1c30ab6c2SEugene Zhulenev //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===//
2c30ab6c2SEugene Zhulenev //
3c30ab6c2SEugene Zhulenev // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4c30ab6c2SEugene Zhulenev // See https://llvm.org/LICENSE.txt for license information.
5c30ab6c2SEugene Zhulenev // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6c30ab6c2SEugene Zhulenev //
7c30ab6c2SEugene Zhulenev //===----------------------------------------------------------------------===//
8c30ab6c2SEugene Zhulenev //
986ad0af8SEugene Zhulenev // This file implements scf.parallel to scf.for + async.execute conversion pass.
10c30ab6c2SEugene Zhulenev //
11c30ab6c2SEugene Zhulenev //===----------------------------------------------------------------------===//
12c30ab6c2SEugene Zhulenev 
13c30ab6c2SEugene Zhulenev #include "PassDetail.h"
14a54f4eaeSMogball #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
15c30ab6c2SEugene Zhulenev #include "mlir/Dialect/Async/IR/Async.h"
16c30ab6c2SEugene Zhulenev #include "mlir/Dialect/Async/Passes.h"
17ec0e4545Sbakhtiyar #include "mlir/Dialect/Async/Transforms.h"
18c30ab6c2SEugene Zhulenev #include "mlir/Dialect/SCF/SCF.h"
19c30ab6c2SEugene Zhulenev #include "mlir/Dialect/StandardOps/IR/Ops.h"
20c30ab6c2SEugene Zhulenev #include "mlir/IR/BlockAndValueMapping.h"
2186ad0af8SEugene Zhulenev #include "mlir/IR/ImplicitLocOpBuilder.h"
229f151b78SEugene Zhulenev #include "mlir/IR/Matchers.h"
23c30ab6c2SEugene Zhulenev #include "mlir/IR/PatternMatch.h"
24c30ab6c2SEugene Zhulenev #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
2586ad0af8SEugene Zhulenev #include "mlir/Transforms/RegionUtils.h"
26c30ab6c2SEugene Zhulenev 
27c30ab6c2SEugene Zhulenev using namespace mlir;
28c30ab6c2SEugene Zhulenev using namespace mlir::async;
29c30ab6c2SEugene Zhulenev 
30c30ab6c2SEugene Zhulenev #define DEBUG_TYPE "async-parallel-for"
31c30ab6c2SEugene Zhulenev 
32c30ab6c2SEugene Zhulenev namespace {
33c30ab6c2SEugene Zhulenev 
34c30ab6c2SEugene Zhulenev // Rewrite scf.parallel operation into multiple concurrent async.execute
35c30ab6c2SEugene Zhulenev // operations over non overlapping subranges of the original loop.
36c30ab6c2SEugene Zhulenev //
37c30ab6c2SEugene Zhulenev // Example:
38c30ab6c2SEugene Zhulenev //
3986ad0af8SEugene Zhulenev //   scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) {
40c30ab6c2SEugene Zhulenev //     "do_some_compute"(%i, %j): () -> ()
41c30ab6c2SEugene Zhulenev //   }
42c30ab6c2SEugene Zhulenev //
43c30ab6c2SEugene Zhulenev // Converted to:
44c30ab6c2SEugene Zhulenev //
4586ad0af8SEugene Zhulenev //   // Parallel compute function that executes the parallel body region for
4686ad0af8SEugene Zhulenev //   // a subset of the parallel iteration space defined by the one-dimensional
4786ad0af8SEugene Zhulenev //   // compute block index.
4886ad0af8SEugene Zhulenev //   func parallel_compute_function(%block_index : index, %block_size : index,
4986ad0af8SEugene Zhulenev //                                  <parallel operation properties>, ...) {
5086ad0af8SEugene Zhulenev //     // Compute multi-dimensional loop bounds for %block_index.
5186ad0af8SEugene Zhulenev //     %block_lbi, %block_lbj = ...
5286ad0af8SEugene Zhulenev //     %block_ubi, %block_ubj = ...
53c30ab6c2SEugene Zhulenev //
5486ad0af8SEugene Zhulenev //     // Clone parallel operation body into the scf.for loop nest.
5586ad0af8SEugene Zhulenev //     scf.for %i = %blockLbi to %blockUbi {
5686ad0af8SEugene Zhulenev //       scf.for %j = block_lbj to %block_ubj {
57c30ab6c2SEugene Zhulenev //         "do_some_compute"(%i, %j): () -> ()
58c30ab6c2SEugene Zhulenev //       }
59c30ab6c2SEugene Zhulenev //     }
60c30ab6c2SEugene Zhulenev //   }
61c30ab6c2SEugene Zhulenev //
6286ad0af8SEugene Zhulenev // And a dispatch function depending on the `asyncDispatch` option.
6386ad0af8SEugene Zhulenev //
6486ad0af8SEugene Zhulenev // When async dispatch is on: (pseudocode)
6586ad0af8SEugene Zhulenev //
6686ad0af8SEugene Zhulenev //   %block_size = ... compute parallel compute block size
6786ad0af8SEugene Zhulenev //   %block_count = ... compute the number of compute blocks
6886ad0af8SEugene Zhulenev //
6986ad0af8SEugene Zhulenev //   func @async_dispatch(%block_start : index, %block_end : index, ...) {
7086ad0af8SEugene Zhulenev //     // Keep splitting block range until we reached a range of size 1.
7186ad0af8SEugene Zhulenev //     while (%block_end - %block_start > 1) {
7286ad0af8SEugene Zhulenev //       %mid_index = block_start + (block_end - block_start) / 2;
7386ad0af8SEugene Zhulenev //       async.execute { call @async_dispatch(%mid_index, %block_end); }
7486ad0af8SEugene Zhulenev //       %block_end = %mid_index
75c30ab6c2SEugene Zhulenev //     }
76c30ab6c2SEugene Zhulenev //
7786ad0af8SEugene Zhulenev //     // Call parallel compute function for a single block.
7886ad0af8SEugene Zhulenev //     call @parallel_compute_fn(%block_start, %block_size, ...);
7986ad0af8SEugene Zhulenev //   }
80c30ab6c2SEugene Zhulenev //
8186ad0af8SEugene Zhulenev //   // Launch async dispatch for [0, block_count) range.
8286ad0af8SEugene Zhulenev //   call @async_dispatch(%c0, %block_count);
83c30ab6c2SEugene Zhulenev //
8486ad0af8SEugene Zhulenev // When async dispatch is off:
85c30ab6c2SEugene Zhulenev //
8686ad0af8SEugene Zhulenev //   %block_size = ... compute parallel compute block size
8786ad0af8SEugene Zhulenev //   %block_count = ... compute the number of compute blocks
8886ad0af8SEugene Zhulenev //
8986ad0af8SEugene Zhulenev //   scf.for %block_index = %c0 to %block_count {
9086ad0af8SEugene Zhulenev //      call @parallel_compute_fn(%block_index, %block_size, ...)
9186ad0af8SEugene Zhulenev //   }
9286ad0af8SEugene Zhulenev //
9386ad0af8SEugene Zhulenev struct AsyncParallelForPass
9486ad0af8SEugene Zhulenev     : public AsyncParallelForBase<AsyncParallelForPass> {
9586ad0af8SEugene Zhulenev   AsyncParallelForPass() = default;
9634a164c9SEugene Zhulenev 
9734a164c9SEugene Zhulenev   AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads,
9855dfab39Sbakhtiyar                        int32_t minTaskSize) {
9934a164c9SEugene Zhulenev     this->asyncDispatch = asyncDispatch;
10034a164c9SEugene Zhulenev     this->numWorkerThreads = numWorkerThreads;
10155dfab39Sbakhtiyar     this->minTaskSize = minTaskSize;
10234a164c9SEugene Zhulenev   }
10334a164c9SEugene Zhulenev 
10486ad0af8SEugene Zhulenev   void runOnOperation() override;
10586ad0af8SEugene Zhulenev };
10686ad0af8SEugene Zhulenev 
107c30ab6c2SEugene Zhulenev struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> {
108c30ab6c2SEugene Zhulenev public:
109ec0e4545Sbakhtiyar   AsyncParallelForRewrite(
110ec0e4545Sbakhtiyar       MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads,
111ec0e4545Sbakhtiyar       AsyncMinTaskSizeComputationFunction computeMinTaskSize)
11286ad0af8SEugene Zhulenev       : OpRewritePattern(ctx), asyncDispatch(asyncDispatch),
113ec0e4545Sbakhtiyar         numWorkerThreads(numWorkerThreads),
114ec0e4545Sbakhtiyar         computeMinTaskSize(computeMinTaskSize) {}
115c30ab6c2SEugene Zhulenev 
116c30ab6c2SEugene Zhulenev   LogicalResult matchAndRewrite(scf::ParallelOp op,
117c30ab6c2SEugene Zhulenev                                 PatternRewriter &rewriter) const override;
118c30ab6c2SEugene Zhulenev 
119c30ab6c2SEugene Zhulenev private:
12086ad0af8SEugene Zhulenev   bool asyncDispatch;
12186ad0af8SEugene Zhulenev   int32_t numWorkerThreads;
122ec0e4545Sbakhtiyar   AsyncMinTaskSizeComputationFunction computeMinTaskSize;
123c30ab6c2SEugene Zhulenev };
124c30ab6c2SEugene Zhulenev 
12586ad0af8SEugene Zhulenev struct ParallelComputeFunctionType {
12686ad0af8SEugene Zhulenev   FunctionType type;
1279f151b78SEugene Zhulenev   SmallVector<Value> captures;
1289f151b78SEugene Zhulenev };
1299f151b78SEugene Zhulenev 
1309f151b78SEugene Zhulenev // Helper struct to parse parallel compute function argument list.
1319f151b78SEugene Zhulenev struct ParallelComputeFunctionArgs {
1329f151b78SEugene Zhulenev   BlockArgument blockIndex();
1339f151b78SEugene Zhulenev   BlockArgument blockSize();
1349f151b78SEugene Zhulenev   ArrayRef<BlockArgument> tripCounts();
1359f151b78SEugene Zhulenev   ArrayRef<BlockArgument> lowerBounds();
1369f151b78SEugene Zhulenev   ArrayRef<BlockArgument> upperBounds();
1379f151b78SEugene Zhulenev   ArrayRef<BlockArgument> steps();
1389f151b78SEugene Zhulenev   ArrayRef<BlockArgument> captures();
1399f151b78SEugene Zhulenev 
1409f151b78SEugene Zhulenev   unsigned numLoops;
1419f151b78SEugene Zhulenev   ArrayRef<BlockArgument> args;
1429f151b78SEugene Zhulenev };
1439f151b78SEugene Zhulenev 
1449f151b78SEugene Zhulenev struct ParallelComputeFunctionBounds {
1459f151b78SEugene Zhulenev   SmallVector<IntegerAttr> tripCounts;
1469f151b78SEugene Zhulenev   SmallVector<IntegerAttr> lowerBounds;
1479f151b78SEugene Zhulenev   SmallVector<IntegerAttr> upperBounds;
1489f151b78SEugene Zhulenev   SmallVector<IntegerAttr> steps;
14986ad0af8SEugene Zhulenev };
15086ad0af8SEugene Zhulenev 
15186ad0af8SEugene Zhulenev struct ParallelComputeFunction {
1529f151b78SEugene Zhulenev   unsigned numLoops;
15386ad0af8SEugene Zhulenev   FuncOp func;
15486ad0af8SEugene Zhulenev   llvm::SmallVector<Value> captures;
155c30ab6c2SEugene Zhulenev };
156c30ab6c2SEugene Zhulenev 
157c30ab6c2SEugene Zhulenev } // namespace
158c30ab6c2SEugene Zhulenev 
1599f151b78SEugene Zhulenev BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; }
1609f151b78SEugene Zhulenev BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; }
1619f151b78SEugene Zhulenev 
1629f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() {
1639f151b78SEugene Zhulenev   return args.drop_front(2).take_front(numLoops);
1649f151b78SEugene Zhulenev }
1659f151b78SEugene Zhulenev 
1669f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() {
1679f151b78SEugene Zhulenev   return args.drop_front(2 + 1 * numLoops).take_front(numLoops);
1689f151b78SEugene Zhulenev }
1699f151b78SEugene Zhulenev 
1709f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() {
1719f151b78SEugene Zhulenev   return args.drop_front(2 + 2 * numLoops).take_front(numLoops);
1729f151b78SEugene Zhulenev }
1739f151b78SEugene Zhulenev 
1749f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() {
1759f151b78SEugene Zhulenev   return args.drop_front(2 + 3 * numLoops).take_front(numLoops);
1769f151b78SEugene Zhulenev }
1779f151b78SEugene Zhulenev 
1789f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() {
1799f151b78SEugene Zhulenev   return args.drop_front(2 + 4 * numLoops);
1809f151b78SEugene Zhulenev }
1819f151b78SEugene Zhulenev 
1829f151b78SEugene Zhulenev template <typename ValueRange>
1839f151b78SEugene Zhulenev static SmallVector<IntegerAttr> integerConstants(ValueRange values) {
1849f151b78SEugene Zhulenev   SmallVector<IntegerAttr> attrs(values.size());
1859f151b78SEugene Zhulenev   for (unsigned i = 0; i < values.size(); ++i)
1869f151b78SEugene Zhulenev     matchPattern(values[i], m_Constant(&attrs[i]));
1879f151b78SEugene Zhulenev   return attrs;
1889f151b78SEugene Zhulenev }
1899f151b78SEugene Zhulenev 
19086ad0af8SEugene Zhulenev // Converts one-dimensional iteration index in the [0, tripCount) interval
19186ad0af8SEugene Zhulenev // into multidimensional iteration coordinate.
19286ad0af8SEugene Zhulenev static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index,
19334a164c9SEugene Zhulenev                                       ArrayRef<Value> tripCounts) {
19486ad0af8SEugene Zhulenev   SmallVector<Value> coords(tripCounts.size());
19586ad0af8SEugene Zhulenev   assert(!tripCounts.empty() && "tripCounts must be not empty");
19686ad0af8SEugene Zhulenev 
19786ad0af8SEugene Zhulenev   for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) {
198a54f4eaeSMogball     coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]);
199a54f4eaeSMogball     index = b.create<arith::DivSIOp>(index, tripCounts[i]);
20086ad0af8SEugene Zhulenev   }
20186ad0af8SEugene Zhulenev 
20286ad0af8SEugene Zhulenev   return coords;
20386ad0af8SEugene Zhulenev }
20486ad0af8SEugene Zhulenev 
20586ad0af8SEugene Zhulenev // Returns a function type and implicit captures for a parallel compute
20686ad0af8SEugene Zhulenev // function. We'll need a list of implicit captures to setup block and value
20786ad0af8SEugene Zhulenev // mapping when we'll clone the body of the parallel operation.
20886ad0af8SEugene Zhulenev static ParallelComputeFunctionType
20986ad0af8SEugene Zhulenev getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) {
21086ad0af8SEugene Zhulenev   // Values implicitly captured by the parallel operation.
21186ad0af8SEugene Zhulenev   llvm::SetVector<Value> captures;
212*c0342a2dSJacques Pienaar   getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures);
21386ad0af8SEugene Zhulenev 
2149f151b78SEugene Zhulenev   SmallVector<Type> inputs;
21586ad0af8SEugene Zhulenev   inputs.reserve(2 + 4 * op.getNumLoops() + captures.size());
21686ad0af8SEugene Zhulenev 
21786ad0af8SEugene Zhulenev   Type indexTy = rewriter.getIndexType();
21886ad0af8SEugene Zhulenev 
21986ad0af8SEugene Zhulenev   // One-dimensional iteration space defined by the block index and size.
22086ad0af8SEugene Zhulenev   inputs.push_back(indexTy); // blockIndex
22186ad0af8SEugene Zhulenev   inputs.push_back(indexTy); // blockSize
22286ad0af8SEugene Zhulenev 
22386ad0af8SEugene Zhulenev   // Multi-dimensional parallel iteration space defined by the loop trip counts.
22486ad0af8SEugene Zhulenev   for (unsigned i = 0; i < op.getNumLoops(); ++i)
22586ad0af8SEugene Zhulenev     inputs.push_back(indexTy); // loop tripCount
22686ad0af8SEugene Zhulenev 
2279f151b78SEugene Zhulenev   // Parallel operation lower bound, upper bound and step. Lower bound, upper
2289f151b78SEugene Zhulenev   // bound and step passed as contiguous arguments:
2299f151b78SEugene Zhulenev   //   call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...)
23086ad0af8SEugene Zhulenev   for (unsigned i = 0; i < op.getNumLoops(); ++i) {
23186ad0af8SEugene Zhulenev     inputs.push_back(indexTy); // lower bound
23286ad0af8SEugene Zhulenev     inputs.push_back(indexTy); // upper bound
23386ad0af8SEugene Zhulenev     inputs.push_back(indexTy); // step
23486ad0af8SEugene Zhulenev   }
23586ad0af8SEugene Zhulenev 
23686ad0af8SEugene Zhulenev   // Types of the implicit captures.
23786ad0af8SEugene Zhulenev   for (Value capture : captures)
23886ad0af8SEugene Zhulenev     inputs.push_back(capture.getType());
23986ad0af8SEugene Zhulenev 
24086ad0af8SEugene Zhulenev   // Convert captures to vector for later convenience.
24186ad0af8SEugene Zhulenev   SmallVector<Value> capturesVector(captures.begin(), captures.end());
24286ad0af8SEugene Zhulenev   return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector};
24386ad0af8SEugene Zhulenev }
24486ad0af8SEugene Zhulenev 
24586ad0af8SEugene Zhulenev // Create a parallel compute fuction from the parallel operation.
24649ce40e9SEugene Zhulenev static ParallelComputeFunction createParallelComputeFunction(
24749ce40e9SEugene Zhulenev     scf::ParallelOp op, ParallelComputeFunctionBounds bounds,
24849ce40e9SEugene Zhulenev     unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) {
24986ad0af8SEugene Zhulenev   OpBuilder::InsertionGuard guard(rewriter);
25086ad0af8SEugene Zhulenev   ImplicitLocOpBuilder b(op.getLoc(), rewriter);
25186ad0af8SEugene Zhulenev 
25286ad0af8SEugene Zhulenev   ModuleOp module = op->getParentOfType<ModuleOp>();
25386ad0af8SEugene Zhulenev 
25486ad0af8SEugene Zhulenev   ParallelComputeFunctionType computeFuncType =
25586ad0af8SEugene Zhulenev       getParallelComputeFunctionType(op, rewriter);
25686ad0af8SEugene Zhulenev 
25786ad0af8SEugene Zhulenev   FunctionType type = computeFuncType.type;
258ec0e4545Sbakhtiyar   FuncOp func = FuncOp::create(op.getLoc(),
259ec0e4545Sbakhtiyar                                numBlockAlignedInnerLoops > 0
260ec0e4545Sbakhtiyar                                    ? "parallel_compute_fn_with_aligned_loops"
261ec0e4545Sbakhtiyar                                    : "parallel_compute_fn",
262ec0e4545Sbakhtiyar                                type);
26386ad0af8SEugene Zhulenev   func.setPrivate();
26486ad0af8SEugene Zhulenev 
26586ad0af8SEugene Zhulenev   // Insert function into the module symbol table and assign it unique name.
26686ad0af8SEugene Zhulenev   SymbolTable symbolTable(module);
26786ad0af8SEugene Zhulenev   symbolTable.insert(func);
26886ad0af8SEugene Zhulenev   rewriter.getListener()->notifyOperationInserted(func);
26986ad0af8SEugene Zhulenev 
27086ad0af8SEugene Zhulenev   // Create function entry block.
27186ad0af8SEugene Zhulenev   Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs());
27286ad0af8SEugene Zhulenev   b.setInsertionPointToEnd(block);
27386ad0af8SEugene Zhulenev 
2749f151b78SEugene Zhulenev   ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()};
27586ad0af8SEugene Zhulenev 
27686ad0af8SEugene Zhulenev   // Block iteration position defined by the block index and size.
2779f151b78SEugene Zhulenev   BlockArgument blockIndex = args.blockIndex();
2789f151b78SEugene Zhulenev   BlockArgument blockSize = args.blockSize();
27986ad0af8SEugene Zhulenev 
28086ad0af8SEugene Zhulenev   // Constants used below.
281a54f4eaeSMogball   Value c0 = b.create<arith::ConstantIndexOp>(0);
282a54f4eaeSMogball   Value c1 = b.create<arith::ConstantIndexOp>(1);
28386ad0af8SEugene Zhulenev 
2849f151b78SEugene Zhulenev   // Materialize known constants as constant operation in the function body.
2859f151b78SEugene Zhulenev   auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) {
2869f151b78SEugene Zhulenev     return llvm::to_vector(
2879f151b78SEugene Zhulenev         llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value {
2889f151b78SEugene Zhulenev           if (IntegerAttr attr = std::get<1>(tuple))
2899f151b78SEugene Zhulenev             return b.create<ConstantOp>(attr);
2909f151b78SEugene Zhulenev           return std::get<0>(tuple);
2919f151b78SEugene Zhulenev         }));
2929f151b78SEugene Zhulenev   };
2939f151b78SEugene Zhulenev 
29486ad0af8SEugene Zhulenev   // Multi-dimensional parallel iteration space defined by the loop trip counts.
2959f151b78SEugene Zhulenev   auto tripCounts = values(args.tripCounts(), bounds.tripCounts);
2969f151b78SEugene Zhulenev 
2979f151b78SEugene Zhulenev   // Parallel operation lower bound and step.
2989f151b78SEugene Zhulenev   auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds);
2999f151b78SEugene Zhulenev   auto steps = values(args.steps(), bounds.steps);
3009f151b78SEugene Zhulenev 
3019f151b78SEugene Zhulenev   // Remaining arguments are implicit captures of the parallel operation.
3029f151b78SEugene Zhulenev   ArrayRef<BlockArgument> captures = args.captures();
30386ad0af8SEugene Zhulenev 
30486ad0af8SEugene Zhulenev   // Compute a product of trip counts to get the size of the flattened
30586ad0af8SEugene Zhulenev   // one-dimensional iteration space.
30686ad0af8SEugene Zhulenev   Value tripCount = tripCounts[0];
30786ad0af8SEugene Zhulenev   for (unsigned i = 1; i < tripCounts.size(); ++i)
308a54f4eaeSMogball     tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
30986ad0af8SEugene Zhulenev 
31086ad0af8SEugene Zhulenev   // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]:
31186ad0af8SEugene Zhulenev   //   blockFirstIndex = blockIndex * blockSize
312a54f4eaeSMogball   Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize);
31386ad0af8SEugene Zhulenev 
31486ad0af8SEugene Zhulenev   // The last one-dimensional index in the block defined by the `blockIndex`:
31568a7c001SEugene Zhulenev   //   blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1
316a54f4eaeSMogball   Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize);
3177bd87a03Sbakhtiyar   Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount);
3187bd87a03Sbakhtiyar   Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1);
31986ad0af8SEugene Zhulenev 
32086ad0af8SEugene Zhulenev   // Convert one-dimensional indices to multi-dimensional coordinates.
32186ad0af8SEugene Zhulenev   auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts);
32286ad0af8SEugene Zhulenev   auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts);
32386ad0af8SEugene Zhulenev 
32434a164c9SEugene Zhulenev   // Compute loops upper bounds derived from the block last coordinates:
32586ad0af8SEugene Zhulenev   //   blockEndCoord[i] = blockLastCoord[i] + 1
32686ad0af8SEugene Zhulenev   //
32786ad0af8SEugene Zhulenev   // Block first and last coordinates can be the same along the outer compute
32834a164c9SEugene Zhulenev   // dimension when inner compute dimension contains multiple blocks.
32986ad0af8SEugene Zhulenev   SmallVector<Value> blockEndCoord(op.getNumLoops());
33086ad0af8SEugene Zhulenev   for (size_t i = 0; i < blockLastCoord.size(); ++i)
331a54f4eaeSMogball     blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1);
33286ad0af8SEugene Zhulenev 
33386ad0af8SEugene Zhulenev   // Construct a loop nest out of scf.for operations that will iterate over
33486ad0af8SEugene Zhulenev   // all coordinates in [blockFirstCoord, blockLastCoord] range.
33586ad0af8SEugene Zhulenev   using LoopBodyBuilder =
33686ad0af8SEugene Zhulenev       std::function<void(OpBuilder &, Location, Value, ValueRange)>;
33786ad0af8SEugene Zhulenev   using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>;
33886ad0af8SEugene Zhulenev 
33986ad0af8SEugene Zhulenev   // Parallel region induction variables computed from the multi-dimensional
34086ad0af8SEugene Zhulenev   // iteration coordinate using parallel operation bounds and step:
34186ad0af8SEugene Zhulenev   //
34286ad0af8SEugene Zhulenev   //   computeBlockInductionVars[loopIdx] =
34368a7c001SEugene Zhulenev   //       lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx]
34486ad0af8SEugene Zhulenev   SmallVector<Value> computeBlockInductionVars(op.getNumLoops());
34586ad0af8SEugene Zhulenev 
34686ad0af8SEugene Zhulenev   // We need to know if we are in the first or last iteration of the
34786ad0af8SEugene Zhulenev   // multi-dimensional loop for each loop in the nest, so we can decide what
34886ad0af8SEugene Zhulenev   // loop bounds should we use for the nested loops: bounds defined by compute
34986ad0af8SEugene Zhulenev   // block interval, or bounds defined by the parallel operation.
35086ad0af8SEugene Zhulenev   //
35186ad0af8SEugene Zhulenev   // Example: 2d parallel operation
35286ad0af8SEugene Zhulenev   //                   i   j
35386ad0af8SEugene Zhulenev   //   loop sizes:   [50, 50]
35486ad0af8SEugene Zhulenev   //   first coord:  [25, 25]
35586ad0af8SEugene Zhulenev   //   last coord:   [30, 30]
35686ad0af8SEugene Zhulenev   //
35786ad0af8SEugene Zhulenev   // If `i` is equal to 25 then iteration over `j` should start at 25, when `i`
35886ad0af8SEugene Zhulenev   // is between 25 and 30 it should start at 0. The upper bound for `j` should
35986ad0af8SEugene Zhulenev   // be 50, except when `i` is equal to 30, then it should also be 30.
36086ad0af8SEugene Zhulenev   //
36186ad0af8SEugene Zhulenev   // Value at ith position specifies if all loops in [0, i) range of the loop
36286ad0af8SEugene Zhulenev   // nest are in the first/last iteration.
36386ad0af8SEugene Zhulenev   SmallVector<Value> isBlockFirstCoord(op.getNumLoops());
36486ad0af8SEugene Zhulenev   SmallVector<Value> isBlockLastCoord(op.getNumLoops());
36586ad0af8SEugene Zhulenev 
36686ad0af8SEugene Zhulenev   // Builds inner loop nest inside async.execute operation that does all the
36786ad0af8SEugene Zhulenev   // work concurrently.
36886ad0af8SEugene Zhulenev   LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder {
36986ad0af8SEugene Zhulenev     return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv,
37086ad0af8SEugene Zhulenev                         ValueRange args) {
37186ad0af8SEugene Zhulenev       ImplicitLocOpBuilder nb(loc, nestedBuilder);
37286ad0af8SEugene Zhulenev 
37386ad0af8SEugene Zhulenev       // Compute induction variable for `loopIdx`.
374a54f4eaeSMogball       computeBlockInductionVars[loopIdx] = nb.create<arith::AddIOp>(
3759f151b78SEugene Zhulenev           lowerBounds[loopIdx], nb.create<arith::MulIOp>(iv, steps[loopIdx]));
37686ad0af8SEugene Zhulenev 
37786ad0af8SEugene Zhulenev       // Check if we are inside first or last iteration of the loop.
378a54f4eaeSMogball       isBlockFirstCoord[loopIdx] = nb.create<arith::CmpIOp>(
379a54f4eaeSMogball           arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]);
380a54f4eaeSMogball       isBlockLastCoord[loopIdx] = nb.create<arith::CmpIOp>(
381a54f4eaeSMogball           arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]);
38286ad0af8SEugene Zhulenev 
38334a164c9SEugene Zhulenev       // Check if the previous loop is in its first or last iteration.
38486ad0af8SEugene Zhulenev       if (loopIdx > 0) {
385a54f4eaeSMogball         isBlockFirstCoord[loopIdx] = nb.create<arith::AndIOp>(
38686ad0af8SEugene Zhulenev             isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]);
387a54f4eaeSMogball         isBlockLastCoord[loopIdx] = nb.create<arith::AndIOp>(
38886ad0af8SEugene Zhulenev             isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]);
38986ad0af8SEugene Zhulenev       }
39086ad0af8SEugene Zhulenev 
39186ad0af8SEugene Zhulenev       // Keep building loop nest.
39286ad0af8SEugene Zhulenev       if (loopIdx < op.getNumLoops() - 1) {
39349ce40e9SEugene Zhulenev         if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) {
39449ce40e9SEugene Zhulenev           // For block aligned loops we always iterate starting from 0 up to
39549ce40e9SEugene Zhulenev           // the loop trip counts.
39649ce40e9SEugene Zhulenev           nb.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(),
39749ce40e9SEugene Zhulenev                                 workLoopBuilder(loopIdx + 1));
39849ce40e9SEugene Zhulenev 
39949ce40e9SEugene Zhulenev         } else {
40068a7c001SEugene Zhulenev           // Select nested loop lower/upper bounds depending on our position in
40186ad0af8SEugene Zhulenev           // the multi-dimensional iteration space.
40286ad0af8SEugene Zhulenev           auto lb = nb.create<SelectOp>(isBlockFirstCoord[loopIdx],
40386ad0af8SEugene Zhulenev                                         blockFirstCoord[loopIdx + 1], c0);
40486ad0af8SEugene Zhulenev 
40586ad0af8SEugene Zhulenev           auto ub = nb.create<SelectOp>(isBlockLastCoord[loopIdx],
40686ad0af8SEugene Zhulenev                                         blockEndCoord[loopIdx + 1],
40786ad0af8SEugene Zhulenev                                         tripCounts[loopIdx + 1]);
40886ad0af8SEugene Zhulenev 
40986ad0af8SEugene Zhulenev           nb.create<scf::ForOp>(lb, ub, c1, ValueRange(),
41086ad0af8SEugene Zhulenev                                 workLoopBuilder(loopIdx + 1));
41149ce40e9SEugene Zhulenev         }
41249ce40e9SEugene Zhulenev 
41386ad0af8SEugene Zhulenev         nb.create<scf::YieldOp>(loc);
41486ad0af8SEugene Zhulenev         return;
41586ad0af8SEugene Zhulenev       }
41686ad0af8SEugene Zhulenev 
41786ad0af8SEugene Zhulenev       // Copy the body of the parallel op into the inner-most loop.
41886ad0af8SEugene Zhulenev       BlockAndValueMapping mapping;
41986ad0af8SEugene Zhulenev       mapping.map(op.getInductionVars(), computeBlockInductionVars);
42086ad0af8SEugene Zhulenev       mapping.map(computeFuncType.captures, captures);
42186ad0af8SEugene Zhulenev 
42286ad0af8SEugene Zhulenev       for (auto &bodyOp : op.getLoopBody().getOps())
42386ad0af8SEugene Zhulenev         nb.clone(bodyOp, mapping);
42486ad0af8SEugene Zhulenev     };
42586ad0af8SEugene Zhulenev   };
42686ad0af8SEugene Zhulenev 
42786ad0af8SEugene Zhulenev   b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(),
42886ad0af8SEugene Zhulenev                        workLoopBuilder(0));
42986ad0af8SEugene Zhulenev   b.create<ReturnOp>(ValueRange());
43086ad0af8SEugene Zhulenev 
4319f151b78SEugene Zhulenev   return {op.getNumLoops(), func, std::move(computeFuncType.captures)};
43286ad0af8SEugene Zhulenev }
43386ad0af8SEugene Zhulenev 
43486ad0af8SEugene Zhulenev // Creates recursive async dispatch function for the given parallel compute
43586ad0af8SEugene Zhulenev // function. Dispatch function keeps splitting block range into halves until it
43686ad0af8SEugene Zhulenev // reaches a single block, and then excecutes it inline.
43786ad0af8SEugene Zhulenev //
43886ad0af8SEugene Zhulenev // Function pseudocode (mix of C++ and MLIR):
43986ad0af8SEugene Zhulenev //
44086ad0af8SEugene Zhulenev //   func @async_dispatch(%block_start : index, %block_end : index, ...) {
44186ad0af8SEugene Zhulenev //
44286ad0af8SEugene Zhulenev //     // Keep splitting block range until we reached a range of size 1.
44386ad0af8SEugene Zhulenev //     while (%block_end - %block_start > 1) {
44486ad0af8SEugene Zhulenev //       %mid_index = block_start + (block_end - block_start) / 2;
44586ad0af8SEugene Zhulenev //       async.execute { call @async_dispatch(%mid_index, %block_end); }
44686ad0af8SEugene Zhulenev //       %block_end = %mid_index
44786ad0af8SEugene Zhulenev //     }
44886ad0af8SEugene Zhulenev //
44986ad0af8SEugene Zhulenev //     // Call parallel compute function for a single block.
45086ad0af8SEugene Zhulenev //     call @parallel_compute_fn(%block_start, %block_size, ...);
45186ad0af8SEugene Zhulenev //   }
45286ad0af8SEugene Zhulenev //
45386ad0af8SEugene Zhulenev static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc,
45486ad0af8SEugene Zhulenev                                           PatternRewriter &rewriter) {
45586ad0af8SEugene Zhulenev   OpBuilder::InsertionGuard guard(rewriter);
45686ad0af8SEugene Zhulenev   Location loc = computeFunc.func.getLoc();
45786ad0af8SEugene Zhulenev   ImplicitLocOpBuilder b(loc, rewriter);
45886ad0af8SEugene Zhulenev 
45986ad0af8SEugene Zhulenev   ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>();
46086ad0af8SEugene Zhulenev 
46186ad0af8SEugene Zhulenev   ArrayRef<Type> computeFuncInputTypes =
46286ad0af8SEugene Zhulenev       computeFunc.func.type().cast<FunctionType>().getInputs();
46386ad0af8SEugene Zhulenev 
46486ad0af8SEugene Zhulenev   // Compared to the parallel compute function async dispatch function takes
46586ad0af8SEugene Zhulenev   // additional !async.group argument. Also instead of a single `blockIndex` it
46686ad0af8SEugene Zhulenev   // takes `blockStart` and `blockEnd` arguments to define the range of
46786ad0af8SEugene Zhulenev   // dispatched blocks.
46886ad0af8SEugene Zhulenev   SmallVector<Type> inputTypes;
46986ad0af8SEugene Zhulenev   inputTypes.push_back(async::GroupType::get(rewriter.getContext()));
47086ad0af8SEugene Zhulenev   inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument
47186ad0af8SEugene Zhulenev   inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end());
47286ad0af8SEugene Zhulenev 
47386ad0af8SEugene Zhulenev   FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange());
47486ad0af8SEugene Zhulenev   FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type);
47586ad0af8SEugene Zhulenev   func.setPrivate();
47686ad0af8SEugene Zhulenev 
47786ad0af8SEugene Zhulenev   // Insert function into the module symbol table and assign it unique name.
47886ad0af8SEugene Zhulenev   SymbolTable symbolTable(module);
47986ad0af8SEugene Zhulenev   symbolTable.insert(func);
48086ad0af8SEugene Zhulenev   rewriter.getListener()->notifyOperationInserted(func);
48186ad0af8SEugene Zhulenev 
48286ad0af8SEugene Zhulenev   // Create function entry block.
48386ad0af8SEugene Zhulenev   Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs());
48486ad0af8SEugene Zhulenev   b.setInsertionPointToEnd(block);
48586ad0af8SEugene Zhulenev 
48686ad0af8SEugene Zhulenev   Type indexTy = b.getIndexType();
487a54f4eaeSMogball   Value c1 = b.create<arith::ConstantIndexOp>(1);
488a54f4eaeSMogball   Value c2 = b.create<arith::ConstantIndexOp>(2);
48986ad0af8SEugene Zhulenev 
49086ad0af8SEugene Zhulenev   // Get the async group that will track async dispatch completion.
49186ad0af8SEugene Zhulenev   Value group = block->getArgument(0);
49286ad0af8SEugene Zhulenev 
49386ad0af8SEugene Zhulenev   // Get the block iteration range: [blockStart, blockEnd)
49486ad0af8SEugene Zhulenev   Value blockStart = block->getArgument(1);
49586ad0af8SEugene Zhulenev   Value blockEnd = block->getArgument(2);
49686ad0af8SEugene Zhulenev 
49786ad0af8SEugene Zhulenev   // Create a work splitting while loop for the [blockStart, blockEnd) range.
49886ad0af8SEugene Zhulenev   SmallVector<Type> types = {indexTy, indexTy};
49986ad0af8SEugene Zhulenev   SmallVector<Value> operands = {blockStart, blockEnd};
50086ad0af8SEugene Zhulenev 
50186ad0af8SEugene Zhulenev   // Create a recursive dispatch loop.
50286ad0af8SEugene Zhulenev   scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands);
503*c0342a2dSJacques Pienaar   Block *before = b.createBlock(&whileOp.getBefore(), {}, types);
504*c0342a2dSJacques Pienaar   Block *after = b.createBlock(&whileOp.getAfter(), {}, types);
50586ad0af8SEugene Zhulenev 
50686ad0af8SEugene Zhulenev   // Setup dispatch loop condition block: decide if we need to go into the
50786ad0af8SEugene Zhulenev   // `after` block and launch one more async dispatch.
50886ad0af8SEugene Zhulenev   {
50986ad0af8SEugene Zhulenev     b.setInsertionPointToEnd(before);
51086ad0af8SEugene Zhulenev     Value start = before->getArgument(0);
51186ad0af8SEugene Zhulenev     Value end = before->getArgument(1);
512a54f4eaeSMogball     Value distance = b.create<arith::SubIOp>(end, start);
513a54f4eaeSMogball     Value dispatch =
514a54f4eaeSMogball         b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1);
51586ad0af8SEugene Zhulenev     b.create<scf::ConditionOp>(dispatch, before->getArguments());
51686ad0af8SEugene Zhulenev   }
51786ad0af8SEugene Zhulenev 
51886ad0af8SEugene Zhulenev   // Setup the async dispatch loop body: recursively call dispatch function
51934a164c9SEugene Zhulenev   // for the seconds half of the original range and go to the next iteration.
52086ad0af8SEugene Zhulenev   {
52186ad0af8SEugene Zhulenev     b.setInsertionPointToEnd(after);
52286ad0af8SEugene Zhulenev     Value start = after->getArgument(0);
52386ad0af8SEugene Zhulenev     Value end = after->getArgument(1);
524a54f4eaeSMogball     Value distance = b.create<arith::SubIOp>(end, start);
525a54f4eaeSMogball     Value halfDistance = b.create<arith::DivSIOp>(distance, c2);
526a54f4eaeSMogball     Value midIndex = b.create<arith::AddIOp>(start, halfDistance);
52786ad0af8SEugene Zhulenev 
52886ad0af8SEugene Zhulenev     // Call parallel compute function inside the async.execute region.
52986ad0af8SEugene Zhulenev     auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
53086ad0af8SEugene Zhulenev                                   Location executeLoc, ValueRange executeArgs) {
53186ad0af8SEugene Zhulenev       // Update the original `blockStart` and `blockEnd` with new range.
53286ad0af8SEugene Zhulenev       SmallVector<Value> operands{block->getArguments().begin(),
53386ad0af8SEugene Zhulenev                                   block->getArguments().end()};
53486ad0af8SEugene Zhulenev       operands[1] = midIndex;
53586ad0af8SEugene Zhulenev       operands[2] = end;
53686ad0af8SEugene Zhulenev 
53786ad0af8SEugene Zhulenev       executeBuilder.create<CallOp>(executeLoc, func.sym_name(),
53886ad0af8SEugene Zhulenev                                     func.getCallableResults(), operands);
53986ad0af8SEugene Zhulenev       executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
54086ad0af8SEugene Zhulenev     };
54186ad0af8SEugene Zhulenev 
54286ad0af8SEugene Zhulenev     // Create async.execute operation to dispatch half of the block range.
54386ad0af8SEugene Zhulenev     auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
54486ad0af8SEugene Zhulenev                                        executeBodyBuilder);
54586ad0af8SEugene Zhulenev     b.create<AddToGroupOp>(indexTy, execute.token(), group);
54634a164c9SEugene Zhulenev     b.create<scf::YieldOp>(ValueRange({start, midIndex}));
54786ad0af8SEugene Zhulenev   }
54886ad0af8SEugene Zhulenev 
54986ad0af8SEugene Zhulenev   // After dispatching async operations to process the tail of the block range
55086ad0af8SEugene Zhulenev   // call the parallel compute function for the first block of the range.
55186ad0af8SEugene Zhulenev   b.setInsertionPointAfter(whileOp);
55286ad0af8SEugene Zhulenev 
55386ad0af8SEugene Zhulenev   // Drop async dispatch specific arguments: async group, block start and end.
55486ad0af8SEugene Zhulenev   auto forwardedInputs = block->getArguments().drop_front(3);
55586ad0af8SEugene Zhulenev   SmallVector<Value> computeFuncOperands = {blockStart};
55686ad0af8SEugene Zhulenev   computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end());
55786ad0af8SEugene Zhulenev 
55886ad0af8SEugene Zhulenev   b.create<CallOp>(computeFunc.func.sym_name(),
55986ad0af8SEugene Zhulenev                    computeFunc.func.getCallableResults(), computeFuncOperands);
56086ad0af8SEugene Zhulenev   b.create<ReturnOp>(ValueRange());
56186ad0af8SEugene Zhulenev 
56286ad0af8SEugene Zhulenev   return func;
56386ad0af8SEugene Zhulenev }
56486ad0af8SEugene Zhulenev 
56586ad0af8SEugene Zhulenev // Launch async dispatch of the parallel compute function.
56686ad0af8SEugene Zhulenev static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
56786ad0af8SEugene Zhulenev                             ParallelComputeFunction &parallelComputeFunction,
56886ad0af8SEugene Zhulenev                             scf::ParallelOp op, Value blockSize,
56986ad0af8SEugene Zhulenev                             Value blockCount,
57086ad0af8SEugene Zhulenev                             const SmallVector<Value> &tripCounts) {
57186ad0af8SEugene Zhulenev   MLIRContext *ctx = op->getContext();
57286ad0af8SEugene Zhulenev 
57386ad0af8SEugene Zhulenev   // Add one more level of indirection to dispatch parallel compute functions
57486ad0af8SEugene Zhulenev   // using async operations and recursive work splitting.
57586ad0af8SEugene Zhulenev   FuncOp asyncDispatchFunction =
57686ad0af8SEugene Zhulenev       createAsyncDispatchFunction(parallelComputeFunction, rewriter);
57786ad0af8SEugene Zhulenev 
578a54f4eaeSMogball   Value c0 = b.create<arith::ConstantIndexOp>(0);
579a54f4eaeSMogball   Value c1 = b.create<arith::ConstantIndexOp>(1);
58086ad0af8SEugene Zhulenev 
581a8f819c6SEugene Zhulenev   // Appends operands shared by async dispatch and parallel compute functions to
582a8f819c6SEugene Zhulenev   // the given operands vector.
583a8f819c6SEugene Zhulenev   auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) {
584a8f819c6SEugene Zhulenev     operands.append(tripCounts);
585*c0342a2dSJacques Pienaar     operands.append(op.getLowerBound().begin(), op.getLowerBound().end());
586*c0342a2dSJacques Pienaar     operands.append(op.getUpperBound().begin(), op.getUpperBound().end());
587*c0342a2dSJacques Pienaar     operands.append(op.getStep().begin(), op.getStep().end());
588a8f819c6SEugene Zhulenev     operands.append(parallelComputeFunction.captures);
589a8f819c6SEugene Zhulenev   };
590a8f819c6SEugene Zhulenev 
591a8f819c6SEugene Zhulenev   // Check if the block size is one, in this case we can skip the async dispatch
592a8f819c6SEugene Zhulenev   // completely. If this will be known statically, then canonicalization will
593a8f819c6SEugene Zhulenev   // erase async group operations.
594a54f4eaeSMogball   Value isSingleBlock =
595a54f4eaeSMogball       b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1);
596a8f819c6SEugene Zhulenev 
597a8f819c6SEugene Zhulenev   auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
598a8f819c6SEugene Zhulenev     ImplicitLocOpBuilder nb(loc, nestedBuilder);
599a8f819c6SEugene Zhulenev 
600a8f819c6SEugene Zhulenev     // Call parallel compute function for the single block.
601a8f819c6SEugene Zhulenev     SmallVector<Value> operands = {c0, blockSize};
602a8f819c6SEugene Zhulenev     appendBlockComputeOperands(operands);
603a8f819c6SEugene Zhulenev 
604a8f819c6SEugene Zhulenev     nb.create<CallOp>(parallelComputeFunction.func.sym_name(),
605a8f819c6SEugene Zhulenev                       parallelComputeFunction.func.getCallableResults(),
606a8f819c6SEugene Zhulenev                       operands);
607a8f819c6SEugene Zhulenev     nb.create<scf::YieldOp>();
608a8f819c6SEugene Zhulenev   };
609a8f819c6SEugene Zhulenev 
610a8f819c6SEugene Zhulenev   auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
611bdde9595Sbakhtiyar     // Create an async.group to wait on all async tokens from the concurrent
612bdde9595Sbakhtiyar     // execution of multiple parallel compute function. First block will be
613bdde9595Sbakhtiyar     // executed synchronously in the caller thread.
614a54f4eaeSMogball     Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
615bdde9595Sbakhtiyar     Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
616bdde9595Sbakhtiyar 
617a8f819c6SEugene Zhulenev     ImplicitLocOpBuilder nb(loc, nestedBuilder);
61886ad0af8SEugene Zhulenev 
61986ad0af8SEugene Zhulenev     // Launch async dispatch function for [0, blockCount) range.
620a8f819c6SEugene Zhulenev     SmallVector<Value> operands = {group, c0, blockCount, blockSize};
621a8f819c6SEugene Zhulenev     appendBlockComputeOperands(operands);
622a8f819c6SEugene Zhulenev 
623a8f819c6SEugene Zhulenev     nb.create<CallOp>(asyncDispatchFunction.sym_name(),
624a8f819c6SEugene Zhulenev                       asyncDispatchFunction.getCallableResults(), operands);
625bdde9595Sbakhtiyar 
626bdde9595Sbakhtiyar     // Wait for the completion of all parallel compute operations.
627bdde9595Sbakhtiyar     b.create<AwaitAllOp>(group);
628bdde9595Sbakhtiyar 
629a8f819c6SEugene Zhulenev     nb.create<scf::YieldOp>();
630a8f819c6SEugene Zhulenev   };
631a8f819c6SEugene Zhulenev 
632a8f819c6SEugene Zhulenev   // Dispatch either single block compute function, or launch async dispatch.
633a8f819c6SEugene Zhulenev   b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch);
63486ad0af8SEugene Zhulenev }
63586ad0af8SEugene Zhulenev 
63686ad0af8SEugene Zhulenev // Dispatch parallel compute functions by submitting all async compute tasks
63786ad0af8SEugene Zhulenev // from a simple for loop in the caller thread.
63886ad0af8SEugene Zhulenev static void
63955dfab39Sbakhtiyar doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
64086ad0af8SEugene Zhulenev                      ParallelComputeFunction &parallelComputeFunction,
64186ad0af8SEugene Zhulenev                      scf::ParallelOp op, Value blockSize, Value blockCount,
64286ad0af8SEugene Zhulenev                      const SmallVector<Value> &tripCounts) {
64386ad0af8SEugene Zhulenev   MLIRContext *ctx = op->getContext();
64486ad0af8SEugene Zhulenev 
64586ad0af8SEugene Zhulenev   FuncOp compute = parallelComputeFunction.func;
64686ad0af8SEugene Zhulenev 
647a54f4eaeSMogball   Value c0 = b.create<arith::ConstantIndexOp>(0);
648a54f4eaeSMogball   Value c1 = b.create<arith::ConstantIndexOp>(1);
64986ad0af8SEugene Zhulenev 
65086ad0af8SEugene Zhulenev   // Create an async.group to wait on all async tokens from the concurrent
65186ad0af8SEugene Zhulenev   // execution of multiple parallel compute function. First block will be
65286ad0af8SEugene Zhulenev   // executed synchronously in the caller thread.
653a54f4eaeSMogball   Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
65486ad0af8SEugene Zhulenev   Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
65586ad0af8SEugene Zhulenev 
65686ad0af8SEugene Zhulenev   // Call parallel compute function for all blocks.
65786ad0af8SEugene Zhulenev   using LoopBodyBuilder =
65886ad0af8SEugene Zhulenev       std::function<void(OpBuilder &, Location, Value, ValueRange)>;
65986ad0af8SEugene Zhulenev 
66086ad0af8SEugene Zhulenev   // Returns parallel compute function operands to process the given block.
66186ad0af8SEugene Zhulenev   auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> {
66286ad0af8SEugene Zhulenev     SmallVector<Value> computeFuncOperands = {blockIndex, blockSize};
66386ad0af8SEugene Zhulenev     computeFuncOperands.append(tripCounts);
664*c0342a2dSJacques Pienaar     computeFuncOperands.append(op.getLowerBound().begin(),
665*c0342a2dSJacques Pienaar                                op.getLowerBound().end());
666*c0342a2dSJacques Pienaar     computeFuncOperands.append(op.getUpperBound().begin(),
667*c0342a2dSJacques Pienaar                                op.getUpperBound().end());
668*c0342a2dSJacques Pienaar     computeFuncOperands.append(op.getStep().begin(), op.getStep().end());
66986ad0af8SEugene Zhulenev     computeFuncOperands.append(parallelComputeFunction.captures);
67086ad0af8SEugene Zhulenev     return computeFuncOperands;
67186ad0af8SEugene Zhulenev   };
67286ad0af8SEugene Zhulenev 
67386ad0af8SEugene Zhulenev   // Induction variable is the index of the block: [0, blockCount).
67486ad0af8SEugene Zhulenev   LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc,
67586ad0af8SEugene Zhulenev                                     Value iv, ValueRange args) {
67686ad0af8SEugene Zhulenev     ImplicitLocOpBuilder nb(loc, loopBuilder);
67786ad0af8SEugene Zhulenev 
67886ad0af8SEugene Zhulenev     // Call parallel compute function inside the async.execute region.
67986ad0af8SEugene Zhulenev     auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
68086ad0af8SEugene Zhulenev                                   Location executeLoc, ValueRange executeArgs) {
68186ad0af8SEugene Zhulenev       executeBuilder.create<CallOp>(executeLoc, compute.sym_name(),
68286ad0af8SEugene Zhulenev                                     compute.getCallableResults(),
68386ad0af8SEugene Zhulenev                                     computeFuncOperands(iv));
68486ad0af8SEugene Zhulenev       executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
68586ad0af8SEugene Zhulenev     };
68686ad0af8SEugene Zhulenev 
68786ad0af8SEugene Zhulenev     // Create async.execute operation to launch parallel computate function.
68886ad0af8SEugene Zhulenev     auto execute = nb.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
68986ad0af8SEugene Zhulenev                                         executeBodyBuilder);
69086ad0af8SEugene Zhulenev     nb.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group);
69186ad0af8SEugene Zhulenev     nb.create<scf::YieldOp>();
69286ad0af8SEugene Zhulenev   };
69386ad0af8SEugene Zhulenev 
69486ad0af8SEugene Zhulenev   // Iterate over all compute blocks and launch parallel compute operations.
69586ad0af8SEugene Zhulenev   b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder);
69686ad0af8SEugene Zhulenev 
69786ad0af8SEugene Zhulenev   // Call parallel compute function for the first block in the caller thread.
69886ad0af8SEugene Zhulenev   b.create<CallOp>(compute.sym_name(), compute.getCallableResults(),
69986ad0af8SEugene Zhulenev                    computeFuncOperands(c0));
70086ad0af8SEugene Zhulenev 
70186ad0af8SEugene Zhulenev   // Wait for the completion of all async compute operations.
70286ad0af8SEugene Zhulenev   b.create<AwaitAllOp>(group);
70386ad0af8SEugene Zhulenev }
70486ad0af8SEugene Zhulenev 
705c30ab6c2SEugene Zhulenev LogicalResult
706c30ab6c2SEugene Zhulenev AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op,
707c30ab6c2SEugene Zhulenev                                          PatternRewriter &rewriter) const {
708c30ab6c2SEugene Zhulenev   // We do not currently support rewrite for parallel op with reductions.
709c30ab6c2SEugene Zhulenev   if (op.getNumReductions() != 0)
710c30ab6c2SEugene Zhulenev     return failure();
711c30ab6c2SEugene Zhulenev 
71286ad0af8SEugene Zhulenev   ImplicitLocOpBuilder b(op.getLoc(), rewriter);
713c30ab6c2SEugene Zhulenev 
714ec0e4545Sbakhtiyar   // Computing minTaskSize emits IR and can be implemented as executing a cost
715ec0e4545Sbakhtiyar   // model on the body of the scf.parallel. Thus it needs to be computed before
716ec0e4545Sbakhtiyar   // the body of the scf.parallel has been manipulated.
717ec0e4545Sbakhtiyar   Value minTaskSize = computeMinTaskSize(b, op);
718ec0e4545Sbakhtiyar 
7199f151b78SEugene Zhulenev   // Make sure that all constants will be inside the parallel operation body to
7209f151b78SEugene Zhulenev   // reduce the number of parallel compute function arguments.
7219f151b78SEugene Zhulenev   cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter);
7229f151b78SEugene Zhulenev 
723c30ab6c2SEugene Zhulenev   // Compute trip count for each loop induction variable:
72486ad0af8SEugene Zhulenev   //   tripCount = ceil_div(upperBound - lowerBound, step);
72586ad0af8SEugene Zhulenev   SmallVector<Value> tripCounts(op.getNumLoops());
726c30ab6c2SEugene Zhulenev   for (size_t i = 0; i < op.getNumLoops(); ++i) {
727*c0342a2dSJacques Pienaar     auto lb = op.getLowerBound()[i];
728*c0342a2dSJacques Pienaar     auto ub = op.getUpperBound()[i];
729*c0342a2dSJacques Pienaar     auto step = op.getStep()[i];
7309f151b78SEugene Zhulenev     auto range = b.createOrFold<arith::SubIOp>(ub, lb);
7319f151b78SEugene Zhulenev     tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step);
732c30ab6c2SEugene Zhulenev   }
733c30ab6c2SEugene Zhulenev 
73486ad0af8SEugene Zhulenev   // Compute a product of trip counts to get the 1-dimensional iteration space
73586ad0af8SEugene Zhulenev   // for the scf.parallel operation.
73686ad0af8SEugene Zhulenev   Value tripCount = tripCounts[0];
73786ad0af8SEugene Zhulenev   for (size_t i = 1; i < tripCounts.size(); ++i)
738a54f4eaeSMogball     tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
739c30ab6c2SEugene Zhulenev 
7406c1f6558SEugene Zhulenev   // Short circuit no-op parallel loops (zero iterations) that can arise from
7416c1f6558SEugene Zhulenev   // the memrefs with dynamic dimension(s) equal to zero.
742a54f4eaeSMogball   Value c0 = b.create<arith::ConstantIndexOp>(0);
743a54f4eaeSMogball   Value isZeroIterations =
744a54f4eaeSMogball       b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0);
7456c1f6558SEugene Zhulenev 
7466c1f6558SEugene Zhulenev   // Do absolutely nothing if the trip count is zero.
7476c1f6558SEugene Zhulenev   auto noOp = [&](OpBuilder &nestedBuilder, Location loc) {
7486c1f6558SEugene Zhulenev     nestedBuilder.create<scf::YieldOp>(loc);
7496c1f6558SEugene Zhulenev   };
7506c1f6558SEugene Zhulenev 
7516c1f6558SEugene Zhulenev   // Compute the parallel block size and dispatch concurrent tasks computing
7526c1f6558SEugene Zhulenev   // results for each block.
7536c1f6558SEugene Zhulenev   auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) {
7546c1f6558SEugene Zhulenev     ImplicitLocOpBuilder nb(loc, nestedBuilder);
7556c1f6558SEugene Zhulenev 
75649ce40e9SEugene Zhulenev     // Collect statically known constants defining the loop nest in the parallel
75749ce40e9SEugene Zhulenev     // compute function. LLVM can't always push constants across the non-trivial
75849ce40e9SEugene Zhulenev     // async dispatch call graph, by providing these values explicitly we can
75949ce40e9SEugene Zhulenev     // choose to build more efficient loop nest, and rely on a better constant
76049ce40e9SEugene Zhulenev     // folding, loop unrolling and vectorization.
76149ce40e9SEugene Zhulenev     ParallelComputeFunctionBounds staticBounds = {
76249ce40e9SEugene Zhulenev         integerConstants(tripCounts),
763*c0342a2dSJacques Pienaar         integerConstants(op.getLowerBound()),
764*c0342a2dSJacques Pienaar         integerConstants(op.getUpperBound()),
765*c0342a2dSJacques Pienaar         integerConstants(op.getStep()),
76649ce40e9SEugene Zhulenev     };
76749ce40e9SEugene Zhulenev 
76849ce40e9SEugene Zhulenev     // Find how many inner iteration dimensions are statically known, and their
769ec0e4545Sbakhtiyar     // product is smaller than the `512`. We align the parallel compute block
77049ce40e9SEugene Zhulenev     // size by the product of statically known dimensions, so that we can
77149ce40e9SEugene Zhulenev     // guarantee that the inner loops executes from 0 to the loop trip counts
77249ce40e9SEugene Zhulenev     // and we can elide dynamic loop boundaries, and give LLVM an opportunity to
77349ce40e9SEugene Zhulenev     // unroll the loops. The constant `512` is arbitrary, it should depend on
77449ce40e9SEugene Zhulenev     // how many iterations LLVM will typically decide to unroll.
77549ce40e9SEugene Zhulenev     static constexpr int64_t maxIterations = 512;
77649ce40e9SEugene Zhulenev 
77749ce40e9SEugene Zhulenev     // The number of inner loops with statically known number of iterations less
77849ce40e9SEugene Zhulenev     // than the `maxIterations` value.
77949ce40e9SEugene Zhulenev     int numUnrollableLoops = 0;
78049ce40e9SEugene Zhulenev 
78149ce40e9SEugene Zhulenev     auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; };
78249ce40e9SEugene Zhulenev 
78349ce40e9SEugene Zhulenev     SmallVector<int64_t> numIterations(op.getNumLoops());
78449ce40e9SEugene Zhulenev     numIterations.back() = getInt(staticBounds.tripCounts.back());
78549ce40e9SEugene Zhulenev 
78649ce40e9SEugene Zhulenev     for (int i = op.getNumLoops() - 2; i >= 0; --i) {
78749ce40e9SEugene Zhulenev       int64_t tripCount = getInt(staticBounds.tripCounts[i]);
78849ce40e9SEugene Zhulenev       int64_t innerIterations = numIterations[i + 1];
78949ce40e9SEugene Zhulenev       numIterations[i] = tripCount * innerIterations;
79049ce40e9SEugene Zhulenev 
79149ce40e9SEugene Zhulenev       // Update the number of inner loops that we can potentially unroll.
79249ce40e9SEugene Zhulenev       if (innerIterations > 0 && innerIterations <= maxIterations)
79349ce40e9SEugene Zhulenev         numUnrollableLoops++;
79449ce40e9SEugene Zhulenev     }
79549ce40e9SEugene Zhulenev 
796c1194c2eSEugene Zhulenev     // With large number of threads the value of creating many compute blocks
797c1194c2eSEugene Zhulenev     // is reduced because the problem typically becomes memory bound. For small
798c1194c2eSEugene Zhulenev     // number of threads it helps with stragglers.
799c1194c2eSEugene Zhulenev     float overshardingFactor = numWorkerThreads <= 4    ? 8.0
800c1194c2eSEugene Zhulenev                                : numWorkerThreads <= 8  ? 4.0
801c1194c2eSEugene Zhulenev                                : numWorkerThreads <= 16 ? 2.0
802c1194c2eSEugene Zhulenev                                : numWorkerThreads <= 32 ? 1.0
803c1194c2eSEugene Zhulenev                                : numWorkerThreads <= 64 ? 0.8
804c1194c2eSEugene Zhulenev                                                         : 0.6;
805c1194c2eSEugene Zhulenev 
80686ad0af8SEugene Zhulenev     // Do not overload worker threads with too many compute blocks.
807a54f4eaeSMogball     Value maxComputeBlocks = b.create<arith::ConstantIndexOp>(
808c1194c2eSEugene Zhulenev         std::max(1, static_cast<int>(numWorkerThreads * overshardingFactor)));
809c30ab6c2SEugene Zhulenev 
81086ad0af8SEugene Zhulenev     // Compute parallel block size from the parallel problem size:
81186ad0af8SEugene Zhulenev     //   blockSize = min(tripCount,
81234a164c9SEugene Zhulenev     //                   max(ceil_div(tripCount, maxComputeBlocks),
813ec0e4545Sbakhtiyar     //                       minTaskSize))
8147bd87a03Sbakhtiyar     Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks);
815ec0e4545Sbakhtiyar     Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize);
8167bd87a03Sbakhtiyar     Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1);
81749ce40e9SEugene Zhulenev 
818ec0e4545Sbakhtiyar     ParallelComputeFunction notUnrollableParallelComputeFunction =
819ec0e4545Sbakhtiyar         createParallelComputeFunction(op, staticBounds, 0, rewriter);
820ec0e4545Sbakhtiyar 
821ec0e4545Sbakhtiyar     // Dispatch parallel compute function using async recursive work splitting,
822ec0e4545Sbakhtiyar     // or by submitting compute task sequentially from a caller thread.
823ec0e4545Sbakhtiyar     auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch;
824ec0e4545Sbakhtiyar 
825ec0e4545Sbakhtiyar     // Create a parallel compute function that takes a block id and computes
826ec0e4545Sbakhtiyar     // the parallel operation body for a subset of iteration space.
82749ce40e9SEugene Zhulenev 
82849ce40e9SEugene Zhulenev     // Compute the number of parallel compute blocks.
829a54f4eaeSMogball     Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize);
83086ad0af8SEugene Zhulenev 
831ec0e4545Sbakhtiyar     // Unroll when numUnrollableLoops > 0 && blockSize >= maxIterations.
832ec0e4545Sbakhtiyar     bool staticShouldUnroll = numUnrollableLoops > 0;
833ec0e4545Sbakhtiyar     auto dispatchNotUnrollable = [&](OpBuilder &nestedBuilder, Location loc) {
834ec0e4545Sbakhtiyar       ImplicitLocOpBuilder nb(loc, nestedBuilder);
835ec0e4545Sbakhtiyar       doDispatch(b, rewriter, notUnrollableParallelComputeFunction, op,
836ec0e4545Sbakhtiyar                  blockSize, blockCount, tripCounts);
837ec0e4545Sbakhtiyar       nb.create<scf::YieldOp>();
838ec0e4545Sbakhtiyar     };
839ec0e4545Sbakhtiyar 
840ec0e4545Sbakhtiyar     if (staticShouldUnroll) {
841ec0e4545Sbakhtiyar       Value dynamicShouldUnroll = b.create<arith::CmpIOp>(
842ec0e4545Sbakhtiyar           arith::CmpIPredicate::sge, blockSize,
843ec0e4545Sbakhtiyar           b.create<arith::ConstantIndexOp>(maxIterations));
844ec0e4545Sbakhtiyar 
845ec0e4545Sbakhtiyar       ParallelComputeFunction unrollableParallelComputeFunction =
84649ce40e9SEugene Zhulenev           createParallelComputeFunction(op, staticBounds, numUnrollableLoops,
84749ce40e9SEugene Zhulenev                                         rewriter);
84886ad0af8SEugene Zhulenev 
849ec0e4545Sbakhtiyar       auto dispatchUnrollable = [&](OpBuilder &nestedBuilder, Location loc) {
850ec0e4545Sbakhtiyar         ImplicitLocOpBuilder nb(loc, nestedBuilder);
851ec0e4545Sbakhtiyar         // Align the block size to be a multiple of the statically known
852ec0e4545Sbakhtiyar         // number of iterations in the inner loops.
853ec0e4545Sbakhtiyar         Value numIters = nb.create<arith::ConstantIndexOp>(
854ec0e4545Sbakhtiyar             numIterations[op.getNumLoops() - numUnrollableLoops]);
855ec0e4545Sbakhtiyar         Value alignedBlockSize = nb.create<arith::MulIOp>(
856ec0e4545Sbakhtiyar             nb.create<arith::CeilDivSIOp>(blockSize, numIters), numIters);
857ec0e4545Sbakhtiyar         doDispatch(b, rewriter, unrollableParallelComputeFunction, op,
858ec0e4545Sbakhtiyar                    alignedBlockSize, blockCount, tripCounts);
8596c1f6558SEugene Zhulenev         nb.create<scf::YieldOp>();
8606c1f6558SEugene Zhulenev       };
8616c1f6558SEugene Zhulenev 
862ec0e4545Sbakhtiyar       b.create<scf::IfOp>(TypeRange(), dynamicShouldUnroll, dispatchUnrollable,
863ec0e4545Sbakhtiyar                           dispatchNotUnrollable);
864ec0e4545Sbakhtiyar       nb.create<scf::YieldOp>();
865ec0e4545Sbakhtiyar     } else {
866ec0e4545Sbakhtiyar       dispatchNotUnrollable(nb, loc);
867ec0e4545Sbakhtiyar     }
868ec0e4545Sbakhtiyar   };
869ec0e4545Sbakhtiyar 
8706c1f6558SEugene Zhulenev   // Replace the `scf.parallel` operation with the parallel compute function.
8716c1f6558SEugene Zhulenev   b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch);
8726c1f6558SEugene Zhulenev 
87334a164c9SEugene Zhulenev   // Parallel operation was replaced with a block iteration loop.
874c30ab6c2SEugene Zhulenev   rewriter.eraseOp(op);
875c30ab6c2SEugene Zhulenev 
876c30ab6c2SEugene Zhulenev   return success();
877c30ab6c2SEugene Zhulenev }
878c30ab6c2SEugene Zhulenev 
8798a316b00SEugene Zhulenev void AsyncParallelForPass::runOnOperation() {
880c30ab6c2SEugene Zhulenev   MLIRContext *ctx = &getContext();
881c30ab6c2SEugene Zhulenev 
882dc4e913bSChris Lattner   RewritePatternSet patterns(ctx);
883ec0e4545Sbakhtiyar   populateAsyncParallelForPatterns(
884ec0e4545Sbakhtiyar       patterns, asyncDispatch, numWorkerThreads,
885ec0e4545Sbakhtiyar       [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) {
886ec0e4545Sbakhtiyar         return builder.create<arith::ConstantIndexOp>(minTaskSize);
887ec0e4545Sbakhtiyar       });
8888a316b00SEugene Zhulenev   if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
889c30ab6c2SEugene Zhulenev     signalPassFailure();
890c30ab6c2SEugene Zhulenev }
891c30ab6c2SEugene Zhulenev 
8928a316b00SEugene Zhulenev std::unique_ptr<Pass> mlir::createAsyncParallelForPass() {
893c30ab6c2SEugene Zhulenev   return std::make_unique<AsyncParallelForPass>();
894c30ab6c2SEugene Zhulenev }
89534a164c9SEugene Zhulenev 
89655dfab39Sbakhtiyar std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch,
89755dfab39Sbakhtiyar                                                        int32_t numWorkerThreads,
89855dfab39Sbakhtiyar                                                        int32_t minTaskSize) {
89934a164c9SEugene Zhulenev   return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads,
90055dfab39Sbakhtiyar                                                 minTaskSize);
90134a164c9SEugene Zhulenev }
902ec0e4545Sbakhtiyar 
903ec0e4545Sbakhtiyar void mlir::async::populateAsyncParallelForPatterns(
904ec0e4545Sbakhtiyar     RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads,
905ec0e4545Sbakhtiyar     AsyncMinTaskSizeComputationFunction computeMinTaskSize) {
906ec0e4545Sbakhtiyar   MLIRContext *ctx = patterns.getContext();
907ec0e4545Sbakhtiyar   patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads,
908ec0e4545Sbakhtiyar                                         computeMinTaskSize);
909ec0e4545Sbakhtiyar }
910