1 //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements scf.parallel to scf.for + async.execute conversion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 15 #include "mlir/Dialect/Async/IR/Async.h" 16 #include "mlir/Dialect/Async/Passes.h" 17 #include "mlir/Dialect/SCF/SCF.h" 18 #include "mlir/Dialect/StandardOps/IR/Ops.h" 19 #include "mlir/IR/BlockAndValueMapping.h" 20 #include "mlir/IR/ImplicitLocOpBuilder.h" 21 #include "mlir/IR/Matchers.h" 22 #include "mlir/IR/PatternMatch.h" 23 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 24 #include "mlir/Transforms/RegionUtils.h" 25 26 using namespace mlir; 27 using namespace mlir::async; 28 29 #define DEBUG_TYPE "async-parallel-for" 30 31 namespace { 32 33 // Rewrite scf.parallel operation into multiple concurrent async.execute 34 // operations over non overlapping subranges of the original loop. 35 // 36 // Example: 37 // 38 // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) { 39 // "do_some_compute"(%i, %j): () -> () 40 // } 41 // 42 // Converted to: 43 // 44 // // Parallel compute function that executes the parallel body region for 45 // // a subset of the parallel iteration space defined by the one-dimensional 46 // // compute block index. 47 // func parallel_compute_function(%block_index : index, %block_size : index, 48 // <parallel operation properties>, ...) { 49 // // Compute multi-dimensional loop bounds for %block_index. 50 // %block_lbi, %block_lbj = ... 51 // %block_ubi, %block_ubj = ... 52 // 53 // // Clone parallel operation body into the scf.for loop nest. 54 // scf.for %i = %blockLbi to %blockUbi { 55 // scf.for %j = block_lbj to %block_ubj { 56 // "do_some_compute"(%i, %j): () -> () 57 // } 58 // } 59 // } 60 // 61 // And a dispatch function depending on the `asyncDispatch` option. 62 // 63 // When async dispatch is on: (pseudocode) 64 // 65 // %block_size = ... compute parallel compute block size 66 // %block_count = ... compute the number of compute blocks 67 // 68 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 69 // // Keep splitting block range until we reached a range of size 1. 70 // while (%block_end - %block_start > 1) { 71 // %mid_index = block_start + (block_end - block_start) / 2; 72 // async.execute { call @async_dispatch(%mid_index, %block_end); } 73 // %block_end = %mid_index 74 // } 75 // 76 // // Call parallel compute function for a single block. 77 // call @parallel_compute_fn(%block_start, %block_size, ...); 78 // } 79 // 80 // // Launch async dispatch for [0, block_count) range. 81 // call @async_dispatch(%c0, %block_count); 82 // 83 // When async dispatch is off: 84 // 85 // %block_size = ... compute parallel compute block size 86 // %block_count = ... compute the number of compute blocks 87 // 88 // scf.for %block_index = %c0 to %block_count { 89 // call @parallel_compute_fn(%block_index, %block_size, ...) 90 // } 91 // 92 struct AsyncParallelForPass 93 : public AsyncParallelForBase<AsyncParallelForPass> { 94 AsyncParallelForPass() = default; 95 96 AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads, 97 int32_t minTaskSize) { 98 this->asyncDispatch = asyncDispatch; 99 this->numWorkerThreads = numWorkerThreads; 100 this->minTaskSize = minTaskSize; 101 } 102 103 void runOnOperation() override; 104 }; 105 106 struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> { 107 public: 108 AsyncParallelForRewrite(MLIRContext *ctx, bool asyncDispatch, 109 int32_t numWorkerThreads, int32_t minTaskSize) 110 : OpRewritePattern(ctx), asyncDispatch(asyncDispatch), 111 numWorkerThreads(numWorkerThreads), minTaskSize(minTaskSize) {} 112 113 LogicalResult matchAndRewrite(scf::ParallelOp op, 114 PatternRewriter &rewriter) const override; 115 116 private: 117 bool asyncDispatch; 118 int32_t numWorkerThreads; 119 int32_t minTaskSize; 120 }; 121 122 struct ParallelComputeFunctionType { 123 FunctionType type; 124 SmallVector<Value> captures; 125 }; 126 127 // Helper struct to parse parallel compute function argument list. 128 struct ParallelComputeFunctionArgs { 129 BlockArgument blockIndex(); 130 BlockArgument blockSize(); 131 ArrayRef<BlockArgument> tripCounts(); 132 ArrayRef<BlockArgument> lowerBounds(); 133 ArrayRef<BlockArgument> upperBounds(); 134 ArrayRef<BlockArgument> steps(); 135 ArrayRef<BlockArgument> captures(); 136 137 unsigned numLoops; 138 ArrayRef<BlockArgument> args; 139 }; 140 141 struct ParallelComputeFunctionBounds { 142 SmallVector<IntegerAttr> tripCounts; 143 SmallVector<IntegerAttr> lowerBounds; 144 SmallVector<IntegerAttr> upperBounds; 145 SmallVector<IntegerAttr> steps; 146 }; 147 148 struct ParallelComputeFunction { 149 unsigned numLoops; 150 FuncOp func; 151 llvm::SmallVector<Value> captures; 152 }; 153 154 } // namespace 155 156 BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; } 157 BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; } 158 159 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() { 160 return args.drop_front(2).take_front(numLoops); 161 } 162 163 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() { 164 return args.drop_front(2 + 1 * numLoops).take_front(numLoops); 165 } 166 167 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() { 168 return args.drop_front(2 + 2 * numLoops).take_front(numLoops); 169 } 170 171 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() { 172 return args.drop_front(2 + 3 * numLoops).take_front(numLoops); 173 } 174 175 ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() { 176 return args.drop_front(2 + 4 * numLoops); 177 } 178 179 template <typename ValueRange> 180 static SmallVector<IntegerAttr> integerConstants(ValueRange values) { 181 SmallVector<IntegerAttr> attrs(values.size()); 182 for (unsigned i = 0; i < values.size(); ++i) 183 matchPattern(values[i], m_Constant(&attrs[i])); 184 return attrs; 185 } 186 187 // Converts one-dimensional iteration index in the [0, tripCount) interval 188 // into multidimensional iteration coordinate. 189 static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index, 190 ArrayRef<Value> tripCounts) { 191 SmallVector<Value> coords(tripCounts.size()); 192 assert(!tripCounts.empty() && "tripCounts must be not empty"); 193 194 for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) { 195 coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]); 196 index = b.create<arith::DivSIOp>(index, tripCounts[i]); 197 } 198 199 return coords; 200 } 201 202 // Returns a function type and implicit captures for a parallel compute 203 // function. We'll need a list of implicit captures to setup block and value 204 // mapping when we'll clone the body of the parallel operation. 205 static ParallelComputeFunctionType 206 getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) { 207 // Values implicitly captured by the parallel operation. 208 llvm::SetVector<Value> captures; 209 getUsedValuesDefinedAbove(op.region(), op.region(), captures); 210 211 SmallVector<Type> inputs; 212 inputs.reserve(2 + 4 * op.getNumLoops() + captures.size()); 213 214 Type indexTy = rewriter.getIndexType(); 215 216 // One-dimensional iteration space defined by the block index and size. 217 inputs.push_back(indexTy); // blockIndex 218 inputs.push_back(indexTy); // blockSize 219 220 // Multi-dimensional parallel iteration space defined by the loop trip counts. 221 for (unsigned i = 0; i < op.getNumLoops(); ++i) 222 inputs.push_back(indexTy); // loop tripCount 223 224 // Parallel operation lower bound, upper bound and step. Lower bound, upper 225 // bound and step passed as contiguous arguments: 226 // call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...) 227 for (unsigned i = 0; i < op.getNumLoops(); ++i) { 228 inputs.push_back(indexTy); // lower bound 229 inputs.push_back(indexTy); // upper bound 230 inputs.push_back(indexTy); // step 231 } 232 233 // Types of the implicit captures. 234 for (Value capture : captures) 235 inputs.push_back(capture.getType()); 236 237 // Convert captures to vector for later convenience. 238 SmallVector<Value> capturesVector(captures.begin(), captures.end()); 239 return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector}; 240 } 241 242 // Create a parallel compute fuction from the parallel operation. 243 static ParallelComputeFunction createParallelComputeFunction( 244 scf::ParallelOp op, ParallelComputeFunctionBounds bounds, 245 unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) { 246 OpBuilder::InsertionGuard guard(rewriter); 247 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 248 249 ModuleOp module = op->getParentOfType<ModuleOp>(); 250 251 ParallelComputeFunctionType computeFuncType = 252 getParallelComputeFunctionType(op, rewriter); 253 254 FunctionType type = computeFuncType.type; 255 FuncOp func = FuncOp::create(op.getLoc(), "parallel_compute_fn", type); 256 func.setPrivate(); 257 258 // Insert function into the module symbol table and assign it unique name. 259 SymbolTable symbolTable(module); 260 symbolTable.insert(func); 261 rewriter.getListener()->notifyOperationInserted(func); 262 263 // Create function entry block. 264 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs()); 265 b.setInsertionPointToEnd(block); 266 267 ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()}; 268 269 // Block iteration position defined by the block index and size. 270 BlockArgument blockIndex = args.blockIndex(); 271 BlockArgument blockSize = args.blockSize(); 272 273 // Constants used below. 274 Value c0 = b.create<arith::ConstantIndexOp>(0); 275 Value c1 = b.create<arith::ConstantIndexOp>(1); 276 277 // Materialize known constants as constant operation in the function body. 278 auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) { 279 return llvm::to_vector( 280 llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value { 281 if (IntegerAttr attr = std::get<1>(tuple)) 282 return b.create<ConstantOp>(attr); 283 return std::get<0>(tuple); 284 })); 285 }; 286 287 // Multi-dimensional parallel iteration space defined by the loop trip counts. 288 auto tripCounts = values(args.tripCounts(), bounds.tripCounts); 289 290 // Parallel operation lower bound and step. 291 auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds); 292 auto steps = values(args.steps(), bounds.steps); 293 294 // Remaining arguments are implicit captures of the parallel operation. 295 ArrayRef<BlockArgument> captures = args.captures(); 296 297 // Compute a product of trip counts to get the size of the flattened 298 // one-dimensional iteration space. 299 Value tripCount = tripCounts[0]; 300 for (unsigned i = 1; i < tripCounts.size(); ++i) 301 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 302 303 // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]: 304 // blockFirstIndex = blockIndex * blockSize 305 Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize); 306 307 // The last one-dimensional index in the block defined by the `blockIndex`: 308 // blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1 309 Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize); 310 Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount); 311 Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1); 312 313 // Convert one-dimensional indices to multi-dimensional coordinates. 314 auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts); 315 auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts); 316 317 // Compute loops upper bounds derived from the block last coordinates: 318 // blockEndCoord[i] = blockLastCoord[i] + 1 319 // 320 // Block first and last coordinates can be the same along the outer compute 321 // dimension when inner compute dimension contains multiple blocks. 322 SmallVector<Value> blockEndCoord(op.getNumLoops()); 323 for (size_t i = 0; i < blockLastCoord.size(); ++i) 324 blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1); 325 326 // Construct a loop nest out of scf.for operations that will iterate over 327 // all coordinates in [blockFirstCoord, blockLastCoord] range. 328 using LoopBodyBuilder = 329 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 330 using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>; 331 332 // Parallel region induction variables computed from the multi-dimensional 333 // iteration coordinate using parallel operation bounds and step: 334 // 335 // computeBlockInductionVars[loopIdx] = 336 // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx] 337 SmallVector<Value> computeBlockInductionVars(op.getNumLoops()); 338 339 // We need to know if we are in the first or last iteration of the 340 // multi-dimensional loop for each loop in the nest, so we can decide what 341 // loop bounds should we use for the nested loops: bounds defined by compute 342 // block interval, or bounds defined by the parallel operation. 343 // 344 // Example: 2d parallel operation 345 // i j 346 // loop sizes: [50, 50] 347 // first coord: [25, 25] 348 // last coord: [30, 30] 349 // 350 // If `i` is equal to 25 then iteration over `j` should start at 25, when `i` 351 // is between 25 and 30 it should start at 0. The upper bound for `j` should 352 // be 50, except when `i` is equal to 30, then it should also be 30. 353 // 354 // Value at ith position specifies if all loops in [0, i) range of the loop 355 // nest are in the first/last iteration. 356 SmallVector<Value> isBlockFirstCoord(op.getNumLoops()); 357 SmallVector<Value> isBlockLastCoord(op.getNumLoops()); 358 359 // Builds inner loop nest inside async.execute operation that does all the 360 // work concurrently. 361 LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { 362 return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv, 363 ValueRange args) { 364 ImplicitLocOpBuilder nb(loc, nestedBuilder); 365 366 // Compute induction variable for `loopIdx`. 367 computeBlockInductionVars[loopIdx] = nb.create<arith::AddIOp>( 368 lowerBounds[loopIdx], nb.create<arith::MulIOp>(iv, steps[loopIdx])); 369 370 // Check if we are inside first or last iteration of the loop. 371 isBlockFirstCoord[loopIdx] = nb.create<arith::CmpIOp>( 372 arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]); 373 isBlockLastCoord[loopIdx] = nb.create<arith::CmpIOp>( 374 arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]); 375 376 // Check if the previous loop is in its first or last iteration. 377 if (loopIdx > 0) { 378 isBlockFirstCoord[loopIdx] = nb.create<arith::AndIOp>( 379 isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]); 380 isBlockLastCoord[loopIdx] = nb.create<arith::AndIOp>( 381 isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]); 382 } 383 384 // Keep building loop nest. 385 if (loopIdx < op.getNumLoops() - 1) { 386 if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) { 387 // For block aligned loops we always iterate starting from 0 up to 388 // the loop trip counts. 389 nb.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(), 390 workLoopBuilder(loopIdx + 1)); 391 392 } else { 393 // Select nested loop lower/upper bounds depending on our position in 394 // the multi-dimensional iteration space. 395 auto lb = nb.create<SelectOp>(isBlockFirstCoord[loopIdx], 396 blockFirstCoord[loopIdx + 1], c0); 397 398 auto ub = nb.create<SelectOp>(isBlockLastCoord[loopIdx], 399 blockEndCoord[loopIdx + 1], 400 tripCounts[loopIdx + 1]); 401 402 nb.create<scf::ForOp>(lb, ub, c1, ValueRange(), 403 workLoopBuilder(loopIdx + 1)); 404 } 405 406 nb.create<scf::YieldOp>(loc); 407 return; 408 } 409 410 // Copy the body of the parallel op into the inner-most loop. 411 BlockAndValueMapping mapping; 412 mapping.map(op.getInductionVars(), computeBlockInductionVars); 413 mapping.map(computeFuncType.captures, captures); 414 415 for (auto &bodyOp : op.getLoopBody().getOps()) 416 nb.clone(bodyOp, mapping); 417 }; 418 }; 419 420 b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(), 421 workLoopBuilder(0)); 422 b.create<ReturnOp>(ValueRange()); 423 424 return {op.getNumLoops(), func, std::move(computeFuncType.captures)}; 425 } 426 427 // Creates recursive async dispatch function for the given parallel compute 428 // function. Dispatch function keeps splitting block range into halves until it 429 // reaches a single block, and then excecutes it inline. 430 // 431 // Function pseudocode (mix of C++ and MLIR): 432 // 433 // func @async_dispatch(%block_start : index, %block_end : index, ...) { 434 // 435 // // Keep splitting block range until we reached a range of size 1. 436 // while (%block_end - %block_start > 1) { 437 // %mid_index = block_start + (block_end - block_start) / 2; 438 // async.execute { call @async_dispatch(%mid_index, %block_end); } 439 // %block_end = %mid_index 440 // } 441 // 442 // // Call parallel compute function for a single block. 443 // call @parallel_compute_fn(%block_start, %block_size, ...); 444 // } 445 // 446 static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc, 447 PatternRewriter &rewriter) { 448 OpBuilder::InsertionGuard guard(rewriter); 449 Location loc = computeFunc.func.getLoc(); 450 ImplicitLocOpBuilder b(loc, rewriter); 451 452 ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>(); 453 454 ArrayRef<Type> computeFuncInputTypes = 455 computeFunc.func.type().cast<FunctionType>().getInputs(); 456 457 // Compared to the parallel compute function async dispatch function takes 458 // additional !async.group argument. Also instead of a single `blockIndex` it 459 // takes `blockStart` and `blockEnd` arguments to define the range of 460 // dispatched blocks. 461 SmallVector<Type> inputTypes; 462 inputTypes.push_back(async::GroupType::get(rewriter.getContext())); 463 inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument 464 inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end()); 465 466 FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange()); 467 FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type); 468 func.setPrivate(); 469 470 // Insert function into the module symbol table and assign it unique name. 471 SymbolTable symbolTable(module); 472 symbolTable.insert(func); 473 rewriter.getListener()->notifyOperationInserted(func); 474 475 // Create function entry block. 476 Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs()); 477 b.setInsertionPointToEnd(block); 478 479 Type indexTy = b.getIndexType(); 480 Value c1 = b.create<arith::ConstantIndexOp>(1); 481 Value c2 = b.create<arith::ConstantIndexOp>(2); 482 483 // Get the async group that will track async dispatch completion. 484 Value group = block->getArgument(0); 485 486 // Get the block iteration range: [blockStart, blockEnd) 487 Value blockStart = block->getArgument(1); 488 Value blockEnd = block->getArgument(2); 489 490 // Create a work splitting while loop for the [blockStart, blockEnd) range. 491 SmallVector<Type> types = {indexTy, indexTy}; 492 SmallVector<Value> operands = {blockStart, blockEnd}; 493 494 // Create a recursive dispatch loop. 495 scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands); 496 Block *before = b.createBlock(&whileOp.before(), {}, types); 497 Block *after = b.createBlock(&whileOp.after(), {}, types); 498 499 // Setup dispatch loop condition block: decide if we need to go into the 500 // `after` block and launch one more async dispatch. 501 { 502 b.setInsertionPointToEnd(before); 503 Value start = before->getArgument(0); 504 Value end = before->getArgument(1); 505 Value distance = b.create<arith::SubIOp>(end, start); 506 Value dispatch = 507 b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1); 508 b.create<scf::ConditionOp>(dispatch, before->getArguments()); 509 } 510 511 // Setup the async dispatch loop body: recursively call dispatch function 512 // for the seconds half of the original range and go to the next iteration. 513 { 514 b.setInsertionPointToEnd(after); 515 Value start = after->getArgument(0); 516 Value end = after->getArgument(1); 517 Value distance = b.create<arith::SubIOp>(end, start); 518 Value halfDistance = b.create<arith::DivSIOp>(distance, c2); 519 Value midIndex = b.create<arith::AddIOp>(start, halfDistance); 520 521 // Call parallel compute function inside the async.execute region. 522 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 523 Location executeLoc, ValueRange executeArgs) { 524 // Update the original `blockStart` and `blockEnd` with new range. 525 SmallVector<Value> operands{block->getArguments().begin(), 526 block->getArguments().end()}; 527 operands[1] = midIndex; 528 operands[2] = end; 529 530 executeBuilder.create<CallOp>(executeLoc, func.sym_name(), 531 func.getCallableResults(), operands); 532 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 533 }; 534 535 // Create async.execute operation to dispatch half of the block range. 536 auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 537 executeBodyBuilder); 538 b.create<AddToGroupOp>(indexTy, execute.token(), group); 539 b.create<scf::YieldOp>(ValueRange({start, midIndex})); 540 } 541 542 // After dispatching async operations to process the tail of the block range 543 // call the parallel compute function for the first block of the range. 544 b.setInsertionPointAfter(whileOp); 545 546 // Drop async dispatch specific arguments: async group, block start and end. 547 auto forwardedInputs = block->getArguments().drop_front(3); 548 SmallVector<Value> computeFuncOperands = {blockStart}; 549 computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end()); 550 551 b.create<CallOp>(computeFunc.func.sym_name(), 552 computeFunc.func.getCallableResults(), computeFuncOperands); 553 b.create<ReturnOp>(ValueRange()); 554 555 return func; 556 } 557 558 // Launch async dispatch of the parallel compute function. 559 static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 560 ParallelComputeFunction ¶llelComputeFunction, 561 scf::ParallelOp op, Value blockSize, 562 Value blockCount, 563 const SmallVector<Value> &tripCounts) { 564 MLIRContext *ctx = op->getContext(); 565 566 // Add one more level of indirection to dispatch parallel compute functions 567 // using async operations and recursive work splitting. 568 FuncOp asyncDispatchFunction = 569 createAsyncDispatchFunction(parallelComputeFunction, rewriter); 570 571 Value c0 = b.create<arith::ConstantIndexOp>(0); 572 Value c1 = b.create<arith::ConstantIndexOp>(1); 573 574 // Appends operands shared by async dispatch and parallel compute functions to 575 // the given operands vector. 576 auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) { 577 operands.append(tripCounts); 578 operands.append(op.lowerBound().begin(), op.lowerBound().end()); 579 operands.append(op.upperBound().begin(), op.upperBound().end()); 580 operands.append(op.step().begin(), op.step().end()); 581 operands.append(parallelComputeFunction.captures); 582 }; 583 584 // Check if the block size is one, in this case we can skip the async dispatch 585 // completely. If this will be known statically, then canonicalization will 586 // erase async group operations. 587 Value isSingleBlock = 588 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1); 589 590 auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 591 ImplicitLocOpBuilder nb(loc, nestedBuilder); 592 593 // Call parallel compute function for the single block. 594 SmallVector<Value> operands = {c0, blockSize}; 595 appendBlockComputeOperands(operands); 596 597 nb.create<CallOp>(parallelComputeFunction.func.sym_name(), 598 parallelComputeFunction.func.getCallableResults(), 599 operands); 600 nb.create<scf::YieldOp>(); 601 }; 602 603 auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 604 // Create an async.group to wait on all async tokens from the concurrent 605 // execution of multiple parallel compute function. First block will be 606 // executed synchronously in the caller thread. 607 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 608 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 609 610 ImplicitLocOpBuilder nb(loc, nestedBuilder); 611 612 // Launch async dispatch function for [0, blockCount) range. 613 SmallVector<Value> operands = {group, c0, blockCount, blockSize}; 614 appendBlockComputeOperands(operands); 615 616 nb.create<CallOp>(asyncDispatchFunction.sym_name(), 617 asyncDispatchFunction.getCallableResults(), operands); 618 619 // Wait for the completion of all parallel compute operations. 620 b.create<AwaitAllOp>(group); 621 622 nb.create<scf::YieldOp>(); 623 }; 624 625 // Dispatch either single block compute function, or launch async dispatch. 626 b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch); 627 } 628 629 // Dispatch parallel compute functions by submitting all async compute tasks 630 // from a simple for loop in the caller thread. 631 static void 632 doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 633 ParallelComputeFunction ¶llelComputeFunction, 634 scf::ParallelOp op, Value blockSize, Value blockCount, 635 const SmallVector<Value> &tripCounts) { 636 MLIRContext *ctx = op->getContext(); 637 638 FuncOp compute = parallelComputeFunction.func; 639 640 Value c0 = b.create<arith::ConstantIndexOp>(0); 641 Value c1 = b.create<arith::ConstantIndexOp>(1); 642 643 // Create an async.group to wait on all async tokens from the concurrent 644 // execution of multiple parallel compute function. First block will be 645 // executed synchronously in the caller thread. 646 Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 647 Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 648 649 // Call parallel compute function for all blocks. 650 using LoopBodyBuilder = 651 std::function<void(OpBuilder &, Location, Value, ValueRange)>; 652 653 // Returns parallel compute function operands to process the given block. 654 auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> { 655 SmallVector<Value> computeFuncOperands = {blockIndex, blockSize}; 656 computeFuncOperands.append(tripCounts); 657 computeFuncOperands.append(op.lowerBound().begin(), op.lowerBound().end()); 658 computeFuncOperands.append(op.upperBound().begin(), op.upperBound().end()); 659 computeFuncOperands.append(op.step().begin(), op.step().end()); 660 computeFuncOperands.append(parallelComputeFunction.captures); 661 return computeFuncOperands; 662 }; 663 664 // Induction variable is the index of the block: [0, blockCount). 665 LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc, 666 Value iv, ValueRange args) { 667 ImplicitLocOpBuilder nb(loc, loopBuilder); 668 669 // Call parallel compute function inside the async.execute region. 670 auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 671 Location executeLoc, ValueRange executeArgs) { 672 executeBuilder.create<CallOp>(executeLoc, compute.sym_name(), 673 compute.getCallableResults(), 674 computeFuncOperands(iv)); 675 executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 676 }; 677 678 // Create async.execute operation to launch parallel computate function. 679 auto execute = nb.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 680 executeBodyBuilder); 681 nb.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group); 682 nb.create<scf::YieldOp>(); 683 }; 684 685 // Iterate over all compute blocks and launch parallel compute operations. 686 b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder); 687 688 // Call parallel compute function for the first block in the caller thread. 689 b.create<CallOp>(compute.sym_name(), compute.getCallableResults(), 690 computeFuncOperands(c0)); 691 692 // Wait for the completion of all async compute operations. 693 b.create<AwaitAllOp>(group); 694 } 695 696 LogicalResult 697 AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op, 698 PatternRewriter &rewriter) const { 699 // We do not currently support rewrite for parallel op with reductions. 700 if (op.getNumReductions() != 0) 701 return failure(); 702 703 ImplicitLocOpBuilder b(op.getLoc(), rewriter); 704 705 // Make sure that all constants will be inside the parallel operation body to 706 // reduce the number of parallel compute function arguments. 707 cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter); 708 709 // Compute trip count for each loop induction variable: 710 // tripCount = ceil_div(upperBound - lowerBound, step); 711 SmallVector<Value> tripCounts(op.getNumLoops()); 712 for (size_t i = 0; i < op.getNumLoops(); ++i) { 713 auto lb = op.lowerBound()[i]; 714 auto ub = op.upperBound()[i]; 715 auto step = op.step()[i]; 716 auto range = b.createOrFold<arith::SubIOp>(ub, lb); 717 tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step); 718 } 719 720 // Compute a product of trip counts to get the 1-dimensional iteration space 721 // for the scf.parallel operation. 722 Value tripCount = tripCounts[0]; 723 for (size_t i = 1; i < tripCounts.size(); ++i) 724 tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 725 726 // Short circuit no-op parallel loops (zero iterations) that can arise from 727 // the memrefs with dynamic dimension(s) equal to zero. 728 Value c0 = b.create<arith::ConstantIndexOp>(0); 729 Value isZeroIterations = 730 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0); 731 732 // Do absolutely nothing if the trip count is zero. 733 auto noOp = [&](OpBuilder &nestedBuilder, Location loc) { 734 nestedBuilder.create<scf::YieldOp>(loc); 735 }; 736 737 // Compute the parallel block size and dispatch concurrent tasks computing 738 // results for each block. 739 auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) { 740 ImplicitLocOpBuilder nb(loc, nestedBuilder); 741 742 // Collect statically known constants defining the loop nest in the parallel 743 // compute function. LLVM can't always push constants across the non-trivial 744 // async dispatch call graph, by providing these values explicitly we can 745 // choose to build more efficient loop nest, and rely on a better constant 746 // folding, loop unrolling and vectorization. 747 ParallelComputeFunctionBounds staticBounds = { 748 integerConstants(tripCounts), 749 integerConstants(op.lowerBound()), 750 integerConstants(op.upperBound()), 751 integerConstants(op.step()), 752 }; 753 754 // Find how many inner iteration dimensions are statically known, and their 755 // product is smaller than the `512`. We aling the parallel compute block 756 // size by the product of statically known dimensions, so that we can 757 // guarantee that the inner loops executes from 0 to the loop trip counts 758 // and we can elide dynamic loop boundaries, and give LLVM an opportunity to 759 // unroll the loops. The constant `512` is arbitrary, it should depend on 760 // how many iterations LLVM will typically decide to unroll. 761 static constexpr int64_t maxIterations = 512; 762 763 // The number of inner loops with statically known number of iterations less 764 // than the `maxIterations` value. 765 int numUnrollableLoops = 0; 766 767 auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; }; 768 769 SmallVector<int64_t> numIterations(op.getNumLoops()); 770 numIterations.back() = getInt(staticBounds.tripCounts.back()); 771 772 for (int i = op.getNumLoops() - 2; i >= 0; --i) { 773 int64_t tripCount = getInt(staticBounds.tripCounts[i]); 774 int64_t innerIterations = numIterations[i + 1]; 775 numIterations[i] = tripCount * innerIterations; 776 777 // Update the number of inner loops that we can potentially unroll. 778 if (innerIterations > 0 && innerIterations <= maxIterations) 779 numUnrollableLoops++; 780 } 781 782 // With large number of threads the value of creating many compute blocks 783 // is reduced because the problem typically becomes memory bound. For small 784 // number of threads it helps with stragglers. 785 float overshardingFactor = numWorkerThreads <= 4 ? 8.0 786 : numWorkerThreads <= 8 ? 4.0 787 : numWorkerThreads <= 16 ? 2.0 788 : numWorkerThreads <= 32 ? 1.0 789 : numWorkerThreads <= 64 ? 0.8 790 : 0.6; 791 792 // Do not overload worker threads with too many compute blocks. 793 Value maxComputeBlocks = b.create<arith::ConstantIndexOp>( 794 std::max(1, static_cast<int>(numWorkerThreads * overshardingFactor))); 795 796 // Target block size from the pass parameters. 797 Value minTaskSizeCst = b.create<arith::ConstantIndexOp>(minTaskSize); 798 799 // Compute parallel block size from the parallel problem size: 800 // blockSize = min(tripCount, 801 // max(ceil_div(tripCount, maxComputeBlocks), 802 // ceil_div(minTaskSize, bodySize))) 803 Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks); 804 Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSizeCst); 805 Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1); 806 807 // Align the block size to be a multiple of the statically known number 808 // of iterations in the inner loops. 809 if (numUnrollableLoops > 0 && minTaskSize >= maxIterations) { 810 Value numIters = b.create<arith::ConstantIndexOp>( 811 numIterations[op.getNumLoops() - numUnrollableLoops]); 812 Value bs2 = b.create<arith::MulIOp>( 813 b.create<arith::CeilDivSIOp>(blockSize, numIters), numIters); 814 blockSize = b.create<arith::MinSIOp>(tripCount, bs2); 815 } else { 816 // Reset the number of unrollable loops if we didn't align the block size. 817 numUnrollableLoops = 0; 818 } 819 820 // Compute the number of parallel compute blocks. 821 Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize); 822 823 // Create a parallel compute function that takes a block id and computes 824 // the parallel operation body for a subset of iteration space. 825 ParallelComputeFunction parallelComputeFunction = 826 createParallelComputeFunction(op, staticBounds, numUnrollableLoops, 827 rewriter); 828 829 // Dispatch parallel compute function using async recursive work splitting, 830 // or by submitting compute task sequentially from a caller thread. 831 if (asyncDispatch) { 832 doAsyncDispatch(b, rewriter, parallelComputeFunction, op, blockSize, 833 blockCount, tripCounts); 834 } else { 835 doSequentialDispatch(b, rewriter, parallelComputeFunction, op, blockSize, 836 blockCount, tripCounts); 837 } 838 839 nb.create<scf::YieldOp>(); 840 }; 841 842 // Replace the `scf.parallel` operation with the parallel compute function. 843 b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch); 844 845 // Parallel operation was replaced with a block iteration loop. 846 rewriter.eraseOp(op); 847 848 return success(); 849 } 850 851 void AsyncParallelForPass::runOnOperation() { 852 MLIRContext *ctx = &getContext(); 853 854 RewritePatternSet patterns(ctx); 855 patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads, 856 minTaskSize); 857 858 if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)))) 859 signalPassFailure(); 860 } 861 862 std::unique_ptr<Pass> mlir::createAsyncParallelForPass() { 863 return std::make_unique<AsyncParallelForPass>(); 864 } 865 866 std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch, 867 int32_t numWorkerThreads, 868 int32_t minTaskSize) { 869 return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads, 870 minTaskSize); 871 } 872