIndexOp>( 687 std::max(1, static_cast<int>(numWorkerThreads * overshardingFactor))); 688 689 // Target block size from the pass parameters. 690 Value minTaskSizeCst = b.create<arith::ConstantIndexOp>(minTaskSize); 691 692 // Compute parallel block size from the parallel problem size: 693 // blockSize = min(tripCount, 694 // max(ceil_div(tripCount, maxComputeBlocks), 695 // ceil_div(minTaskSize, bodySize))) 696 Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks); 697 Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSizeCst); 698 Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1); 699 Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize); 700 701 // Create a parallel compute function that takes a block id and computes the 702 // parallel operation body for a subset of iteration space. 703 ParallelComputeFunction parallelComputeFunction = 704 createParallelComputeFunction(op, rewriter); 705 706 // Dispatch parallel compute function using async recursive work splitting, 707 // or by submitting compute task sequentially from a caller thread. 708 if (asyncDispatch) { 709 doAsyncDispatch(b, rewriter, parallelComputeFunction, op, blockSize, 710 blockCount, tripCounts); 711 } else { 712 doSequentialDispatch(b, rewriter, parallelComputeFunction, op, blockSize, 713 blockCount, tripCounts); 714 } 715 716 nb.create<scf::YieldOp>(); 717 }; 718 719 // Replace the `scf.parallel` operation with the parallel compute function. 720 b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch); 721 722 // Parallel operation was replaced with a block iteration loop. 723 rewriter.eraseOp(op); 724 725 return success(); 726 } 727 728 void AsyncParallelForPass::runOnOperation() { 729 MLIRContext *ctx = &getContext(); 730 731 RewritePatternSet patterns(ctx); 732 patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads, 733 minTaskSize); 734 735 if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)))) 736 signalPassFailure(); 737 } 738 739 std::unique_ptr<Pass> mlir::createAsyncParallelForPass() { 740 return std::make_unique<AsyncParallelForPass>(); 741 } 742 743 std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch, 744 int32_t numWorkerThreads, 745 int32_t minTaskSize) { 746 return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads, 747 minTaskSize); 748 } 749