1c30ab6c2SEugene Zhulenev //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===// 2c30ab6c2SEugene Zhulenev // 3c30ab6c2SEugene Zhulenev // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4c30ab6c2SEugene Zhulenev // See https://llvm.org/LICENSE.txt for license information. 5c30ab6c2SEugene Zhulenev // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6c30ab6c2SEugene Zhulenev // 7c30ab6c2SEugene Zhulenev //===----------------------------------------------------------------------===// 8c30ab6c2SEugene Zhulenev // 986ad0af8SEugene Zhulenev // This file implements scf.parallel to scf.for + async.execute conversion pass. 10c30ab6c2SEugene Zhulenev // 11c30ab6c2SEugene Zhulenev //===----------------------------------------------------------------------===// 12c30ab6c2SEugene Zhulenev 13c30ab6c2SEugene Zhulenev #include "PassDetail.h" 14a54f4eaeSMogball #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 15c30ab6c2SEugene Zhulenev #include "mlir/Dialect/Async/IR/Async.h" 16c30ab6c2SEugene Zhulenev #include "mlir/Dialect/Async/Passes.h" 17*ec0e4545Sbakhtiyar #include "mlir/Dialect/Async/Transforms.h" 18c30ab6c2SEugene Zhulenev #include "mlir/Dialect/SCF/SCF.h" 19c30ab6c2SEugene Zhulenev #include "mlir/Dialect/StandardOps/IR/Ops.h" 20c30ab6c2SEugene Zhulenev #include "mlir/IR/BlockAndValueMapping.h" 2186ad0af8SEugene Zhulenev #include "mlir/IR/ImplicitLocOpBuilder.h" 229f151b78SEugene Zhulenev #include "mlir/IR/Matchers.h" 23c30ab6c2SEugene Zhulenev #include "mlir/IR/PatternMatch.h" 24c30ab6c2SEugene Zhulenev #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 2586ad0af8SEugene Zhulenev #include "mlir/Transforms/RegionUtils.h" 26c30ab6c2SEugene Zhulenev 27c30ab6c2SEugene Zhulenev using namespace mlir; 28c30ab6c2SEugene Zhulenev using namespace mlir::async; 29c30ab6c2SEugene Zhulenev 30c30ab6c2SEugene Zhulenev #define DEBUG_TYPE "async-parallel-for" 31c30ab6c2SEugene Zhulenev 32c30ab6c2SEugene Zhulenev namespace { 33c30ab6c2SEugene Zhulenev 34c30ab6c2SEugene Zhulenev // Rewrite scf.parallel operation into multiple concurrent async.execute 35c30ab6c2SEugene Zhulenev // operations over non overlapping subranges of the original loop. 36c30ab6c2SEugene Zhulenev // 37c30ab6c2SEugene Zhulenev // Example: 38c30ab6c2SEugene Zhulenev // 3986ad0af8SEugene Zhulenev // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) { 40c30ab6c2SEugene Zhulenev // "do_some_compute"(%i, %j): () -> () 41c30ab6c2SEugene Zhulenev // } 42c30ab6c2SEugene Zhulenev // 43c30ab6c2SEugene Zhulenev // Converted to: 44c30ab6c2SEugene Zhulenev // 4586ad0af8SEugene Zhulenev // // Parallel compute function that executes the parallel body region for 4686ad0af8SEugene Zhulenev // // a subset of the parallel iteration space defined by the one-dimensional 4786ad0af8SEugene Zhulenev // // compute block index. 4886ad0af8SEugene Zhulenev // func parallel_compute_function(%block_index : index, %block_size : index, 4986ad0af8SEugene Zhulenev // <parallel operation properties>, ...) { 5086ad0af8SEugene Zhulenev // // Compute multi-dimensional loop bounds for %block_index. 5186ad0af8SEugene Zhulenev // %block_lbi, %block_lbj = ... 5286ad0af8SEugene Zhulenev // %block_ubi, %block_ubj = ... 53c30ab6c2SEugene Zhulenev // 5486ad0af8SEugene Zhulenev // // Clone parallel operation body into the scf.for loop nest. 5586ad0af8SEugene Zhulenev // scf.for %i = %blockLbi to %blockUbi { 5686ad0af8SEugene Zhulenev // scf.for %j = block_lbj to %block_ubj { 57c30ab6c2SEugene Zhulenev // "do_some_compute"(%i, %j): () -> () 58c30ab6c2SEugene Zhulenev // } 59c30ab6c2SEugene Zhulenev // } 60c30ab6c2SEugene Zhulenev // } 61c30ab6c2SEugene Zhulenev // 6286ad0af8SEugene Zhulenev // And a dispatch function depending on the `asyncDispatch` option. 6386ad0af8SEugene Zhulenev // 6486ad0af8SEugene Zhulenev // When async dispatch is on: (pseudocode) 6586ad0af8SEugene Zhulenev // 6686ad0af8SEugene Zhulenev // %block_size = ... compute parallel compute block size 6786ad0af8SEugene Zhulenev // %block_count = ... compute the number of compute blocks 6886ad0af8SEugene Zhulenev // 6986ad0af8SEugene Zhulenev // func @async_dispatch(%block_start : index, %block_end : index, ...) { 7086ad0af8SEugene Zhulenev // // Keep splitting block range until we reached a range of size 1. 7186ad0af8SEugene Zhulenev // while (%block_end - %block_start > 1) { 7286ad0af8SEugene Zhulenev // %mid_index = block_start + (block_end - block_start) / 2; 7386ad0af8SEugene Zhulenev // async.execute { call @async_dispatch(%mid_index, %block_end); } 7486ad0af8SEugene Zhulenev // %block_end = %mid_index 75c30ab6c2SEugene Zhulenev // } 76c30ab6c2SEugene Zhulenev // 7786ad0af8SEugene Zhulenev // // Call parallel compute function for a single block. 7886ad0af8SEugene Zhulenev // call @parallel_compute_fn(%block_start, %block_size, ...); 7986ad0af8SEugene Zhulenev // } 80c30ab6c2SEugene Zhulenev // 8186ad0af8SEugene Zhulenev // // Launch async dispatch for [0, block_count) range. 8286ad0af8SEugene Zhulenev // call @async_dispatch(%c0, %block_count); 83c30ab6c2SEugene Zhulenev // 8486ad0af8SEugene Zhulenev // When async dispatch is off: 85c30ab6c2SEugene Zhulenev // 8686ad0af8SEugene Zhulenev // %block_size = ... compute parallel compute block size 8786ad0af8SEugene Zhulenev // %block_count = ... compute the number of compute blocks 8886ad0af8SEugene Zhulenev // 8986ad0af8SEugene Zhulenev // scf.for %block_index = %c0 to %block_count { 9086ad0af8SEugene Zhulenev // call @parallel_compute_fn(%block_index, %block_size, ...) 9186ad0af8SEugene Zhulenev // } 9286ad0af8SEugene Zhulenev // 9386ad0af8SEugene Zhulenev struct AsyncParallelForPass 9486ad0af8SEugene Zhulenev : public AsyncParallelForBase<AsyncParallelForPass> { 9586ad0af8SEugene Zhulenev AsyncParallelForPass() = default; 9634a164c9SEugene Zhulenev 9734a164c9SEugene Zhulenev AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads, 9855dfab39Sbakhtiyar int32_t minTaskSize) { 9934a164c9SEugene Zhulenev this->asyncDispatch = asyncDispatch; 10034a164c9SEugene Zhulenev this->numWorkerThreads = numWorkerThreads; 10155dfab39Sbakhtiyar this->minTaskSize = minTaskSize; 10234a164c9SEugene Zhulenev } 10334a164c9SEugene Zhulenev 10486ad0af8SEugene Zhulenev void runOnOperation() override; 10586ad0af8SEugene Zhulenev }; 10686ad0af8SEugene Zhulenev 107c30ab6c2SEugene Zhulenev struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> { 108c30ab6c2SEugene Zhulenev public: 109*ec0e4545Sbakhtiyar AsyncParallelForRewrite( 110*ec0e4545Sbakhtiyar MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads, 111*ec0e4545Sbakhtiyar AsyncMinTaskSizeComputationFunction computeMinTaskSize) 11286ad0af8SEugene Zhulenev : OpRewritePattern(ctx), asyncDispatch(asyncDispatch), 113*ec0e4545Sbakhtiyar numWorkerThreads(numWorkerThreads), 114*ec0e4545Sbakhtiyar computeMinTaskSize(computeMinTaskSize) {} 115c30ab6c2SEugene Zhulenev 116c30ab6c2SEugene Zhulenev LogicalResult matchAndRewrite(scf::ParallelOp op, 117c30ab6c2SEugene Zhulenev PatternRewriter &rewriter) const override; 118c30ab6c2SEugene Zhulenev 119c30ab6c2SEugene Zhulenev private: 12086ad0af8SEugene Zhulenev bool asyncDispatch; 12186ad0af8SEugene Zhulenev int32_t numWorkerThreads; 122*ec0e4545Sbakhtiyar AsyncMinTaskSizeComputationFunction computeMinTaskSize; 123c30ab6c2SEugene Zhulenev }; 124c30ab6c2SEugene Zhulenev 12586ad0af8SEugene Zhulenev struct ParallelComputeFunctionType { 12686ad0af8SEugene Zhulenev FunctionType type; 1279f151b78SEugene Zhulenev SmallVector<Value> captures; 1289f151b78SEugene Zhulenev }; 1299f151b78SEugene Zhulenev 1309f151b78SEugene Zhulenev // Helper struct to parse parallel compute function argument list. 1319f151b78SEugene Zhulenev struct ParallelComputeFunctionArgs { 1329f151b78SEugene Zhulenev BlockArgument blockIndex(); 1339f151b78SEugene Zhulenev BlockArgument blockSize(); 1349f151b78SEugene Zhulenev ArrayRef<BlockArgument> tripCounts(); 1359f151b78SEugene Zhulenev ArrayRef<BlockArgument> lowerBounds(); 1369f151b78SEugene Zhulenev ArrayRef<BlockArgument> upperBounds(); 1379f151b78SEugene Zhulenev ArrayRef<BlockArgument> steps(); 1389f151b78SEugene Zhulenev ArrayRef<BlockArgument> captures(); 1399f151b78SEugene Zhulenev 1409f151b78SEugene Zhulenev unsigned numLoops; 1419f151b78SEugene Zhulenev ArrayRef<BlockArgument> args; 1429f151b78SEugene Zhulenev }; 1439f151b78SEugene Zhulenev 1449f151b78SEugene Zhulenev struct ParallelComputeFunctionBounds { 1459f151b78SEugene Zhulenev SmallVector<IntegerAttr> tripCounts; 1469f151b78SEugene Zhulenev SmallVector<IntegerAttr> lowerBounds; 1479f151b78SEugene Zhulenev SmallVector<IntegerAttr> upperBounds; 1489f151b78SEugene Zhulenev SmallVector<IntegerAttr> steps; 14986ad0af8SEugene Zhulenev }; 15086ad0af8SEugene Zhulenev 15186ad0af8SEugene Zhulenev struct ParallelComputeFunction { 1529f151b78SEugene Zhulenev unsigned numLoops; 15386ad0af8SEugene Zhulenev FuncOp func; 15486ad0af8SEugene Zhulenev llvm::SmallVector<Value> captures; 155c30ab6c2SEugene Zhulenev }; 156c30ab6c2SEugene Zhulenev 157c30ab6c2SEugene Zhulenev } // namespace 158c30ab6c2SEugene Zhulenev 1599f151b78SEugene Zhulenev BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; } 1609f151b78SEugene Zhulenev BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; } 1619f151b78SEugene Zhulenev 1629f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() { 1639f151b78SEugene Zhulenev return args.drop_front(2).take_front(numLoops); 1649f151b78SEugene Zhulenev } 1659f151b78SEugene Zhulenev 1669f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() { 1679f151b78SEugene Zhulenev return args.drop_front(2 + 1 * numLoops).take_front(numLoops); 1689f151b78SEugene Zhulenev } 1699f151b78SEugene Zhulenev 1709f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() { 1719f151b78SEugene Zhulenev return args.drop_front(2 + 2 * numLoops).take_front(numLoops); 1729f151b78SEugene Zhulenev } 1739f151b78SEugene Zhulenev 1749f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() { 1759f151b78SEugene Zhulenev return args.drop_front(2 + 3 * numLoops).take_front(numLoops); 1769f151b78SEugene Zhulenev } 1779f151b78SEugene Zhulenev 1789f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() { 1799f151b78SEugene Zhulenev return args.drop_front(2 + 4 * numLoops); 1809f151b78SEugene Zhulenev } 1819f151b78SEugene Zhulenev 1829f151b78SEugene Zhulenev template <typename ValueRange> 1839f151b78SEugene Zhulenev static SmallVector<IntegerAttr> integerConstants(ValueRange values) { 1849f151b78SEugene Zhulenev SmallVector<IntegerAttr> attrs(values.size()); 1859f151b78SEugene Zhulenev for (unsigned i = 0; i < values.size(); ++i) 1869f151b78SEugene Zhulenev matchPattern(values[i], m_Constant(&attrs[i])); 1879f151b78SEugene Zhulenev return attrs; 1889f151b78SEugene Zhulenev } 1899f151b78SEugene Zhulenev 19086ad0af8SEugene Zhulenev // Converts one-dimensional iteration index in the [0, tripCount) interval 19186ad0af8SEugene Zhulenev // into multidimensional iteration coordinate. 19286ad0af8SEugene Zhulenev static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index, 19334a164c9SEugene Zhulenev ArrayRef<Value> tripCounts) { 19486ad0af8SEugene Zhulenev SmallVector<Value> coords(tripCounts.size()); 19586ad0af8SEugene Zhulenev assert(!tripCounts.empty() && "tripCounts must be not empty"); 19686ad0af8SEugene Zhulenev 19786ad0af8SEugene Zhulenev for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) { 198a54f4eaeSMogball coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]); 199a54f4eaeSMogball index = b.create<arith::DivSIOp>(index, tripCounts[i]); 20086ad0af8SEugene Zhulenev } 20186ad0af8SEugene Zhulenev 20286ad0af8SEugene Zhulenev return coords; 20386ad0af8SEugene Zhulenev } 20486ad0af8SEugene Zhulenev 20586ad0af8SEugene Zhulenev // Returns a function type and implicit captures for a parallel compute 20686ad0af8SEugene Zhulenev // function. We'll need a list of implicit captures to setup block and value 20786ad0af8SEugene Zhulenev // mapping when we'll clone the body of the parallel operation. 20886ad0af8SEugene Zhulenev static ParallelComputeFunctionType 20986ad0af8SEugene Zhulenev getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) { 21086ad0af8SEugene Zhulenev // Values implicitly captured by the parallel operation. 21186ad0af8SEugene Zhulenev llvm::SetVector<Value> captures; 21286ad0af8SEugene Zhulenev getUsedValuesDefinedAbove(op.region(), op.region(), captures); 21386ad0af8SEugene Zhulenev 2149f151b78SEugene Zhulenev SmallVector<Type> inputs; 21586ad0af8SEugene Zhulenev inputs.reserve(2 + 4 * op.getNumLoops() + captures.size()); 21686ad0af8SEugene Zhulenev 21786ad0af8SEugene Zhulenev Type indexTy = rewriter.getIndexType(); 21886ad0af8SEugene Zhulenev 21986ad0af8SEugene Zhulenev // One-dimensional iteration space defined by the block index and size. 22086ad0af8SEugene Zhulenev inputs.push_back(indexTy); // blockIndex 22186ad0af8SEugene Zhulenev inputs.push_back(indexTy); // blockSize 22286ad0af8SEugene Zhulenev 22386ad0af8SEugene Zhulenev // Multi-dimensional parallel iteration space defined by the loop trip counts. 22486ad0af8SEugene Zhulenev for (unsigned i = 0; i < op.getNumLoops(); ++i) 22586ad0af8SEugene Zhulenev inputs.push_back(indexTy); // loop tripCount 22686ad0af8SEugene Zhulenev 2279f151b78SEugene Zhulenev // Parallel operation lower bound, upper bound and step. Lower bound, upper 2289f151b78SEugene Zhulenev // bound and step passed as contiguous arguments: 2299f151b78SEugene Zhulenev // call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...) 23086ad0af8SEugene Zhulenev for (unsigned i = 0; i < op.getNumLoops(); ++i) { 23186ad0af8SEugene Zhulenev inputs.push_back(indexTy); // lower bound 23286ad0af8SEugene Zhulenev inputs.push_back(indexTy); // upper bound 23386ad0af8SEugene Zhulenev inputs.push_back(indexTy); // step 23486ad0af8SEugene Zhulenev } 23586ad0af8SEugene Zhulenev 23686ad0af8SEugene Zhulenev // Types of the implicit captures. 23786ad0af8SEugene Zhulenev for (Value capture : captures) 23886ad0af8SEugene Zhulenev inputs.push_back(capture.getType()); 23986ad0af8SEugene Zhulenev 24086ad0af8SEugene Zhulenev // Convert captures to vector for later convenience. 24186ad0af8SEugene Zhulenev SmallVector<Value> capturesVector(captures.begin(), captures.end()); 24286ad0af8SEugene Zhulenev return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector}; 24386ad0af8SEugene Zhulenev } 24486ad0af8SEugene Zhulenev 24586ad0af8SEugene Zhulenev // Create a parallel compute fuction from the parallel operation. 24649ce40e9SEugene Zhulenev static ParallelComputeFunction createParallelComputeFunction( 24749ce40e9SEugene Zhulenev scf::ParallelOp op, ParallelComputeFunctionBounds bounds, 24849ce40e9SEugene Zhulenev unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) { 24986ad0af8SEugene Zhulenev OpBuilder::InsertionGuard guard(rewriter); 25086ad0af8SEugene Zhulenev ImplicitLocOpBuilder b(op.getLoc(), rewriter); 25186ad0af8SEugene Zhulenev 25286ad0af8SEugene Zhulenev ModuleOp module = op->getParentOfType<ModuleOp>(); 25386ad0af8SEugene Zhulenev 25486ad0af8SEugene Zhulenev ParallelComputeFunctionType computeFuncType = 25586ad0af8SEugene Zhulenev getParallelComputeFunctionType(op, rewriter); 25686ad0af8SEugene Zhulenev 25786ad0af8SEugene Zhulenev FunctionType type = computeFuncType.type; 258*ec0e4545Sbakhtiyar FuncOp func = FuncOp::create(op.getLoc(), 259*ec0e4545Sbakhtiyar numBlockAlignedInnerLoops > 0 260*ec0e4545Sbakhtiyar ? "parallel_compute_fn_with_aligned_loops" 261*ec0e4545Sbakhtiyar : "parallel_compute_fn", 262*ec0e4545Sbakhtiyar type); 26386ad0af8SEugene Zhulenev func.setPrivate(); 26486ad0af8SEugene Zhulenev 26586ad0af8SEugene Zhulenev // Insert function into the module symbol table and assign it unique name. 26686ad0af8SEugene Zhulenev SymbolTable symbolTable(module); 26786ad0af8SEugene Zhulenev symbolTable.insert(func); 26886ad0af8SEugene Zhulenev rewriter.getListener()->notifyOperationInserted(func); 26986ad0af8SEugene Zhulenev 27086ad0af8SEugene Zhulenev // Create function entry block. 27186ad0af8SEugene Zhulenev Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs()); 27286ad0af8SEugene Zhulenev b.setInsertionPointToEnd(block); 27386ad0af8SEugene Zhulenev 2749f151b78SEugene Zhulenev ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()}; 27586ad0af8SEugene Zhulenev 27686ad0af8SEugene Zhulenev // Block iteration position defined by the block index and size. 2779f151b78SEugene Zhulenev BlockArgument blockIndex = args.blockIndex(); 2789f151b78SEugene Zhulenev BlockArgument blockSize = args.blockSize(); 27986ad0af8SEugene Zhulenev 28086ad0af8SEugene Zhulenev // Constants used below. 281a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0); 282a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1); 28386ad0af8SEugene Zhulenev 2849f151b78SEugene Zhulenev // Materialize known constants as constant operation in the function body. 2859f151b78SEugene Zhulenev auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) { 2869f151b78SEugene Zhulenev return llvm::to_vector( 2879f151b78SEugene Zhulenev llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value { 2889f151b78SEugene Zhulenev if (IntegerAttr attr = std::get<1>(tuple)) 2899f151b78SEugene Zhulenev return b.create<ConstantOp>(attr); 2909f151b78SEugene Zhulenev return std::get<0>(tuple); 2919f151b78SEugene Zhulenev })); 2929f151b78SEugene Zhulenev }; 2939f151b78SEugene Zhulenev 29486ad0af8SEugene Zhulenev // Multi-dimensional parallel iteration space defined by the loop trip counts. 2959f151b78SEugene Zhulenev auto tripCounts = values(args.tripCounts(), bounds.tripCounts); 2969f151b78SEugene Zhulenev 2979f151b78SEugene Zhulenev // Parallel operation lower bound and step. 2989f151b78SEugene Zhulenev auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds); 2999f151b78SEugene Zhulenev auto steps = values(args.steps(), bounds.steps); 3009f151b78SEugene Zhulenev 3019f151b78SEugene Zhulenev // Remaining arguments are implicit captures of the parallel operation. 3029f151b78SEugene Zhulenev ArrayRef<BlockArgument> captures = args.captures(); 30386ad0af8SEugene Zhulenev 30486ad0af8SEugene Zhulenev // Compute a product of trip counts to get the size of the flattened 30586ad0af8SEugene Zhulenev // one-dimensional iteration space. 30686ad0af8SEugene Zhulenev Value tripCount = tripCounts[0]; 30786ad0af8SEugene Zhulenev for (unsigned i = 1; i < tripCounts.size(); ++i) 308a54f4eaeSMogball tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 30986ad0af8SEugene Zhulenev 31086ad0af8SEugene Zhulenev // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]: 31186ad0af8SEugene Zhulenev // blockFirstIndex = blockIndex * blockSize 312a54f4eaeSMogball Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize); 31386ad0af8SEugene Zhulenev 31486ad0af8SEugene Zhulenev // The last one-dimensional index in the block defined by the `blockIndex`: 31568a7c001SEugene Zhulenev // blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1 316a54f4eaeSMogball Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize); 3177bd87a03Sbakhtiyar Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount); 3187bd87a03Sbakhtiyar Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1); 31986ad0af8SEugene Zhulenev 32086ad0af8SEugene Zhulenev // Convert one-dimensional indices to multi-dimensional coordinates. 32186ad0af8SEugene Zhulenev auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts); 32286ad0af8SEugene Zhulenev auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts); 32386ad0af8SEugene Zhulenev 32434a164c9SEugene Zhulenev // Compute loops upper bounds derived from the block last coordinates: 32586ad0af8SEugene Zhulenev // blockEndCoord[i] = blockLastCoord[i] + 1 32686ad0af8SEugene Zhulenev // 32786ad0af8SEugene Zhulenev // Block first and last coordinates can be the same along the outer compute 32834a164c9SEugene Zhulenev // dimension when inner compute dimension contains multiple blocks. 32986ad0af8SEugene Zhulenev SmallVector<Value> blockEndCoord(op.getNumLoops()); 33086ad0af8SEugene Zhulenev for (size_t i = 0; i < blockLastCoord.size(); ++i) 331a54f4eaeSMogball blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1); 33286ad0af8SEugene Zhulenev 33386ad0af8SEugene Zhulenev // Construct a loop nest out of scf.for operations that will iterate over 33486ad0af8SEugene Zhulenev // all coordinates in [blockFirstCoord, blockLastCoord] range. 33586ad0af8SEugene Zhulenev using LoopBodyBuilder = 33686ad0af8SEugene Zhulenev std::function<void(OpBuilder &, Location, Value, ValueRange)>; 33786ad0af8SEugene Zhulenev using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>; 33886ad0af8SEugene Zhulenev 33986ad0af8SEugene Zhulenev // Parallel region induction variables computed from the multi-dimensional 34086ad0af8SEugene Zhulenev // iteration coordinate using parallel operation bounds and step: 34186ad0af8SEugene Zhulenev // 34286ad0af8SEugene Zhulenev // computeBlockInductionVars[loopIdx] = 34368a7c001SEugene Zhulenev // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx] 34486ad0af8SEugene Zhulenev SmallVector<Value> computeBlockInductionVars(op.getNumLoops()); 34586ad0af8SEugene Zhulenev 34686ad0af8SEugene Zhulenev // We need to know if we are in the first or last iteration of the 34786ad0af8SEugene Zhulenev // multi-dimensional loop for each loop in the nest, so we can decide what 34886ad0af8SEugene Zhulenev // loop bounds should we use for the nested loops: bounds defined by compute 34986ad0af8SEugene Zhulenev // block interval, or bounds defined by the parallel operation. 35086ad0af8SEugene Zhulenev // 35186ad0af8SEugene Zhulenev // Example: 2d parallel operation 35286ad0af8SEugene Zhulenev // i j 35386ad0af8SEugene Zhulenev // loop sizes: [50, 50] 35486ad0af8SEugene Zhulenev // first coord: [25, 25] 35586ad0af8SEugene Zhulenev // last coord: [30, 30] 35686ad0af8SEugene Zhulenev // 35786ad0af8SEugene Zhulenev // If `i` is equal to 25 then iteration over `j` should start at 25, when `i` 35886ad0af8SEugene Zhulenev // is between 25 and 30 it should start at 0. The upper bound for `j` should 35986ad0af8SEugene Zhulenev // be 50, except when `i` is equal to 30, then it should also be 30. 36086ad0af8SEugene Zhulenev // 36186ad0af8SEugene Zhulenev // Value at ith position specifies if all loops in [0, i) range of the loop 36286ad0af8SEugene Zhulenev // nest are in the first/last iteration. 36386ad0af8SEugene Zhulenev SmallVector<Value> isBlockFirstCoord(op.getNumLoops()); 36486ad0af8SEugene Zhulenev SmallVector<Value> isBlockLastCoord(op.getNumLoops()); 36586ad0af8SEugene Zhulenev 36686ad0af8SEugene Zhulenev // Builds inner loop nest inside async.execute operation that does all the 36786ad0af8SEugene Zhulenev // work concurrently. 36886ad0af8SEugene Zhulenev LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { 36986ad0af8SEugene Zhulenev return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv, 37086ad0af8SEugene Zhulenev ValueRange args) { 37186ad0af8SEugene Zhulenev ImplicitLocOpBuilder nb(loc, nestedBuilder); 37286ad0af8SEugene Zhulenev 37386ad0af8SEugene Zhulenev // Compute induction variable for `loopIdx`. 374a54f4eaeSMogball computeBlockInductionVars[loopIdx] = nb.create<arith::AddIOp>( 3759f151b78SEugene Zhulenev lowerBounds[loopIdx], nb.create<arith::MulIOp>(iv, steps[loopIdx])); 37686ad0af8SEugene Zhulenev 37786ad0af8SEugene Zhulenev // Check if we are inside first or last iteration of the loop. 378a54f4eaeSMogball isBlockFirstCoord[loopIdx] = nb.create<arith::CmpIOp>( 379a54f4eaeSMogball arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]); 380a54f4eaeSMogball isBlockLastCoord[loopIdx] = nb.create<arith::CmpIOp>( 381a54f4eaeSMogball arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]); 38286ad0af8SEugene Zhulenev 38334a164c9SEugene Zhulenev // Check if the previous loop is in its first or last iteration. 38486ad0af8SEugene Zhulenev if (loopIdx > 0) { 385a54f4eaeSMogball isBlockFirstCoord[loopIdx] = nb.create<arith::AndIOp>( 38686ad0af8SEugene Zhulenev isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]); 387a54f4eaeSMogball isBlockLastCoord[loopIdx] = nb.create<arith::AndIOp>( 38886ad0af8SEugene Zhulenev isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]); 38986ad0af8SEugene Zhulenev } 39086ad0af8SEugene Zhulenev 39186ad0af8SEugene Zhulenev // Keep building loop nest. 39286ad0af8SEugene Zhulenev if (loopIdx < op.getNumLoops() - 1) { 39349ce40e9SEugene Zhulenev if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) { 39449ce40e9SEugene Zhulenev // For block aligned loops we always iterate starting from 0 up to 39549ce40e9SEugene Zhulenev // the loop trip counts. 39649ce40e9SEugene Zhulenev nb.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(), 39749ce40e9SEugene Zhulenev workLoopBuilder(loopIdx + 1)); 39849ce40e9SEugene Zhulenev 39949ce40e9SEugene Zhulenev } else { 40068a7c001SEugene Zhulenev // Select nested loop lower/upper bounds depending on our position in 40186ad0af8SEugene Zhulenev // the multi-dimensional iteration space. 40286ad0af8SEugene Zhulenev auto lb = nb.create<SelectOp>(isBlockFirstCoord[loopIdx], 40386ad0af8SEugene Zhulenev blockFirstCoord[loopIdx + 1], c0); 40486ad0af8SEugene Zhulenev 40586ad0af8SEugene Zhulenev auto ub = nb.create<SelectOp>(isBlockLastCoord[loopIdx], 40686ad0af8SEugene Zhulenev blockEndCoord[loopIdx + 1], 40786ad0af8SEugene Zhulenev tripCounts[loopIdx + 1]); 40886ad0af8SEugene Zhulenev 40986ad0af8SEugene Zhulenev nb.create<scf::ForOp>(lb, ub, c1, ValueRange(), 41086ad0af8SEugene Zhulenev workLoopBuilder(loopIdx + 1)); 41149ce40e9SEugene Zhulenev } 41249ce40e9SEugene Zhulenev 41386ad0af8SEugene Zhulenev nb.create<scf::YieldOp>(loc); 41486ad0af8SEugene Zhulenev return; 41586ad0af8SEugene Zhulenev } 41686ad0af8SEugene Zhulenev 41786ad0af8SEugene Zhulenev // Copy the body of the parallel op into the inner-most loop. 41886ad0af8SEugene Zhulenev BlockAndValueMapping mapping; 41986ad0af8SEugene Zhulenev mapping.map(op.getInductionVars(), computeBlockInductionVars); 42086ad0af8SEugene Zhulenev mapping.map(computeFuncType.captures, captures); 42186ad0af8SEugene Zhulenev 42286ad0af8SEugene Zhulenev for (auto &bodyOp : op.getLoopBody().getOps()) 42386ad0af8SEugene Zhulenev nb.clone(bodyOp, mapping); 42486ad0af8SEugene Zhulenev }; 42586ad0af8SEugene Zhulenev }; 42686ad0af8SEugene Zhulenev 42786ad0af8SEugene Zhulenev b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(), 42886ad0af8SEugene Zhulenev workLoopBuilder(0)); 42986ad0af8SEugene Zhulenev b.create<ReturnOp>(ValueRange()); 43086ad0af8SEugene Zhulenev 4319f151b78SEugene Zhulenev return {op.getNumLoops(), func, std::move(computeFuncType.captures)}; 43286ad0af8SEugene Zhulenev } 43386ad0af8SEugene Zhulenev 43486ad0af8SEugene Zhulenev // Creates recursive async dispatch function for the given parallel compute 43586ad0af8SEugene Zhulenev // function. Dispatch function keeps splitting block range into halves until it 43686ad0af8SEugene Zhulenev // reaches a single block, and then excecutes it inline. 43786ad0af8SEugene Zhulenev // 43886ad0af8SEugene Zhulenev // Function pseudocode (mix of C++ and MLIR): 43986ad0af8SEugene Zhulenev // 44086ad0af8SEugene Zhulenev // func @async_dispatch(%block_start : index, %block_end : index, ...) { 44186ad0af8SEugene Zhulenev // 44286ad0af8SEugene Zhulenev // // Keep splitting block range until we reached a range of size 1. 44386ad0af8SEugene Zhulenev // while (%block_end - %block_start > 1) { 44486ad0af8SEugene Zhulenev // %mid_index = block_start + (block_end - block_start) / 2; 44586ad0af8SEugene Zhulenev // async.execute { call @async_dispatch(%mid_index, %block_end); } 44686ad0af8SEugene Zhulenev // %block_end = %mid_index 44786ad0af8SEugene Zhulenev // } 44886ad0af8SEugene Zhulenev // 44986ad0af8SEugene Zhulenev // // Call parallel compute function for a single block. 45086ad0af8SEugene Zhulenev // call @parallel_compute_fn(%block_start, %block_size, ...); 45186ad0af8SEugene Zhulenev // } 45286ad0af8SEugene Zhulenev // 45386ad0af8SEugene Zhulenev static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc, 45486ad0af8SEugene Zhulenev PatternRewriter &rewriter) { 45586ad0af8SEugene Zhulenev OpBuilder::InsertionGuard guard(rewriter); 45686ad0af8SEugene Zhulenev Location loc = computeFunc.func.getLoc(); 45786ad0af8SEugene Zhulenev ImplicitLocOpBuilder b(loc, rewriter); 45886ad0af8SEugene Zhulenev 45986ad0af8SEugene Zhulenev ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>(); 46086ad0af8SEugene Zhulenev 46186ad0af8SEugene Zhulenev ArrayRef<Type> computeFuncInputTypes = 46286ad0af8SEugene Zhulenev computeFunc.func.type().cast<FunctionType>().getInputs(); 46386ad0af8SEugene Zhulenev 46486ad0af8SEugene Zhulenev // Compared to the parallel compute function async dispatch function takes 46586ad0af8SEugene Zhulenev // additional !async.group argument. Also instead of a single `blockIndex` it 46686ad0af8SEugene Zhulenev // takes `blockStart` and `blockEnd` arguments to define the range of 46786ad0af8SEugene Zhulenev // dispatched blocks. 46886ad0af8SEugene Zhulenev SmallVector<Type> inputTypes; 46986ad0af8SEugene Zhulenev inputTypes.push_back(async::GroupType::get(rewriter.getContext())); 47086ad0af8SEugene Zhulenev inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument 47186ad0af8SEugene Zhulenev inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end()); 47286ad0af8SEugene Zhulenev 47386ad0af8SEugene Zhulenev FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange()); 47486ad0af8SEugene Zhulenev FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type); 47586ad0af8SEugene Zhulenev func.setPrivate(); 47686ad0af8SEugene Zhulenev 47786ad0af8SEugene Zhulenev // Insert function into the module symbol table and assign it unique name. 47886ad0af8SEugene Zhulenev SymbolTable symbolTable(module); 47986ad0af8SEugene Zhulenev symbolTable.insert(func); 48086ad0af8SEugene Zhulenev rewriter.getListener()->notifyOperationInserted(func); 48186ad0af8SEugene Zhulenev 48286ad0af8SEugene Zhulenev // Create function entry block. 48386ad0af8SEugene Zhulenev Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs()); 48486ad0af8SEugene Zhulenev b.setInsertionPointToEnd(block); 48586ad0af8SEugene Zhulenev 48686ad0af8SEugene Zhulenev Type indexTy = b.getIndexType(); 487a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1); 488a54f4eaeSMogball Value c2 = b.create<arith::ConstantIndexOp>(2); 48986ad0af8SEugene Zhulenev 49086ad0af8SEugene Zhulenev // Get the async group that will track async dispatch completion. 49186ad0af8SEugene Zhulenev Value group = block->getArgument(0); 49286ad0af8SEugene Zhulenev 49386ad0af8SEugene Zhulenev // Get the block iteration range: [blockStart, blockEnd) 49486ad0af8SEugene Zhulenev Value blockStart = block->getArgument(1); 49586ad0af8SEugene Zhulenev Value blockEnd = block->getArgument(2); 49686ad0af8SEugene Zhulenev 49786ad0af8SEugene Zhulenev // Create a work splitting while loop for the [blockStart, blockEnd) range. 49886ad0af8SEugene Zhulenev SmallVector<Type> types = {indexTy, indexTy}; 49986ad0af8SEugene Zhulenev SmallVector<Value> operands = {blockStart, blockEnd}; 50086ad0af8SEugene Zhulenev 50186ad0af8SEugene Zhulenev // Create a recursive dispatch loop. 50286ad0af8SEugene Zhulenev scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands); 50386ad0af8SEugene Zhulenev Block *before = b.createBlock(&whileOp.before(), {}, types); 50486ad0af8SEugene Zhulenev Block *after = b.createBlock(&whileOp.after(), {}, types); 50586ad0af8SEugene Zhulenev 50686ad0af8SEugene Zhulenev // Setup dispatch loop condition block: decide if we need to go into the 50786ad0af8SEugene Zhulenev // `after` block and launch one more async dispatch. 50886ad0af8SEugene Zhulenev { 50986ad0af8SEugene Zhulenev b.setInsertionPointToEnd(before); 51086ad0af8SEugene Zhulenev Value start = before->getArgument(0); 51186ad0af8SEugene Zhulenev Value end = before->getArgument(1); 512a54f4eaeSMogball Value distance = b.create<arith::SubIOp>(end, start); 513a54f4eaeSMogball Value dispatch = 514a54f4eaeSMogball b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1); 51586ad0af8SEugene Zhulenev b.create<scf::ConditionOp>(dispatch, before->getArguments()); 51686ad0af8SEugene Zhulenev } 51786ad0af8SEugene Zhulenev 51886ad0af8SEugene Zhulenev // Setup the async dispatch loop body: recursively call dispatch function 51934a164c9SEugene Zhulenev // for the seconds half of the original range and go to the next iteration. 52086ad0af8SEugene Zhulenev { 52186ad0af8SEugene Zhulenev b.setInsertionPointToEnd(after); 52286ad0af8SEugene Zhulenev Value start = after->getArgument(0); 52386ad0af8SEugene Zhulenev Value end = after->getArgument(1); 524a54f4eaeSMogball Value distance = b.create<arith::SubIOp>(end, start); 525a54f4eaeSMogball Value halfDistance = b.create<arith::DivSIOp>(distance, c2); 526a54f4eaeSMogball Value midIndex = b.create<arith::AddIOp>(start, halfDistance); 52786ad0af8SEugene Zhulenev 52886ad0af8SEugene Zhulenev // Call parallel compute function inside the async.execute region. 52986ad0af8SEugene Zhulenev auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 53086ad0af8SEugene Zhulenev Location executeLoc, ValueRange executeArgs) { 53186ad0af8SEugene Zhulenev // Update the original `blockStart` and `blockEnd` with new range. 53286ad0af8SEugene Zhulenev SmallVector<Value> operands{block->getArguments().begin(), 53386ad0af8SEugene Zhulenev block->getArguments().end()}; 53486ad0af8SEugene Zhulenev operands[1] = midIndex; 53586ad0af8SEugene Zhulenev operands[2] = end; 53686ad0af8SEugene Zhulenev 53786ad0af8SEugene Zhulenev executeBuilder.create<CallOp>(executeLoc, func.sym_name(), 53886ad0af8SEugene Zhulenev func.getCallableResults(), operands); 53986ad0af8SEugene Zhulenev executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 54086ad0af8SEugene Zhulenev }; 54186ad0af8SEugene Zhulenev 54286ad0af8SEugene Zhulenev // Create async.execute operation to dispatch half of the block range. 54386ad0af8SEugene Zhulenev auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 54486ad0af8SEugene Zhulenev executeBodyBuilder); 54586ad0af8SEugene Zhulenev b.create<AddToGroupOp>(indexTy, execute.token(), group); 54634a164c9SEugene Zhulenev b.create<scf::YieldOp>(ValueRange({start, midIndex})); 54786ad0af8SEugene Zhulenev } 54886ad0af8SEugene Zhulenev 54986ad0af8SEugene Zhulenev // After dispatching async operations to process the tail of the block range 55086ad0af8SEugene Zhulenev // call the parallel compute function for the first block of the range. 55186ad0af8SEugene Zhulenev b.setInsertionPointAfter(whileOp); 55286ad0af8SEugene Zhulenev 55386ad0af8SEugene Zhulenev // Drop async dispatch specific arguments: async group, block start and end. 55486ad0af8SEugene Zhulenev auto forwardedInputs = block->getArguments().drop_front(3); 55586ad0af8SEugene Zhulenev SmallVector<Value> computeFuncOperands = {blockStart}; 55686ad0af8SEugene Zhulenev computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end()); 55786ad0af8SEugene Zhulenev 55886ad0af8SEugene Zhulenev b.create<CallOp>(computeFunc.func.sym_name(), 55986ad0af8SEugene Zhulenev computeFunc.func.getCallableResults(), computeFuncOperands); 56086ad0af8SEugene Zhulenev b.create<ReturnOp>(ValueRange()); 56186ad0af8SEugene Zhulenev 56286ad0af8SEugene Zhulenev return func; 56386ad0af8SEugene Zhulenev } 56486ad0af8SEugene Zhulenev 56586ad0af8SEugene Zhulenev // Launch async dispatch of the parallel compute function. 56686ad0af8SEugene Zhulenev static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 56786ad0af8SEugene Zhulenev ParallelComputeFunction ¶llelComputeFunction, 56886ad0af8SEugene Zhulenev scf::ParallelOp op, Value blockSize, 56986ad0af8SEugene Zhulenev Value blockCount, 57086ad0af8SEugene Zhulenev const SmallVector<Value> &tripCounts) { 57186ad0af8SEugene Zhulenev MLIRContext *ctx = op->getContext(); 57286ad0af8SEugene Zhulenev 57386ad0af8SEugene Zhulenev // Add one more level of indirection to dispatch parallel compute functions 57486ad0af8SEugene Zhulenev // using async operations and recursive work splitting. 57586ad0af8SEugene Zhulenev FuncOp asyncDispatchFunction = 57686ad0af8SEugene Zhulenev createAsyncDispatchFunction(parallelComputeFunction, rewriter); 57786ad0af8SEugene Zhulenev 578a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0); 579a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1); 58086ad0af8SEugene Zhulenev 581a8f819c6SEugene Zhulenev // Appends operands shared by async dispatch and parallel compute functions to 582a8f819c6SEugene Zhulenev // the given operands vector. 583a8f819c6SEugene Zhulenev auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) { 584a8f819c6SEugene Zhulenev operands.append(tripCounts); 585a8f819c6SEugene Zhulenev operands.append(op.lowerBound().begin(), op.lowerBound().end()); 586a8f819c6SEugene Zhulenev operands.append(op.upperBound().begin(), op.upperBound().end()); 587a8f819c6SEugene Zhulenev operands.append(op.step().begin(), op.step().end()); 588a8f819c6SEugene Zhulenev operands.append(parallelComputeFunction.captures); 589a8f819c6SEugene Zhulenev }; 590a8f819c6SEugene Zhulenev 591a8f819c6SEugene Zhulenev // Check if the block size is one, in this case we can skip the async dispatch 592a8f819c6SEugene Zhulenev // completely. If this will be known statically, then canonicalization will 593a8f819c6SEugene Zhulenev // erase async group operations. 594a54f4eaeSMogball Value isSingleBlock = 595a54f4eaeSMogball b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1); 596a8f819c6SEugene Zhulenev 597a8f819c6SEugene Zhulenev auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 598a8f819c6SEugene Zhulenev ImplicitLocOpBuilder nb(loc, nestedBuilder); 599a8f819c6SEugene Zhulenev 600a8f819c6SEugene Zhulenev // Call parallel compute function for the single block. 601a8f819c6SEugene Zhulenev SmallVector<Value> operands = {c0, blockSize}; 602a8f819c6SEugene Zhulenev appendBlockComputeOperands(operands); 603a8f819c6SEugene Zhulenev 604a8f819c6SEugene Zhulenev nb.create<CallOp>(parallelComputeFunction.func.sym_name(), 605a8f819c6SEugene Zhulenev parallelComputeFunction.func.getCallableResults(), 606a8f819c6SEugene Zhulenev operands); 607a8f819c6SEugene Zhulenev nb.create<scf::YieldOp>(); 608a8f819c6SEugene Zhulenev }; 609a8f819c6SEugene Zhulenev 610a8f819c6SEugene Zhulenev auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 611bdde9595Sbakhtiyar // Create an async.group to wait on all async tokens from the concurrent 612bdde9595Sbakhtiyar // execution of multiple parallel compute function. First block will be 613bdde9595Sbakhtiyar // executed synchronously in the caller thread. 614a54f4eaeSMogball Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 615bdde9595Sbakhtiyar Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 616bdde9595Sbakhtiyar 617a8f819c6SEugene Zhulenev ImplicitLocOpBuilder nb(loc, nestedBuilder); 61886ad0af8SEugene Zhulenev 61986ad0af8SEugene Zhulenev // Launch async dispatch function for [0, blockCount) range. 620a8f819c6SEugene Zhulenev SmallVector<Value> operands = {group, c0, blockCount, blockSize}; 621a8f819c6SEugene Zhulenev appendBlockComputeOperands(operands); 622a8f819c6SEugene Zhulenev 623a8f819c6SEugene Zhulenev nb.create<CallOp>(asyncDispatchFunction.sym_name(), 624a8f819c6SEugene Zhulenev asyncDispatchFunction.getCallableResults(), operands); 625bdde9595Sbakhtiyar 626bdde9595Sbakhtiyar // Wait for the completion of all parallel compute operations. 627bdde9595Sbakhtiyar b.create<AwaitAllOp>(group); 628bdde9595Sbakhtiyar 629a8f819c6SEugene Zhulenev nb.create<scf::YieldOp>(); 630a8f819c6SEugene Zhulenev }; 631a8f819c6SEugene Zhulenev 632a8f819c6SEugene Zhulenev // Dispatch either single block compute function, or launch async dispatch. 633a8f819c6SEugene Zhulenev b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch); 63486ad0af8SEugene Zhulenev } 63586ad0af8SEugene Zhulenev 63686ad0af8SEugene Zhulenev // Dispatch parallel compute functions by submitting all async compute tasks 63786ad0af8SEugene Zhulenev // from a simple for loop in the caller thread. 63886ad0af8SEugene Zhulenev static void 63955dfab39Sbakhtiyar doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 64086ad0af8SEugene Zhulenev ParallelComputeFunction ¶llelComputeFunction, 64186ad0af8SEugene Zhulenev scf::ParallelOp op, Value blockSize, Value blockCount, 64286ad0af8SEugene Zhulenev const SmallVector<Value> &tripCounts) { 64386ad0af8SEugene Zhulenev MLIRContext *ctx = op->getContext(); 64486ad0af8SEugene Zhulenev 64586ad0af8SEugene Zhulenev FuncOp compute = parallelComputeFunction.func; 64686ad0af8SEugene Zhulenev 647a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0); 648a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1); 64986ad0af8SEugene Zhulenev 65086ad0af8SEugene Zhulenev // Create an async.group to wait on all async tokens from the concurrent 65186ad0af8SEugene Zhulenev // execution of multiple parallel compute function. First block will be 65286ad0af8SEugene Zhulenev // executed synchronously in the caller thread. 653a54f4eaeSMogball Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 65486ad0af8SEugene Zhulenev Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 65586ad0af8SEugene Zhulenev 65686ad0af8SEugene Zhulenev // Call parallel compute function for all blocks. 65786ad0af8SEugene Zhulenev using LoopBodyBuilder = 65886ad0af8SEugene Zhulenev std::function<void(OpBuilder &, Location, Value, ValueRange)>; 65986ad0af8SEugene Zhulenev 66086ad0af8SEugene Zhulenev // Returns parallel compute function operands to process the given block. 66186ad0af8SEugene Zhulenev auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> { 66286ad0af8SEugene Zhulenev SmallVector<Value> computeFuncOperands = {blockIndex, blockSize}; 66386ad0af8SEugene Zhulenev computeFuncOperands.append(tripCounts); 66486ad0af8SEugene Zhulenev computeFuncOperands.append(op.lowerBound().begin(), op.lowerBound().end()); 66586ad0af8SEugene Zhulenev computeFuncOperands.append(op.upperBound().begin(), op.upperBound().end()); 66686ad0af8SEugene Zhulenev computeFuncOperands.append(op.step().begin(), op.step().end()); 66786ad0af8SEugene Zhulenev computeFuncOperands.append(parallelComputeFunction.captures); 66886ad0af8SEugene Zhulenev return computeFuncOperands; 66986ad0af8SEugene Zhulenev }; 67086ad0af8SEugene Zhulenev 67186ad0af8SEugene Zhulenev // Induction variable is the index of the block: [0, blockCount). 67286ad0af8SEugene Zhulenev LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc, 67386ad0af8SEugene Zhulenev Value iv, ValueRange args) { 67486ad0af8SEugene Zhulenev ImplicitLocOpBuilder nb(loc, loopBuilder); 67586ad0af8SEugene Zhulenev 67686ad0af8SEugene Zhulenev // Call parallel compute function inside the async.execute region. 67786ad0af8SEugene Zhulenev auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 67886ad0af8SEugene Zhulenev Location executeLoc, ValueRange executeArgs) { 67986ad0af8SEugene Zhulenev executeBuilder.create<CallOp>(executeLoc, compute.sym_name(), 68086ad0af8SEugene Zhulenev compute.getCallableResults(), 68186ad0af8SEugene Zhulenev computeFuncOperands(iv)); 68286ad0af8SEugene Zhulenev executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 68386ad0af8SEugene Zhulenev }; 68486ad0af8SEugene Zhulenev 68586ad0af8SEugene Zhulenev // Create async.execute operation to launch parallel computate function. 68686ad0af8SEugene Zhulenev auto execute = nb.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 68786ad0af8SEugene Zhulenev executeBodyBuilder); 68886ad0af8SEugene Zhulenev nb.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group); 68986ad0af8SEugene Zhulenev nb.create<scf::YieldOp>(); 69086ad0af8SEugene Zhulenev }; 69186ad0af8SEugene Zhulenev 69286ad0af8SEugene Zhulenev // Iterate over all compute blocks and launch parallel compute operations. 69386ad0af8SEugene Zhulenev b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder); 69486ad0af8SEugene Zhulenev 69586ad0af8SEugene Zhulenev // Call parallel compute function for the first block in the caller thread. 69686ad0af8SEugene Zhulenev b.create<CallOp>(compute.sym_name(), compute.getCallableResults(), 69786ad0af8SEugene Zhulenev computeFuncOperands(c0)); 69886ad0af8SEugene Zhulenev 69986ad0af8SEugene Zhulenev // Wait for the completion of all async compute operations. 70086ad0af8SEugene Zhulenev b.create<AwaitAllOp>(group); 70186ad0af8SEugene Zhulenev } 70286ad0af8SEugene Zhulenev 703c30ab6c2SEugene Zhulenev LogicalResult 704c30ab6c2SEugene Zhulenev AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op, 705c30ab6c2SEugene Zhulenev PatternRewriter &rewriter) const { 706c30ab6c2SEugene Zhulenev // We do not currently support rewrite for parallel op with reductions. 707c30ab6c2SEugene Zhulenev if (op.getNumReductions() != 0) 708c30ab6c2SEugene Zhulenev return failure(); 709c30ab6c2SEugene Zhulenev 71086ad0af8SEugene Zhulenev ImplicitLocOpBuilder b(op.getLoc(), rewriter); 711c30ab6c2SEugene Zhulenev 712*ec0e4545Sbakhtiyar // Computing minTaskSize emits IR and can be implemented as executing a cost 713*ec0e4545Sbakhtiyar // model on the body of the scf.parallel. Thus it needs to be computed before 714*ec0e4545Sbakhtiyar // the body of the scf.parallel has been manipulated. 715*ec0e4545Sbakhtiyar Value minTaskSize = computeMinTaskSize(b, op); 716*ec0e4545Sbakhtiyar 7179f151b78SEugene Zhulenev // Make sure that all constants will be inside the parallel operation body to 7189f151b78SEugene Zhulenev // reduce the number of parallel compute function arguments. 7199f151b78SEugene Zhulenev cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter); 7209f151b78SEugene Zhulenev 721c30ab6c2SEugene Zhulenev // Compute trip count for each loop induction variable: 72286ad0af8SEugene Zhulenev // tripCount = ceil_div(upperBound - lowerBound, step); 72386ad0af8SEugene Zhulenev SmallVector<Value> tripCounts(op.getNumLoops()); 724c30ab6c2SEugene Zhulenev for (size_t i = 0; i < op.getNumLoops(); ++i) { 725c30ab6c2SEugene Zhulenev auto lb = op.lowerBound()[i]; 726c30ab6c2SEugene Zhulenev auto ub = op.upperBound()[i]; 727c30ab6c2SEugene Zhulenev auto step = op.step()[i]; 7289f151b78SEugene Zhulenev auto range = b.createOrFold<arith::SubIOp>(ub, lb); 7299f151b78SEugene Zhulenev tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step); 730c30ab6c2SEugene Zhulenev } 731c30ab6c2SEugene Zhulenev 73286ad0af8SEugene Zhulenev // Compute a product of trip counts to get the 1-dimensional iteration space 73386ad0af8SEugene Zhulenev // for the scf.parallel operation. 73486ad0af8SEugene Zhulenev Value tripCount = tripCounts[0]; 73586ad0af8SEugene Zhulenev for (size_t i = 1; i < tripCounts.size(); ++i) 736a54f4eaeSMogball tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 737c30ab6c2SEugene Zhulenev 7386c1f6558SEugene Zhulenev // Short circuit no-op parallel loops (zero iterations) that can arise from 7396c1f6558SEugene Zhulenev // the memrefs with dynamic dimension(s) equal to zero. 740a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0); 741a54f4eaeSMogball Value isZeroIterations = 742a54f4eaeSMogball b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0); 7436c1f6558SEugene Zhulenev 7446c1f6558SEugene Zhulenev // Do absolutely nothing if the trip count is zero. 7456c1f6558SEugene Zhulenev auto noOp = [&](OpBuilder &nestedBuilder, Location loc) { 7466c1f6558SEugene Zhulenev nestedBuilder.create<scf::YieldOp>(loc); 7476c1f6558SEugene Zhulenev }; 7486c1f6558SEugene Zhulenev 7496c1f6558SEugene Zhulenev // Compute the parallel block size and dispatch concurrent tasks computing 7506c1f6558SEugene Zhulenev // results for each block. 7516c1f6558SEugene Zhulenev auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) { 7526c1f6558SEugene Zhulenev ImplicitLocOpBuilder nb(loc, nestedBuilder); 7536c1f6558SEugene Zhulenev 75449ce40e9SEugene Zhulenev // Collect statically known constants defining the loop nest in the parallel 75549ce40e9SEugene Zhulenev // compute function. LLVM can't always push constants across the non-trivial 75649ce40e9SEugene Zhulenev // async dispatch call graph, by providing these values explicitly we can 75749ce40e9SEugene Zhulenev // choose to build more efficient loop nest, and rely on a better constant 75849ce40e9SEugene Zhulenev // folding, loop unrolling and vectorization. 75949ce40e9SEugene Zhulenev ParallelComputeFunctionBounds staticBounds = { 76049ce40e9SEugene Zhulenev integerConstants(tripCounts), 76149ce40e9SEugene Zhulenev integerConstants(op.lowerBound()), 76249ce40e9SEugene Zhulenev integerConstants(op.upperBound()), 76349ce40e9SEugene Zhulenev integerConstants(op.step()), 76449ce40e9SEugene Zhulenev }; 76549ce40e9SEugene Zhulenev 76649ce40e9SEugene Zhulenev // Find how many inner iteration dimensions are statically known, and their 767*ec0e4545Sbakhtiyar // product is smaller than the `512`. We align the parallel compute block 76849ce40e9SEugene Zhulenev // size by the product of statically known dimensions, so that we can 76949ce40e9SEugene Zhulenev // guarantee that the inner loops executes from 0 to the loop trip counts 77049ce40e9SEugene Zhulenev // and we can elide dynamic loop boundaries, and give LLVM an opportunity to 77149ce40e9SEugene Zhulenev // unroll the loops. The constant `512` is arbitrary, it should depend on 77249ce40e9SEugene Zhulenev // how many iterations LLVM will typically decide to unroll. 77349ce40e9SEugene Zhulenev static constexpr int64_t maxIterations = 512; 77449ce40e9SEugene Zhulenev 77549ce40e9SEugene Zhulenev // The number of inner loops with statically known number of iterations less 77649ce40e9SEugene Zhulenev // than the `maxIterations` value. 77749ce40e9SEugene Zhulenev int numUnrollableLoops = 0; 77849ce40e9SEugene Zhulenev 77949ce40e9SEugene Zhulenev auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; }; 78049ce40e9SEugene Zhulenev 78149ce40e9SEugene Zhulenev SmallVector<int64_t> numIterations(op.getNumLoops()); 78249ce40e9SEugene Zhulenev numIterations.back() = getInt(staticBounds.tripCounts.back()); 78349ce40e9SEugene Zhulenev 78449ce40e9SEugene Zhulenev for (int i = op.getNumLoops() - 2; i >= 0; --i) { 78549ce40e9SEugene Zhulenev int64_t tripCount = getInt(staticBounds.tripCounts[i]); 78649ce40e9SEugene Zhulenev int64_t innerIterations = numIterations[i + 1]; 78749ce40e9SEugene Zhulenev numIterations[i] = tripCount * innerIterations; 78849ce40e9SEugene Zhulenev 78949ce40e9SEugene Zhulenev // Update the number of inner loops that we can potentially unroll. 79049ce40e9SEugene Zhulenev if (innerIterations > 0 && innerIterations <= maxIterations) 79149ce40e9SEugene Zhulenev numUnrollableLoops++; 79249ce40e9SEugene Zhulenev } 79349ce40e9SEugene Zhulenev 794c1194c2eSEugene Zhulenev // With large number of threads the value of creating many compute blocks 795c1194c2eSEugene Zhulenev // is reduced because the problem typically becomes memory bound. For small 796c1194c2eSEugene Zhulenev // number of threads it helps with stragglers. 797c1194c2eSEugene Zhulenev float overshardingFactor = numWorkerThreads <= 4 ? 8.0 798c1194c2eSEugene Zhulenev : numWorkerThreads <= 8 ? 4.0 799c1194c2eSEugene Zhulenev : numWorkerThreads <= 16 ? 2.0 800c1194c2eSEugene Zhulenev : numWorkerThreads <= 32 ? 1.0 801c1194c2eSEugene Zhulenev : numWorkerThreads <= 64 ? 0.8 802c1194c2eSEugene Zhulenev : 0.6; 803c1194c2eSEugene Zhulenev 80486ad0af8SEugene Zhulenev // Do not overload worker threads with too many compute blocks. 805a54f4eaeSMogball Value maxComputeBlocks = b.create<arith::ConstantIndexOp>( 806c1194c2eSEugene Zhulenev std::max(1, static_cast<int>(numWorkerThreads * overshardingFactor))); 807c30ab6c2SEugene Zhulenev 80886ad0af8SEugene Zhulenev // Compute parallel block size from the parallel problem size: 80986ad0af8SEugene Zhulenev // blockSize = min(tripCount, 81034a164c9SEugene Zhulenev // max(ceil_div(tripCount, maxComputeBlocks), 811*ec0e4545Sbakhtiyar // minTaskSize)) 8127bd87a03Sbakhtiyar Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks); 813*ec0e4545Sbakhtiyar Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize); 8147bd87a03Sbakhtiyar Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1); 81549ce40e9SEugene Zhulenev 816*ec0e4545Sbakhtiyar ParallelComputeFunction notUnrollableParallelComputeFunction = 817*ec0e4545Sbakhtiyar createParallelComputeFunction(op, staticBounds, 0, rewriter); 818*ec0e4545Sbakhtiyar 819*ec0e4545Sbakhtiyar // Dispatch parallel compute function using async recursive work splitting, 820*ec0e4545Sbakhtiyar // or by submitting compute task sequentially from a caller thread. 821*ec0e4545Sbakhtiyar auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch; 822*ec0e4545Sbakhtiyar 823*ec0e4545Sbakhtiyar // Create a parallel compute function that takes a block id and computes 824*ec0e4545Sbakhtiyar // the parallel operation body for a subset of iteration space. 82549ce40e9SEugene Zhulenev 82649ce40e9SEugene Zhulenev // Compute the number of parallel compute blocks. 827a54f4eaeSMogball Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize); 82886ad0af8SEugene Zhulenev 829*ec0e4545Sbakhtiyar // Unroll when numUnrollableLoops > 0 && blockSize >= maxIterations. 830*ec0e4545Sbakhtiyar bool staticShouldUnroll = numUnrollableLoops > 0; 831*ec0e4545Sbakhtiyar auto dispatchNotUnrollable = [&](OpBuilder &nestedBuilder, Location loc) { 832*ec0e4545Sbakhtiyar ImplicitLocOpBuilder nb(loc, nestedBuilder); 833*ec0e4545Sbakhtiyar doDispatch(b, rewriter, notUnrollableParallelComputeFunction, op, 834*ec0e4545Sbakhtiyar blockSize, blockCount, tripCounts); 835*ec0e4545Sbakhtiyar nb.create<scf::YieldOp>(); 836*ec0e4545Sbakhtiyar }; 837*ec0e4545Sbakhtiyar 838*ec0e4545Sbakhtiyar if (staticShouldUnroll) { 839*ec0e4545Sbakhtiyar Value dynamicShouldUnroll = b.create<arith::CmpIOp>( 840*ec0e4545Sbakhtiyar arith::CmpIPredicate::sge, blockSize, 841*ec0e4545Sbakhtiyar b.create<arith::ConstantIndexOp>(maxIterations)); 842*ec0e4545Sbakhtiyar 843*ec0e4545Sbakhtiyar ParallelComputeFunction unrollableParallelComputeFunction = 84449ce40e9SEugene Zhulenev createParallelComputeFunction(op, staticBounds, numUnrollableLoops, 84549ce40e9SEugene Zhulenev rewriter); 84686ad0af8SEugene Zhulenev 847*ec0e4545Sbakhtiyar auto dispatchUnrollable = [&](OpBuilder &nestedBuilder, Location loc) { 848*ec0e4545Sbakhtiyar ImplicitLocOpBuilder nb(loc, nestedBuilder); 849*ec0e4545Sbakhtiyar // Align the block size to be a multiple of the statically known 850*ec0e4545Sbakhtiyar // number of iterations in the inner loops. 851*ec0e4545Sbakhtiyar Value numIters = nb.create<arith::ConstantIndexOp>( 852*ec0e4545Sbakhtiyar numIterations[op.getNumLoops() - numUnrollableLoops]); 853*ec0e4545Sbakhtiyar Value alignedBlockSize = nb.create<arith::MulIOp>( 854*ec0e4545Sbakhtiyar nb.create<arith::CeilDivSIOp>(blockSize, numIters), numIters); 855*ec0e4545Sbakhtiyar doDispatch(b, rewriter, unrollableParallelComputeFunction, op, 856*ec0e4545Sbakhtiyar alignedBlockSize, blockCount, tripCounts); 8576c1f6558SEugene Zhulenev nb.create<scf::YieldOp>(); 8586c1f6558SEugene Zhulenev }; 8596c1f6558SEugene Zhulenev 860*ec0e4545Sbakhtiyar b.create<scf::IfOp>(TypeRange(), dynamicShouldUnroll, dispatchUnrollable, 861*ec0e4545Sbakhtiyar dispatchNotUnrollable); 862*ec0e4545Sbakhtiyar nb.create<scf::YieldOp>(); 863*ec0e4545Sbakhtiyar } else { 864*ec0e4545Sbakhtiyar dispatchNotUnrollable(nb, loc); 865*ec0e4545Sbakhtiyar } 866*ec0e4545Sbakhtiyar }; 867*ec0e4545Sbakhtiyar 8686c1f6558SEugene Zhulenev // Replace the `scf.parallel` operation with the parallel compute function. 8696c1f6558SEugene Zhulenev b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch); 8706c1f6558SEugene Zhulenev 87134a164c9SEugene Zhulenev // Parallel operation was replaced with a block iteration loop. 872c30ab6c2SEugene Zhulenev rewriter.eraseOp(op); 873c30ab6c2SEugene Zhulenev 874c30ab6c2SEugene Zhulenev return success(); 875c30ab6c2SEugene Zhulenev } 876c30ab6c2SEugene Zhulenev 8778a316b00SEugene Zhulenev void AsyncParallelForPass::runOnOperation() { 878c30ab6c2SEugene Zhulenev MLIRContext *ctx = &getContext(); 879c30ab6c2SEugene Zhulenev 880dc4e913bSChris Lattner RewritePatternSet patterns(ctx); 881*ec0e4545Sbakhtiyar populateAsyncParallelForPatterns( 882*ec0e4545Sbakhtiyar patterns, asyncDispatch, numWorkerThreads, 883*ec0e4545Sbakhtiyar [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) { 884*ec0e4545Sbakhtiyar return builder.create<arith::ConstantIndexOp>(minTaskSize); 885*ec0e4545Sbakhtiyar }); 8868a316b00SEugene Zhulenev if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)))) 887c30ab6c2SEugene Zhulenev signalPassFailure(); 888c30ab6c2SEugene Zhulenev } 889c30ab6c2SEugene Zhulenev 8908a316b00SEugene Zhulenev std::unique_ptr<Pass> mlir::createAsyncParallelForPass() { 891c30ab6c2SEugene Zhulenev return std::make_unique<AsyncParallelForPass>(); 892c30ab6c2SEugene Zhulenev } 89334a164c9SEugene Zhulenev 89455dfab39Sbakhtiyar std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch, 89555dfab39Sbakhtiyar int32_t numWorkerThreads, 89655dfab39Sbakhtiyar int32_t minTaskSize) { 89734a164c9SEugene Zhulenev return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads, 89855dfab39Sbakhtiyar minTaskSize); 89934a164c9SEugene Zhulenev } 900*ec0e4545Sbakhtiyar 901*ec0e4545Sbakhtiyar void mlir::async::populateAsyncParallelForPatterns( 902*ec0e4545Sbakhtiyar RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads, 903*ec0e4545Sbakhtiyar AsyncMinTaskSizeComputationFunction computeMinTaskSize) { 904*ec0e4545Sbakhtiyar MLIRContext *ctx = patterns.getContext(); 905*ec0e4545Sbakhtiyar patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads, 906*ec0e4545Sbakhtiyar computeMinTaskSize); 907*ec0e4545Sbakhtiyar } 908