1c30ab6c2SEugene Zhulenev //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===// 2c30ab6c2SEugene Zhulenev // 3c30ab6c2SEugene Zhulenev // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4c30ab6c2SEugene Zhulenev // See https://llvm.org/LICENSE.txt for license information. 5c30ab6c2SEugene Zhulenev // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6c30ab6c2SEugene Zhulenev // 7c30ab6c2SEugene Zhulenev //===----------------------------------------------------------------------===// 8c30ab6c2SEugene Zhulenev // 986ad0af8SEugene Zhulenev // This file implements scf.parallel to scf.for + async.execute conversion pass. 10c30ab6c2SEugene Zhulenev // 11c30ab6c2SEugene Zhulenev //===----------------------------------------------------------------------===// 12c30ab6c2SEugene Zhulenev 131fc096afSMehdi Amini #include <utility> 141fc096afSMehdi Amini 15c30ab6c2SEugene Zhulenev #include "PassDetail.h" 16a54f4eaeSMogball #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 17c30ab6c2SEugene Zhulenev #include "mlir/Dialect/Async/IR/Async.h" 18c30ab6c2SEugene Zhulenev #include "mlir/Dialect/Async/Passes.h" 19ec0e4545Sbakhtiyar #include "mlir/Dialect/Async/Transforms.h" 20c30ab6c2SEugene Zhulenev #include "mlir/Dialect/SCF/SCF.h" 21c30ab6c2SEugene Zhulenev #include "mlir/Dialect/StandardOps/IR/Ops.h" 22c30ab6c2SEugene Zhulenev #include "mlir/IR/BlockAndValueMapping.h" 2386ad0af8SEugene Zhulenev #include "mlir/IR/ImplicitLocOpBuilder.h" 249f151b78SEugene Zhulenev #include "mlir/IR/Matchers.h" 25c30ab6c2SEugene Zhulenev #include "mlir/IR/PatternMatch.h" 26149311b4Sbakhtiyar #include "mlir/Support/LLVM.h" 27c30ab6c2SEugene Zhulenev #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 2886ad0af8SEugene Zhulenev #include "mlir/Transforms/RegionUtils.h" 29c30ab6c2SEugene Zhulenev 30c30ab6c2SEugene Zhulenev using namespace mlir; 31c30ab6c2SEugene Zhulenev using namespace mlir::async; 32c30ab6c2SEugene Zhulenev 33c30ab6c2SEugene Zhulenev #define DEBUG_TYPE "async-parallel-for" 34c30ab6c2SEugene Zhulenev 35c30ab6c2SEugene Zhulenev namespace { 36c30ab6c2SEugene Zhulenev 37c30ab6c2SEugene Zhulenev // Rewrite scf.parallel operation into multiple concurrent async.execute 38c30ab6c2SEugene Zhulenev // operations over non overlapping subranges of the original loop. 39c30ab6c2SEugene Zhulenev // 40c30ab6c2SEugene Zhulenev // Example: 41c30ab6c2SEugene Zhulenev // 4286ad0af8SEugene Zhulenev // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) { 43c30ab6c2SEugene Zhulenev // "do_some_compute"(%i, %j): () -> () 44c30ab6c2SEugene Zhulenev // } 45c30ab6c2SEugene Zhulenev // 46c30ab6c2SEugene Zhulenev // Converted to: 47c30ab6c2SEugene Zhulenev // 4886ad0af8SEugene Zhulenev // // Parallel compute function that executes the parallel body region for 4986ad0af8SEugene Zhulenev // // a subset of the parallel iteration space defined by the one-dimensional 5086ad0af8SEugene Zhulenev // // compute block index. 5186ad0af8SEugene Zhulenev // func parallel_compute_function(%block_index : index, %block_size : index, 5286ad0af8SEugene Zhulenev // <parallel operation properties>, ...) { 5386ad0af8SEugene Zhulenev // // Compute multi-dimensional loop bounds for %block_index. 5486ad0af8SEugene Zhulenev // %block_lbi, %block_lbj = ... 5586ad0af8SEugene Zhulenev // %block_ubi, %block_ubj = ... 56c30ab6c2SEugene Zhulenev // 5786ad0af8SEugene Zhulenev // // Clone parallel operation body into the scf.for loop nest. 5886ad0af8SEugene Zhulenev // scf.for %i = %blockLbi to %blockUbi { 5986ad0af8SEugene Zhulenev // scf.for %j = block_lbj to %block_ubj { 60c30ab6c2SEugene Zhulenev // "do_some_compute"(%i, %j): () -> () 61c30ab6c2SEugene Zhulenev // } 62c30ab6c2SEugene Zhulenev // } 63c30ab6c2SEugene Zhulenev // } 64c30ab6c2SEugene Zhulenev // 6586ad0af8SEugene Zhulenev // And a dispatch function depending on the `asyncDispatch` option. 6686ad0af8SEugene Zhulenev // 6786ad0af8SEugene Zhulenev // When async dispatch is on: (pseudocode) 6886ad0af8SEugene Zhulenev // 6986ad0af8SEugene Zhulenev // %block_size = ... compute parallel compute block size 7086ad0af8SEugene Zhulenev // %block_count = ... compute the number of compute blocks 7186ad0af8SEugene Zhulenev // 7286ad0af8SEugene Zhulenev // func @async_dispatch(%block_start : index, %block_end : index, ...) { 7386ad0af8SEugene Zhulenev // // Keep splitting block range until we reached a range of size 1. 7486ad0af8SEugene Zhulenev // while (%block_end - %block_start > 1) { 7586ad0af8SEugene Zhulenev // %mid_index = block_start + (block_end - block_start) / 2; 7686ad0af8SEugene Zhulenev // async.execute { call @async_dispatch(%mid_index, %block_end); } 7786ad0af8SEugene Zhulenev // %block_end = %mid_index 78c30ab6c2SEugene Zhulenev // } 79c30ab6c2SEugene Zhulenev // 8086ad0af8SEugene Zhulenev // // Call parallel compute function for a single block. 8186ad0af8SEugene Zhulenev // call @parallel_compute_fn(%block_start, %block_size, ...); 8286ad0af8SEugene Zhulenev // } 83c30ab6c2SEugene Zhulenev // 8486ad0af8SEugene Zhulenev // // Launch async dispatch for [0, block_count) range. 8586ad0af8SEugene Zhulenev // call @async_dispatch(%c0, %block_count); 86c30ab6c2SEugene Zhulenev // 8786ad0af8SEugene Zhulenev // When async dispatch is off: 88c30ab6c2SEugene Zhulenev // 8986ad0af8SEugene Zhulenev // %block_size = ... compute parallel compute block size 9086ad0af8SEugene Zhulenev // %block_count = ... compute the number of compute blocks 9186ad0af8SEugene Zhulenev // 9286ad0af8SEugene Zhulenev // scf.for %block_index = %c0 to %block_count { 9386ad0af8SEugene Zhulenev // call @parallel_compute_fn(%block_index, %block_size, ...) 9486ad0af8SEugene Zhulenev // } 9586ad0af8SEugene Zhulenev // 9686ad0af8SEugene Zhulenev struct AsyncParallelForPass 9786ad0af8SEugene Zhulenev : public AsyncParallelForBase<AsyncParallelForPass> { 9886ad0af8SEugene Zhulenev AsyncParallelForPass() = default; 9934a164c9SEugene Zhulenev 10034a164c9SEugene Zhulenev AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads, 10155dfab39Sbakhtiyar int32_t minTaskSize) { 10234a164c9SEugene Zhulenev this->asyncDispatch = asyncDispatch; 10334a164c9SEugene Zhulenev this->numWorkerThreads = numWorkerThreads; 10455dfab39Sbakhtiyar this->minTaskSize = minTaskSize; 10534a164c9SEugene Zhulenev } 10634a164c9SEugene Zhulenev 10786ad0af8SEugene Zhulenev void runOnOperation() override; 10886ad0af8SEugene Zhulenev }; 10986ad0af8SEugene Zhulenev 110c30ab6c2SEugene Zhulenev struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> { 111c30ab6c2SEugene Zhulenev public: 112ec0e4545Sbakhtiyar AsyncParallelForRewrite( 113ec0e4545Sbakhtiyar MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads, 114ec0e4545Sbakhtiyar AsyncMinTaskSizeComputationFunction computeMinTaskSize) 11586ad0af8SEugene Zhulenev : OpRewritePattern(ctx), asyncDispatch(asyncDispatch), 116ec0e4545Sbakhtiyar numWorkerThreads(numWorkerThreads), 1171fc096afSMehdi Amini computeMinTaskSize(std::move(computeMinTaskSize)) {} 118c30ab6c2SEugene Zhulenev 119c30ab6c2SEugene Zhulenev LogicalResult matchAndRewrite(scf::ParallelOp op, 120c30ab6c2SEugene Zhulenev PatternRewriter &rewriter) const override; 121c30ab6c2SEugene Zhulenev 122c30ab6c2SEugene Zhulenev private: 12386ad0af8SEugene Zhulenev bool asyncDispatch; 12486ad0af8SEugene Zhulenev int32_t numWorkerThreads; 125ec0e4545Sbakhtiyar AsyncMinTaskSizeComputationFunction computeMinTaskSize; 126c30ab6c2SEugene Zhulenev }; 127c30ab6c2SEugene Zhulenev 12886ad0af8SEugene Zhulenev struct ParallelComputeFunctionType { 12986ad0af8SEugene Zhulenev FunctionType type; 1309f151b78SEugene Zhulenev SmallVector<Value> captures; 1319f151b78SEugene Zhulenev }; 1329f151b78SEugene Zhulenev 1339f151b78SEugene Zhulenev // Helper struct to parse parallel compute function argument list. 1349f151b78SEugene Zhulenev struct ParallelComputeFunctionArgs { 1359f151b78SEugene Zhulenev BlockArgument blockIndex(); 1369f151b78SEugene Zhulenev BlockArgument blockSize(); 1379f151b78SEugene Zhulenev ArrayRef<BlockArgument> tripCounts(); 1389f151b78SEugene Zhulenev ArrayRef<BlockArgument> lowerBounds(); 1399f151b78SEugene Zhulenev ArrayRef<BlockArgument> upperBounds(); 1409f151b78SEugene Zhulenev ArrayRef<BlockArgument> steps(); 1419f151b78SEugene Zhulenev ArrayRef<BlockArgument> captures(); 1429f151b78SEugene Zhulenev 1439f151b78SEugene Zhulenev unsigned numLoops; 1449f151b78SEugene Zhulenev ArrayRef<BlockArgument> args; 1459f151b78SEugene Zhulenev }; 1469f151b78SEugene Zhulenev 1479f151b78SEugene Zhulenev struct ParallelComputeFunctionBounds { 1489f151b78SEugene Zhulenev SmallVector<IntegerAttr> tripCounts; 1499f151b78SEugene Zhulenev SmallVector<IntegerAttr> lowerBounds; 1509f151b78SEugene Zhulenev SmallVector<IntegerAttr> upperBounds; 1519f151b78SEugene Zhulenev SmallVector<IntegerAttr> steps; 15286ad0af8SEugene Zhulenev }; 15386ad0af8SEugene Zhulenev 15486ad0af8SEugene Zhulenev struct ParallelComputeFunction { 1559f151b78SEugene Zhulenev unsigned numLoops; 15686ad0af8SEugene Zhulenev FuncOp func; 15786ad0af8SEugene Zhulenev llvm::SmallVector<Value> captures; 158c30ab6c2SEugene Zhulenev }; 159c30ab6c2SEugene Zhulenev 160c30ab6c2SEugene Zhulenev } // namespace 161c30ab6c2SEugene Zhulenev 1629f151b78SEugene Zhulenev BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; } 1639f151b78SEugene Zhulenev BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; } 1649f151b78SEugene Zhulenev 1659f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() { 1669f151b78SEugene Zhulenev return args.drop_front(2).take_front(numLoops); 1679f151b78SEugene Zhulenev } 1689f151b78SEugene Zhulenev 1699f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() { 1709f151b78SEugene Zhulenev return args.drop_front(2 + 1 * numLoops).take_front(numLoops); 1719f151b78SEugene Zhulenev } 1729f151b78SEugene Zhulenev 1739f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() { 1749f151b78SEugene Zhulenev return args.drop_front(2 + 2 * numLoops).take_front(numLoops); 1759f151b78SEugene Zhulenev } 1769f151b78SEugene Zhulenev 1779f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() { 1789f151b78SEugene Zhulenev return args.drop_front(2 + 3 * numLoops).take_front(numLoops); 1799f151b78SEugene Zhulenev } 1809f151b78SEugene Zhulenev 1819f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() { 1829f151b78SEugene Zhulenev return args.drop_front(2 + 4 * numLoops); 1839f151b78SEugene Zhulenev } 1849f151b78SEugene Zhulenev 1859f151b78SEugene Zhulenev template <typename ValueRange> 1869f151b78SEugene Zhulenev static SmallVector<IntegerAttr> integerConstants(ValueRange values) { 1879f151b78SEugene Zhulenev SmallVector<IntegerAttr> attrs(values.size()); 1889f151b78SEugene Zhulenev for (unsigned i = 0; i < values.size(); ++i) 1899f151b78SEugene Zhulenev matchPattern(values[i], m_Constant(&attrs[i])); 1909f151b78SEugene Zhulenev return attrs; 1919f151b78SEugene Zhulenev } 1929f151b78SEugene Zhulenev 19386ad0af8SEugene Zhulenev // Converts one-dimensional iteration index in the [0, tripCount) interval 19486ad0af8SEugene Zhulenev // into multidimensional iteration coordinate. 19586ad0af8SEugene Zhulenev static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index, 19634a164c9SEugene Zhulenev ArrayRef<Value> tripCounts) { 19786ad0af8SEugene Zhulenev SmallVector<Value> coords(tripCounts.size()); 19886ad0af8SEugene Zhulenev assert(!tripCounts.empty() && "tripCounts must be not empty"); 19986ad0af8SEugene Zhulenev 20086ad0af8SEugene Zhulenev for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) { 201a54f4eaeSMogball coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]); 202a54f4eaeSMogball index = b.create<arith::DivSIOp>(index, tripCounts[i]); 20386ad0af8SEugene Zhulenev } 20486ad0af8SEugene Zhulenev 20586ad0af8SEugene Zhulenev return coords; 20686ad0af8SEugene Zhulenev } 20786ad0af8SEugene Zhulenev 20886ad0af8SEugene Zhulenev // Returns a function type and implicit captures for a parallel compute 20986ad0af8SEugene Zhulenev // function. We'll need a list of implicit captures to setup block and value 21086ad0af8SEugene Zhulenev // mapping when we'll clone the body of the parallel operation. 21186ad0af8SEugene Zhulenev static ParallelComputeFunctionType 21286ad0af8SEugene Zhulenev getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) { 21386ad0af8SEugene Zhulenev // Values implicitly captured by the parallel operation. 21486ad0af8SEugene Zhulenev llvm::SetVector<Value> captures; 215c0342a2dSJacques Pienaar getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures); 21686ad0af8SEugene Zhulenev 2179f151b78SEugene Zhulenev SmallVector<Type> inputs; 21886ad0af8SEugene Zhulenev inputs.reserve(2 + 4 * op.getNumLoops() + captures.size()); 21986ad0af8SEugene Zhulenev 22086ad0af8SEugene Zhulenev Type indexTy = rewriter.getIndexType(); 22186ad0af8SEugene Zhulenev 22286ad0af8SEugene Zhulenev // One-dimensional iteration space defined by the block index and size. 22386ad0af8SEugene Zhulenev inputs.push_back(indexTy); // blockIndex 22486ad0af8SEugene Zhulenev inputs.push_back(indexTy); // blockSize 22586ad0af8SEugene Zhulenev 22686ad0af8SEugene Zhulenev // Multi-dimensional parallel iteration space defined by the loop trip counts. 22786ad0af8SEugene Zhulenev for (unsigned i = 0; i < op.getNumLoops(); ++i) 22886ad0af8SEugene Zhulenev inputs.push_back(indexTy); // loop tripCount 22986ad0af8SEugene Zhulenev 2309f151b78SEugene Zhulenev // Parallel operation lower bound, upper bound and step. Lower bound, upper 2319f151b78SEugene Zhulenev // bound and step passed as contiguous arguments: 2329f151b78SEugene Zhulenev // call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...) 23386ad0af8SEugene Zhulenev for (unsigned i = 0; i < op.getNumLoops(); ++i) { 23486ad0af8SEugene Zhulenev inputs.push_back(indexTy); // lower bound 23586ad0af8SEugene Zhulenev inputs.push_back(indexTy); // upper bound 23686ad0af8SEugene Zhulenev inputs.push_back(indexTy); // step 23786ad0af8SEugene Zhulenev } 23886ad0af8SEugene Zhulenev 23986ad0af8SEugene Zhulenev // Types of the implicit captures. 24086ad0af8SEugene Zhulenev for (Value capture : captures) 24186ad0af8SEugene Zhulenev inputs.push_back(capture.getType()); 24286ad0af8SEugene Zhulenev 24386ad0af8SEugene Zhulenev // Convert captures to vector for later convenience. 24486ad0af8SEugene Zhulenev SmallVector<Value> capturesVector(captures.begin(), captures.end()); 24586ad0af8SEugene Zhulenev return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector}; 24686ad0af8SEugene Zhulenev } 24786ad0af8SEugene Zhulenev 24886ad0af8SEugene Zhulenev // Create a parallel compute fuction from the parallel operation. 24949ce40e9SEugene Zhulenev static ParallelComputeFunction createParallelComputeFunction( 2501fc096afSMehdi Amini scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds, 25149ce40e9SEugene Zhulenev unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) { 25286ad0af8SEugene Zhulenev OpBuilder::InsertionGuard guard(rewriter); 25386ad0af8SEugene Zhulenev ImplicitLocOpBuilder b(op.getLoc(), rewriter); 25486ad0af8SEugene Zhulenev 25586ad0af8SEugene Zhulenev ModuleOp module = op->getParentOfType<ModuleOp>(); 25686ad0af8SEugene Zhulenev 25786ad0af8SEugene Zhulenev ParallelComputeFunctionType computeFuncType = 25886ad0af8SEugene Zhulenev getParallelComputeFunctionType(op, rewriter); 25986ad0af8SEugene Zhulenev 26086ad0af8SEugene Zhulenev FunctionType type = computeFuncType.type; 261ec0e4545Sbakhtiyar FuncOp func = FuncOp::create(op.getLoc(), 262ec0e4545Sbakhtiyar numBlockAlignedInnerLoops > 0 263ec0e4545Sbakhtiyar ? "parallel_compute_fn_with_aligned_loops" 264ec0e4545Sbakhtiyar : "parallel_compute_fn", 265ec0e4545Sbakhtiyar type); 26686ad0af8SEugene Zhulenev func.setPrivate(); 26786ad0af8SEugene Zhulenev 26886ad0af8SEugene Zhulenev // Insert function into the module symbol table and assign it unique name. 26986ad0af8SEugene Zhulenev SymbolTable symbolTable(module); 27086ad0af8SEugene Zhulenev symbolTable.insert(func); 27186ad0af8SEugene Zhulenev rewriter.getListener()->notifyOperationInserted(func); 27286ad0af8SEugene Zhulenev 27386ad0af8SEugene Zhulenev // Create function entry block. 274e084679fSRiver Riddle Block *block = 275e084679fSRiver Riddle b.createBlock(&func.getBody(), func.begin(), type.getInputs(), 276e084679fSRiver Riddle SmallVector<Location>(type.getNumInputs(), op.getLoc())); 27786ad0af8SEugene Zhulenev b.setInsertionPointToEnd(block); 27886ad0af8SEugene Zhulenev 2799f151b78SEugene Zhulenev ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()}; 28086ad0af8SEugene Zhulenev 28186ad0af8SEugene Zhulenev // Block iteration position defined by the block index and size. 2829f151b78SEugene Zhulenev BlockArgument blockIndex = args.blockIndex(); 2839f151b78SEugene Zhulenev BlockArgument blockSize = args.blockSize(); 28486ad0af8SEugene Zhulenev 28586ad0af8SEugene Zhulenev // Constants used below. 286a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0); 287a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1); 28886ad0af8SEugene Zhulenev 2899f151b78SEugene Zhulenev // Materialize known constants as constant operation in the function body. 2909f151b78SEugene Zhulenev auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) { 2919f151b78SEugene Zhulenev return llvm::to_vector( 2929f151b78SEugene Zhulenev llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value { 2939f151b78SEugene Zhulenev if (IntegerAttr attr = std::get<1>(tuple)) 2948e123ca6SRiver Riddle return b.create<arith::ConstantOp>(attr); 2959f151b78SEugene Zhulenev return std::get<0>(tuple); 2969f151b78SEugene Zhulenev })); 2979f151b78SEugene Zhulenev }; 2989f151b78SEugene Zhulenev 29986ad0af8SEugene Zhulenev // Multi-dimensional parallel iteration space defined by the loop trip counts. 3009f151b78SEugene Zhulenev auto tripCounts = values(args.tripCounts(), bounds.tripCounts); 3019f151b78SEugene Zhulenev 3029f151b78SEugene Zhulenev // Parallel operation lower bound and step. 3039f151b78SEugene Zhulenev auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds); 3049f151b78SEugene Zhulenev auto steps = values(args.steps(), bounds.steps); 3059f151b78SEugene Zhulenev 3069f151b78SEugene Zhulenev // Remaining arguments are implicit captures of the parallel operation. 3079f151b78SEugene Zhulenev ArrayRef<BlockArgument> captures = args.captures(); 30886ad0af8SEugene Zhulenev 30986ad0af8SEugene Zhulenev // Compute a product of trip counts to get the size of the flattened 31086ad0af8SEugene Zhulenev // one-dimensional iteration space. 31186ad0af8SEugene Zhulenev Value tripCount = tripCounts[0]; 31286ad0af8SEugene Zhulenev for (unsigned i = 1; i < tripCounts.size(); ++i) 313a54f4eaeSMogball tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 31486ad0af8SEugene Zhulenev 31586ad0af8SEugene Zhulenev // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]: 31686ad0af8SEugene Zhulenev // blockFirstIndex = blockIndex * blockSize 317a54f4eaeSMogball Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize); 31886ad0af8SEugene Zhulenev 31986ad0af8SEugene Zhulenev // The last one-dimensional index in the block defined by the `blockIndex`: 32068a7c001SEugene Zhulenev // blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1 321a54f4eaeSMogball Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize); 3227bd87a03Sbakhtiyar Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount); 3237bd87a03Sbakhtiyar Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1); 32486ad0af8SEugene Zhulenev 32586ad0af8SEugene Zhulenev // Convert one-dimensional indices to multi-dimensional coordinates. 32686ad0af8SEugene Zhulenev auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts); 32786ad0af8SEugene Zhulenev auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts); 32886ad0af8SEugene Zhulenev 32934a164c9SEugene Zhulenev // Compute loops upper bounds derived from the block last coordinates: 33086ad0af8SEugene Zhulenev // blockEndCoord[i] = blockLastCoord[i] + 1 33186ad0af8SEugene Zhulenev // 33286ad0af8SEugene Zhulenev // Block first and last coordinates can be the same along the outer compute 33334a164c9SEugene Zhulenev // dimension when inner compute dimension contains multiple blocks. 33486ad0af8SEugene Zhulenev SmallVector<Value> blockEndCoord(op.getNumLoops()); 33586ad0af8SEugene Zhulenev for (size_t i = 0; i < blockLastCoord.size(); ++i) 336a54f4eaeSMogball blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1); 33786ad0af8SEugene Zhulenev 33886ad0af8SEugene Zhulenev // Construct a loop nest out of scf.for operations that will iterate over 33986ad0af8SEugene Zhulenev // all coordinates in [blockFirstCoord, blockLastCoord] range. 34086ad0af8SEugene Zhulenev using LoopBodyBuilder = 34186ad0af8SEugene Zhulenev std::function<void(OpBuilder &, Location, Value, ValueRange)>; 34286ad0af8SEugene Zhulenev using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>; 34386ad0af8SEugene Zhulenev 34486ad0af8SEugene Zhulenev // Parallel region induction variables computed from the multi-dimensional 34586ad0af8SEugene Zhulenev // iteration coordinate using parallel operation bounds and step: 34686ad0af8SEugene Zhulenev // 34786ad0af8SEugene Zhulenev // computeBlockInductionVars[loopIdx] = 34868a7c001SEugene Zhulenev // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx] 34986ad0af8SEugene Zhulenev SmallVector<Value> computeBlockInductionVars(op.getNumLoops()); 35086ad0af8SEugene Zhulenev 35186ad0af8SEugene Zhulenev // We need to know if we are in the first or last iteration of the 35286ad0af8SEugene Zhulenev // multi-dimensional loop for each loop in the nest, so we can decide what 35386ad0af8SEugene Zhulenev // loop bounds should we use for the nested loops: bounds defined by compute 35486ad0af8SEugene Zhulenev // block interval, or bounds defined by the parallel operation. 35586ad0af8SEugene Zhulenev // 35686ad0af8SEugene Zhulenev // Example: 2d parallel operation 35786ad0af8SEugene Zhulenev // i j 35886ad0af8SEugene Zhulenev // loop sizes: [50, 50] 35986ad0af8SEugene Zhulenev // first coord: [25, 25] 36086ad0af8SEugene Zhulenev // last coord: [30, 30] 36186ad0af8SEugene Zhulenev // 36286ad0af8SEugene Zhulenev // If `i` is equal to 25 then iteration over `j` should start at 25, when `i` 36386ad0af8SEugene Zhulenev // is between 25 and 30 it should start at 0. The upper bound for `j` should 36486ad0af8SEugene Zhulenev // be 50, except when `i` is equal to 30, then it should also be 30. 36586ad0af8SEugene Zhulenev // 36686ad0af8SEugene Zhulenev // Value at ith position specifies if all loops in [0, i) range of the loop 36786ad0af8SEugene Zhulenev // nest are in the first/last iteration. 36886ad0af8SEugene Zhulenev SmallVector<Value> isBlockFirstCoord(op.getNumLoops()); 36986ad0af8SEugene Zhulenev SmallVector<Value> isBlockLastCoord(op.getNumLoops()); 37086ad0af8SEugene Zhulenev 37186ad0af8SEugene Zhulenev // Builds inner loop nest inside async.execute operation that does all the 37286ad0af8SEugene Zhulenev // work concurrently. 37386ad0af8SEugene Zhulenev LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { 37486ad0af8SEugene Zhulenev return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv, 37586ad0af8SEugene Zhulenev ValueRange args) { 376*abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder); 37786ad0af8SEugene Zhulenev 37886ad0af8SEugene Zhulenev // Compute induction variable for `loopIdx`. 379*abe2dee5SEugene Zhulenev computeBlockInductionVars[loopIdx] = b.create<arith::AddIOp>( 380*abe2dee5SEugene Zhulenev lowerBounds[loopIdx], b.create<arith::MulIOp>(iv, steps[loopIdx])); 38186ad0af8SEugene Zhulenev 38286ad0af8SEugene Zhulenev // Check if we are inside first or last iteration of the loop. 383*abe2dee5SEugene Zhulenev isBlockFirstCoord[loopIdx] = b.create<arith::CmpIOp>( 384a54f4eaeSMogball arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]); 385*abe2dee5SEugene Zhulenev isBlockLastCoord[loopIdx] = b.create<arith::CmpIOp>( 386a54f4eaeSMogball arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]); 38786ad0af8SEugene Zhulenev 38834a164c9SEugene Zhulenev // Check if the previous loop is in its first or last iteration. 38986ad0af8SEugene Zhulenev if (loopIdx > 0) { 390*abe2dee5SEugene Zhulenev isBlockFirstCoord[loopIdx] = b.create<arith::AndIOp>( 39186ad0af8SEugene Zhulenev isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]); 392*abe2dee5SEugene Zhulenev isBlockLastCoord[loopIdx] = b.create<arith::AndIOp>( 39386ad0af8SEugene Zhulenev isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]); 39486ad0af8SEugene Zhulenev } 39586ad0af8SEugene Zhulenev 39686ad0af8SEugene Zhulenev // Keep building loop nest. 39786ad0af8SEugene Zhulenev if (loopIdx < op.getNumLoops() - 1) { 39849ce40e9SEugene Zhulenev if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) { 39949ce40e9SEugene Zhulenev // For block aligned loops we always iterate starting from 0 up to 40049ce40e9SEugene Zhulenev // the loop trip counts. 401*abe2dee5SEugene Zhulenev b.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(), 40249ce40e9SEugene Zhulenev workLoopBuilder(loopIdx + 1)); 40349ce40e9SEugene Zhulenev 40449ce40e9SEugene Zhulenev } else { 40568a7c001SEugene Zhulenev // Select nested loop lower/upper bounds depending on our position in 40686ad0af8SEugene Zhulenev // the multi-dimensional iteration space. 407*abe2dee5SEugene Zhulenev auto lb = b.create<arith::SelectOp>(isBlockFirstCoord[loopIdx], 408*abe2dee5SEugene Zhulenev blockFirstCoord[loopIdx + 1], c0); 40986ad0af8SEugene Zhulenev 410*abe2dee5SEugene Zhulenev auto ub = b.create<arith::SelectOp>(isBlockLastCoord[loopIdx], 41186ad0af8SEugene Zhulenev blockEndCoord[loopIdx + 1], 41286ad0af8SEugene Zhulenev tripCounts[loopIdx + 1]); 41386ad0af8SEugene Zhulenev 414*abe2dee5SEugene Zhulenev b.create<scf::ForOp>(lb, ub, c1, ValueRange(), 41586ad0af8SEugene Zhulenev workLoopBuilder(loopIdx + 1)); 41649ce40e9SEugene Zhulenev } 41749ce40e9SEugene Zhulenev 418*abe2dee5SEugene Zhulenev b.create<scf::YieldOp>(loc); 41986ad0af8SEugene Zhulenev return; 42086ad0af8SEugene Zhulenev } 42186ad0af8SEugene Zhulenev 42286ad0af8SEugene Zhulenev // Copy the body of the parallel op into the inner-most loop. 42386ad0af8SEugene Zhulenev BlockAndValueMapping mapping; 42486ad0af8SEugene Zhulenev mapping.map(op.getInductionVars(), computeBlockInductionVars); 42586ad0af8SEugene Zhulenev mapping.map(computeFuncType.captures, captures); 42686ad0af8SEugene Zhulenev 42786ad0af8SEugene Zhulenev for (auto &bodyOp : op.getLoopBody().getOps()) 428*abe2dee5SEugene Zhulenev b.clone(bodyOp, mapping); 42986ad0af8SEugene Zhulenev }; 43086ad0af8SEugene Zhulenev }; 43186ad0af8SEugene Zhulenev 43286ad0af8SEugene Zhulenev b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(), 43386ad0af8SEugene Zhulenev workLoopBuilder(0)); 43486ad0af8SEugene Zhulenev b.create<ReturnOp>(ValueRange()); 43586ad0af8SEugene Zhulenev 4369f151b78SEugene Zhulenev return {op.getNumLoops(), func, std::move(computeFuncType.captures)}; 43786ad0af8SEugene Zhulenev } 43886ad0af8SEugene Zhulenev 43986ad0af8SEugene Zhulenev // Creates recursive async dispatch function for the given parallel compute 44086ad0af8SEugene Zhulenev // function. Dispatch function keeps splitting block range into halves until it 44186ad0af8SEugene Zhulenev // reaches a single block, and then excecutes it inline. 44286ad0af8SEugene Zhulenev // 44386ad0af8SEugene Zhulenev // Function pseudocode (mix of C++ and MLIR): 44486ad0af8SEugene Zhulenev // 44586ad0af8SEugene Zhulenev // func @async_dispatch(%block_start : index, %block_end : index, ...) { 44686ad0af8SEugene Zhulenev // 44786ad0af8SEugene Zhulenev // // Keep splitting block range until we reached a range of size 1. 44886ad0af8SEugene Zhulenev // while (%block_end - %block_start > 1) { 44986ad0af8SEugene Zhulenev // %mid_index = block_start + (block_end - block_start) / 2; 45086ad0af8SEugene Zhulenev // async.execute { call @async_dispatch(%mid_index, %block_end); } 45186ad0af8SEugene Zhulenev // %block_end = %mid_index 45286ad0af8SEugene Zhulenev // } 45386ad0af8SEugene Zhulenev // 45486ad0af8SEugene Zhulenev // // Call parallel compute function for a single block. 45586ad0af8SEugene Zhulenev // call @parallel_compute_fn(%block_start, %block_size, ...); 45686ad0af8SEugene Zhulenev // } 45786ad0af8SEugene Zhulenev // 45886ad0af8SEugene Zhulenev static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc, 45986ad0af8SEugene Zhulenev PatternRewriter &rewriter) { 46086ad0af8SEugene Zhulenev OpBuilder::InsertionGuard guard(rewriter); 46186ad0af8SEugene Zhulenev Location loc = computeFunc.func.getLoc(); 46286ad0af8SEugene Zhulenev ImplicitLocOpBuilder b(loc, rewriter); 46386ad0af8SEugene Zhulenev 46486ad0af8SEugene Zhulenev ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>(); 46586ad0af8SEugene Zhulenev 46686ad0af8SEugene Zhulenev ArrayRef<Type> computeFuncInputTypes = 46786ad0af8SEugene Zhulenev computeFunc.func.type().cast<FunctionType>().getInputs(); 46886ad0af8SEugene Zhulenev 46986ad0af8SEugene Zhulenev // Compared to the parallel compute function async dispatch function takes 47086ad0af8SEugene Zhulenev // additional !async.group argument. Also instead of a single `blockIndex` it 47186ad0af8SEugene Zhulenev // takes `blockStart` and `blockEnd` arguments to define the range of 47286ad0af8SEugene Zhulenev // dispatched blocks. 47386ad0af8SEugene Zhulenev SmallVector<Type> inputTypes; 47486ad0af8SEugene Zhulenev inputTypes.push_back(async::GroupType::get(rewriter.getContext())); 47586ad0af8SEugene Zhulenev inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument 47686ad0af8SEugene Zhulenev inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end()); 47786ad0af8SEugene Zhulenev 47886ad0af8SEugene Zhulenev FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange()); 47986ad0af8SEugene Zhulenev FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type); 48086ad0af8SEugene Zhulenev func.setPrivate(); 48186ad0af8SEugene Zhulenev 48286ad0af8SEugene Zhulenev // Insert function into the module symbol table and assign it unique name. 48386ad0af8SEugene Zhulenev SymbolTable symbolTable(module); 48486ad0af8SEugene Zhulenev symbolTable.insert(func); 48586ad0af8SEugene Zhulenev rewriter.getListener()->notifyOperationInserted(func); 48686ad0af8SEugene Zhulenev 48786ad0af8SEugene Zhulenev // Create function entry block. 488e084679fSRiver Riddle Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(), 489e084679fSRiver Riddle SmallVector<Location>(type.getNumInputs(), loc)); 49086ad0af8SEugene Zhulenev b.setInsertionPointToEnd(block); 49186ad0af8SEugene Zhulenev 49286ad0af8SEugene Zhulenev Type indexTy = b.getIndexType(); 493a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1); 494a54f4eaeSMogball Value c2 = b.create<arith::ConstantIndexOp>(2); 49586ad0af8SEugene Zhulenev 49686ad0af8SEugene Zhulenev // Get the async group that will track async dispatch completion. 49786ad0af8SEugene Zhulenev Value group = block->getArgument(0); 49886ad0af8SEugene Zhulenev 49986ad0af8SEugene Zhulenev // Get the block iteration range: [blockStart, blockEnd) 50086ad0af8SEugene Zhulenev Value blockStart = block->getArgument(1); 50186ad0af8SEugene Zhulenev Value blockEnd = block->getArgument(2); 50286ad0af8SEugene Zhulenev 50386ad0af8SEugene Zhulenev // Create a work splitting while loop for the [blockStart, blockEnd) range. 50486ad0af8SEugene Zhulenev SmallVector<Type> types = {indexTy, indexTy}; 50586ad0af8SEugene Zhulenev SmallVector<Value> operands = {blockStart, blockEnd}; 506e084679fSRiver Riddle SmallVector<Location> locations = {loc, loc}; 50786ad0af8SEugene Zhulenev 50886ad0af8SEugene Zhulenev // Create a recursive dispatch loop. 50986ad0af8SEugene Zhulenev scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands); 510e084679fSRiver Riddle Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations); 511e084679fSRiver Riddle Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations); 51286ad0af8SEugene Zhulenev 51386ad0af8SEugene Zhulenev // Setup dispatch loop condition block: decide if we need to go into the 51486ad0af8SEugene Zhulenev // `after` block and launch one more async dispatch. 51586ad0af8SEugene Zhulenev { 51686ad0af8SEugene Zhulenev b.setInsertionPointToEnd(before); 51786ad0af8SEugene Zhulenev Value start = before->getArgument(0); 51886ad0af8SEugene Zhulenev Value end = before->getArgument(1); 519a54f4eaeSMogball Value distance = b.create<arith::SubIOp>(end, start); 520a54f4eaeSMogball Value dispatch = 521a54f4eaeSMogball b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1); 52286ad0af8SEugene Zhulenev b.create<scf::ConditionOp>(dispatch, before->getArguments()); 52386ad0af8SEugene Zhulenev } 52486ad0af8SEugene Zhulenev 52586ad0af8SEugene Zhulenev // Setup the async dispatch loop body: recursively call dispatch function 52634a164c9SEugene Zhulenev // for the seconds half of the original range and go to the next iteration. 52786ad0af8SEugene Zhulenev { 52886ad0af8SEugene Zhulenev b.setInsertionPointToEnd(after); 52986ad0af8SEugene Zhulenev Value start = after->getArgument(0); 53086ad0af8SEugene Zhulenev Value end = after->getArgument(1); 531a54f4eaeSMogball Value distance = b.create<arith::SubIOp>(end, start); 532a54f4eaeSMogball Value halfDistance = b.create<arith::DivSIOp>(distance, c2); 533a54f4eaeSMogball Value midIndex = b.create<arith::AddIOp>(start, halfDistance); 53486ad0af8SEugene Zhulenev 53586ad0af8SEugene Zhulenev // Call parallel compute function inside the async.execute region. 53686ad0af8SEugene Zhulenev auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 53786ad0af8SEugene Zhulenev Location executeLoc, ValueRange executeArgs) { 53886ad0af8SEugene Zhulenev // Update the original `blockStart` and `blockEnd` with new range. 53986ad0af8SEugene Zhulenev SmallVector<Value> operands{block->getArguments().begin(), 54086ad0af8SEugene Zhulenev block->getArguments().end()}; 54186ad0af8SEugene Zhulenev operands[1] = midIndex; 54286ad0af8SEugene Zhulenev operands[2] = end; 54386ad0af8SEugene Zhulenev 54486ad0af8SEugene Zhulenev executeBuilder.create<CallOp>(executeLoc, func.sym_name(), 54586ad0af8SEugene Zhulenev func.getCallableResults(), operands); 54686ad0af8SEugene Zhulenev executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 54786ad0af8SEugene Zhulenev }; 54886ad0af8SEugene Zhulenev 54986ad0af8SEugene Zhulenev // Create async.execute operation to dispatch half of the block range. 55086ad0af8SEugene Zhulenev auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 55186ad0af8SEugene Zhulenev executeBodyBuilder); 55286ad0af8SEugene Zhulenev b.create<AddToGroupOp>(indexTy, execute.token(), group); 55334a164c9SEugene Zhulenev b.create<scf::YieldOp>(ValueRange({start, midIndex})); 55486ad0af8SEugene Zhulenev } 55586ad0af8SEugene Zhulenev 55686ad0af8SEugene Zhulenev // After dispatching async operations to process the tail of the block range 55786ad0af8SEugene Zhulenev // call the parallel compute function for the first block of the range. 55886ad0af8SEugene Zhulenev b.setInsertionPointAfter(whileOp); 55986ad0af8SEugene Zhulenev 56086ad0af8SEugene Zhulenev // Drop async dispatch specific arguments: async group, block start and end. 56186ad0af8SEugene Zhulenev auto forwardedInputs = block->getArguments().drop_front(3); 56286ad0af8SEugene Zhulenev SmallVector<Value> computeFuncOperands = {blockStart}; 56386ad0af8SEugene Zhulenev computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end()); 56486ad0af8SEugene Zhulenev 56586ad0af8SEugene Zhulenev b.create<CallOp>(computeFunc.func.sym_name(), 56686ad0af8SEugene Zhulenev computeFunc.func.getCallableResults(), computeFuncOperands); 56786ad0af8SEugene Zhulenev b.create<ReturnOp>(ValueRange()); 56886ad0af8SEugene Zhulenev 56986ad0af8SEugene Zhulenev return func; 57086ad0af8SEugene Zhulenev } 57186ad0af8SEugene Zhulenev 57286ad0af8SEugene Zhulenev // Launch async dispatch of the parallel compute function. 57386ad0af8SEugene Zhulenev static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 57486ad0af8SEugene Zhulenev ParallelComputeFunction ¶llelComputeFunction, 57586ad0af8SEugene Zhulenev scf::ParallelOp op, Value blockSize, 57686ad0af8SEugene Zhulenev Value blockCount, 57786ad0af8SEugene Zhulenev const SmallVector<Value> &tripCounts) { 57886ad0af8SEugene Zhulenev MLIRContext *ctx = op->getContext(); 57986ad0af8SEugene Zhulenev 58086ad0af8SEugene Zhulenev // Add one more level of indirection to dispatch parallel compute functions 58186ad0af8SEugene Zhulenev // using async operations and recursive work splitting. 58286ad0af8SEugene Zhulenev FuncOp asyncDispatchFunction = 58386ad0af8SEugene Zhulenev createAsyncDispatchFunction(parallelComputeFunction, rewriter); 58486ad0af8SEugene Zhulenev 585a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0); 586a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1); 58786ad0af8SEugene Zhulenev 588a8f819c6SEugene Zhulenev // Appends operands shared by async dispatch and parallel compute functions to 589a8f819c6SEugene Zhulenev // the given operands vector. 590a8f819c6SEugene Zhulenev auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) { 591a8f819c6SEugene Zhulenev operands.append(tripCounts); 592c0342a2dSJacques Pienaar operands.append(op.getLowerBound().begin(), op.getLowerBound().end()); 593c0342a2dSJacques Pienaar operands.append(op.getUpperBound().begin(), op.getUpperBound().end()); 594c0342a2dSJacques Pienaar operands.append(op.getStep().begin(), op.getStep().end()); 595a8f819c6SEugene Zhulenev operands.append(parallelComputeFunction.captures); 596a8f819c6SEugene Zhulenev }; 597a8f819c6SEugene Zhulenev 598a8f819c6SEugene Zhulenev // Check if the block size is one, in this case we can skip the async dispatch 599a8f819c6SEugene Zhulenev // completely. If this will be known statically, then canonicalization will 600a8f819c6SEugene Zhulenev // erase async group operations. 601a54f4eaeSMogball Value isSingleBlock = 602a54f4eaeSMogball b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1); 603a8f819c6SEugene Zhulenev 604a8f819c6SEugene Zhulenev auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 605*abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder); 606a8f819c6SEugene Zhulenev 607a8f819c6SEugene Zhulenev // Call parallel compute function for the single block. 608a8f819c6SEugene Zhulenev SmallVector<Value> operands = {c0, blockSize}; 609a8f819c6SEugene Zhulenev appendBlockComputeOperands(operands); 610a8f819c6SEugene Zhulenev 611*abe2dee5SEugene Zhulenev b.create<CallOp>(parallelComputeFunction.func.sym_name(), 612a8f819c6SEugene Zhulenev parallelComputeFunction.func.getCallableResults(), 613a8f819c6SEugene Zhulenev operands); 614*abe2dee5SEugene Zhulenev b.create<scf::YieldOp>(); 615a8f819c6SEugene Zhulenev }; 616a8f819c6SEugene Zhulenev 617a8f819c6SEugene Zhulenev auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 618*abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder); 619b171583aSEugene Zhulenev 620bdde9595Sbakhtiyar // Create an async.group to wait on all async tokens from the concurrent 621bdde9595Sbakhtiyar // execution of multiple parallel compute function. First block will be 622bdde9595Sbakhtiyar // executed synchronously in the caller thread. 623*abe2dee5SEugene Zhulenev Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 624*abe2dee5SEugene Zhulenev Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 62586ad0af8SEugene Zhulenev 62686ad0af8SEugene Zhulenev // Launch async dispatch function for [0, blockCount) range. 627a8f819c6SEugene Zhulenev SmallVector<Value> operands = {group, c0, blockCount, blockSize}; 628a8f819c6SEugene Zhulenev appendBlockComputeOperands(operands); 629a8f819c6SEugene Zhulenev 630*abe2dee5SEugene Zhulenev b.create<CallOp>(asyncDispatchFunction.sym_name(), 631a8f819c6SEugene Zhulenev asyncDispatchFunction.getCallableResults(), operands); 632bdde9595Sbakhtiyar 633bdde9595Sbakhtiyar // Wait for the completion of all parallel compute operations. 634*abe2dee5SEugene Zhulenev b.create<AwaitAllOp>(group); 635bdde9595Sbakhtiyar 636*abe2dee5SEugene Zhulenev b.create<scf::YieldOp>(); 637a8f819c6SEugene Zhulenev }; 638a8f819c6SEugene Zhulenev 639a8f819c6SEugene Zhulenev // Dispatch either single block compute function, or launch async dispatch. 640a8f819c6SEugene Zhulenev b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch); 64186ad0af8SEugene Zhulenev } 64286ad0af8SEugene Zhulenev 64386ad0af8SEugene Zhulenev // Dispatch parallel compute functions by submitting all async compute tasks 64486ad0af8SEugene Zhulenev // from a simple for loop in the caller thread. 64586ad0af8SEugene Zhulenev static void 64655dfab39Sbakhtiyar doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 64786ad0af8SEugene Zhulenev ParallelComputeFunction ¶llelComputeFunction, 64886ad0af8SEugene Zhulenev scf::ParallelOp op, Value blockSize, Value blockCount, 64986ad0af8SEugene Zhulenev const SmallVector<Value> &tripCounts) { 65086ad0af8SEugene Zhulenev MLIRContext *ctx = op->getContext(); 65186ad0af8SEugene Zhulenev 65286ad0af8SEugene Zhulenev FuncOp compute = parallelComputeFunction.func; 65386ad0af8SEugene Zhulenev 654a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0); 655a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1); 65686ad0af8SEugene Zhulenev 65786ad0af8SEugene Zhulenev // Create an async.group to wait on all async tokens from the concurrent 65886ad0af8SEugene Zhulenev // execution of multiple parallel compute function. First block will be 65986ad0af8SEugene Zhulenev // executed synchronously in the caller thread. 660a54f4eaeSMogball Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 66186ad0af8SEugene Zhulenev Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 66286ad0af8SEugene Zhulenev 66386ad0af8SEugene Zhulenev // Call parallel compute function for all blocks. 66486ad0af8SEugene Zhulenev using LoopBodyBuilder = 66586ad0af8SEugene Zhulenev std::function<void(OpBuilder &, Location, Value, ValueRange)>; 66686ad0af8SEugene Zhulenev 66786ad0af8SEugene Zhulenev // Returns parallel compute function operands to process the given block. 66886ad0af8SEugene Zhulenev auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> { 66986ad0af8SEugene Zhulenev SmallVector<Value> computeFuncOperands = {blockIndex, blockSize}; 67086ad0af8SEugene Zhulenev computeFuncOperands.append(tripCounts); 671c0342a2dSJacques Pienaar computeFuncOperands.append(op.getLowerBound().begin(), 672c0342a2dSJacques Pienaar op.getLowerBound().end()); 673c0342a2dSJacques Pienaar computeFuncOperands.append(op.getUpperBound().begin(), 674c0342a2dSJacques Pienaar op.getUpperBound().end()); 675c0342a2dSJacques Pienaar computeFuncOperands.append(op.getStep().begin(), op.getStep().end()); 67686ad0af8SEugene Zhulenev computeFuncOperands.append(parallelComputeFunction.captures); 67786ad0af8SEugene Zhulenev return computeFuncOperands; 67886ad0af8SEugene Zhulenev }; 67986ad0af8SEugene Zhulenev 68086ad0af8SEugene Zhulenev // Induction variable is the index of the block: [0, blockCount). 68186ad0af8SEugene Zhulenev LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc, 68286ad0af8SEugene Zhulenev Value iv, ValueRange args) { 683*abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, loopBuilder); 68486ad0af8SEugene Zhulenev 68586ad0af8SEugene Zhulenev // Call parallel compute function inside the async.execute region. 68686ad0af8SEugene Zhulenev auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 68786ad0af8SEugene Zhulenev Location executeLoc, ValueRange executeArgs) { 68886ad0af8SEugene Zhulenev executeBuilder.create<CallOp>(executeLoc, compute.sym_name(), 68986ad0af8SEugene Zhulenev compute.getCallableResults(), 69086ad0af8SEugene Zhulenev computeFuncOperands(iv)); 69186ad0af8SEugene Zhulenev executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 69286ad0af8SEugene Zhulenev }; 69386ad0af8SEugene Zhulenev 69486ad0af8SEugene Zhulenev // Create async.execute operation to launch parallel computate function. 695*abe2dee5SEugene Zhulenev auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 69686ad0af8SEugene Zhulenev executeBodyBuilder); 697*abe2dee5SEugene Zhulenev b.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group); 698*abe2dee5SEugene Zhulenev b.create<scf::YieldOp>(); 69986ad0af8SEugene Zhulenev }; 70086ad0af8SEugene Zhulenev 70186ad0af8SEugene Zhulenev // Iterate over all compute blocks and launch parallel compute operations. 70286ad0af8SEugene Zhulenev b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder); 70386ad0af8SEugene Zhulenev 70486ad0af8SEugene Zhulenev // Call parallel compute function for the first block in the caller thread. 70586ad0af8SEugene Zhulenev b.create<CallOp>(compute.sym_name(), compute.getCallableResults(), 70686ad0af8SEugene Zhulenev computeFuncOperands(c0)); 70786ad0af8SEugene Zhulenev 70886ad0af8SEugene Zhulenev // Wait for the completion of all async compute operations. 70986ad0af8SEugene Zhulenev b.create<AwaitAllOp>(group); 71086ad0af8SEugene Zhulenev } 71186ad0af8SEugene Zhulenev 712c30ab6c2SEugene Zhulenev LogicalResult 713c30ab6c2SEugene Zhulenev AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op, 714c30ab6c2SEugene Zhulenev PatternRewriter &rewriter) const { 715c30ab6c2SEugene Zhulenev // We do not currently support rewrite for parallel op with reductions. 716c30ab6c2SEugene Zhulenev if (op.getNumReductions() != 0) 717c30ab6c2SEugene Zhulenev return failure(); 718c30ab6c2SEugene Zhulenev 71986ad0af8SEugene Zhulenev ImplicitLocOpBuilder b(op.getLoc(), rewriter); 720c30ab6c2SEugene Zhulenev 721ec0e4545Sbakhtiyar // Computing minTaskSize emits IR and can be implemented as executing a cost 722ec0e4545Sbakhtiyar // model on the body of the scf.parallel. Thus it needs to be computed before 723ec0e4545Sbakhtiyar // the body of the scf.parallel has been manipulated. 724ec0e4545Sbakhtiyar Value minTaskSize = computeMinTaskSize(b, op); 725ec0e4545Sbakhtiyar 7269f151b78SEugene Zhulenev // Make sure that all constants will be inside the parallel operation body to 7279f151b78SEugene Zhulenev // reduce the number of parallel compute function arguments. 7289f151b78SEugene Zhulenev cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter); 7299f151b78SEugene Zhulenev 730c30ab6c2SEugene Zhulenev // Compute trip count for each loop induction variable: 73186ad0af8SEugene Zhulenev // tripCount = ceil_div(upperBound - lowerBound, step); 73286ad0af8SEugene Zhulenev SmallVector<Value> tripCounts(op.getNumLoops()); 733c30ab6c2SEugene Zhulenev for (size_t i = 0; i < op.getNumLoops(); ++i) { 734c0342a2dSJacques Pienaar auto lb = op.getLowerBound()[i]; 735c0342a2dSJacques Pienaar auto ub = op.getUpperBound()[i]; 736c0342a2dSJacques Pienaar auto step = op.getStep()[i]; 7379f151b78SEugene Zhulenev auto range = b.createOrFold<arith::SubIOp>(ub, lb); 7389f151b78SEugene Zhulenev tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step); 739c30ab6c2SEugene Zhulenev } 740c30ab6c2SEugene Zhulenev 74186ad0af8SEugene Zhulenev // Compute a product of trip counts to get the 1-dimensional iteration space 74286ad0af8SEugene Zhulenev // for the scf.parallel operation. 74386ad0af8SEugene Zhulenev Value tripCount = tripCounts[0]; 74486ad0af8SEugene Zhulenev for (size_t i = 1; i < tripCounts.size(); ++i) 745a54f4eaeSMogball tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 746c30ab6c2SEugene Zhulenev 7476c1f6558SEugene Zhulenev // Short circuit no-op parallel loops (zero iterations) that can arise from 7486c1f6558SEugene Zhulenev // the memrefs with dynamic dimension(s) equal to zero. 749a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0); 750a54f4eaeSMogball Value isZeroIterations = 751a54f4eaeSMogball b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0); 7526c1f6558SEugene Zhulenev 7536c1f6558SEugene Zhulenev // Do absolutely nothing if the trip count is zero. 7546c1f6558SEugene Zhulenev auto noOp = [&](OpBuilder &nestedBuilder, Location loc) { 7556c1f6558SEugene Zhulenev nestedBuilder.create<scf::YieldOp>(loc); 7566c1f6558SEugene Zhulenev }; 7576c1f6558SEugene Zhulenev 7586c1f6558SEugene Zhulenev // Compute the parallel block size and dispatch concurrent tasks computing 7596c1f6558SEugene Zhulenev // results for each block. 7606c1f6558SEugene Zhulenev auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) { 761*abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder); 7626c1f6558SEugene Zhulenev 76349ce40e9SEugene Zhulenev // Collect statically known constants defining the loop nest in the parallel 76449ce40e9SEugene Zhulenev // compute function. LLVM can't always push constants across the non-trivial 76549ce40e9SEugene Zhulenev // async dispatch call graph, by providing these values explicitly we can 76649ce40e9SEugene Zhulenev // choose to build more efficient loop nest, and rely on a better constant 76749ce40e9SEugene Zhulenev // folding, loop unrolling and vectorization. 76849ce40e9SEugene Zhulenev ParallelComputeFunctionBounds staticBounds = { 76949ce40e9SEugene Zhulenev integerConstants(tripCounts), 770c0342a2dSJacques Pienaar integerConstants(op.getLowerBound()), 771c0342a2dSJacques Pienaar integerConstants(op.getUpperBound()), 772c0342a2dSJacques Pienaar integerConstants(op.getStep()), 77349ce40e9SEugene Zhulenev }; 77449ce40e9SEugene Zhulenev 77549ce40e9SEugene Zhulenev // Find how many inner iteration dimensions are statically known, and their 776ec0e4545Sbakhtiyar // product is smaller than the `512`. We align the parallel compute block 77749ce40e9SEugene Zhulenev // size by the product of statically known dimensions, so that we can 77849ce40e9SEugene Zhulenev // guarantee that the inner loops executes from 0 to the loop trip counts 77949ce40e9SEugene Zhulenev // and we can elide dynamic loop boundaries, and give LLVM an opportunity to 78049ce40e9SEugene Zhulenev // unroll the loops. The constant `512` is arbitrary, it should depend on 78149ce40e9SEugene Zhulenev // how many iterations LLVM will typically decide to unroll. 78249ce40e9SEugene Zhulenev static constexpr int64_t maxIterations = 512; 78349ce40e9SEugene Zhulenev 78449ce40e9SEugene Zhulenev // The number of inner loops with statically known number of iterations less 78549ce40e9SEugene Zhulenev // than the `maxIterations` value. 78649ce40e9SEugene Zhulenev int numUnrollableLoops = 0; 78749ce40e9SEugene Zhulenev 78849ce40e9SEugene Zhulenev auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; }; 78949ce40e9SEugene Zhulenev 79049ce40e9SEugene Zhulenev SmallVector<int64_t> numIterations(op.getNumLoops()); 79149ce40e9SEugene Zhulenev numIterations.back() = getInt(staticBounds.tripCounts.back()); 79249ce40e9SEugene Zhulenev 79349ce40e9SEugene Zhulenev for (int i = op.getNumLoops() - 2; i >= 0; --i) { 79449ce40e9SEugene Zhulenev int64_t tripCount = getInt(staticBounds.tripCounts[i]); 79549ce40e9SEugene Zhulenev int64_t innerIterations = numIterations[i + 1]; 79649ce40e9SEugene Zhulenev numIterations[i] = tripCount * innerIterations; 79749ce40e9SEugene Zhulenev 79849ce40e9SEugene Zhulenev // Update the number of inner loops that we can potentially unroll. 79949ce40e9SEugene Zhulenev if (innerIterations > 0 && innerIterations <= maxIterations) 80049ce40e9SEugene Zhulenev numUnrollableLoops++; 80149ce40e9SEugene Zhulenev } 80249ce40e9SEugene Zhulenev 803149311b4Sbakhtiyar Value numWorkerThreadsVal; 804149311b4Sbakhtiyar if (numWorkerThreads >= 0) 805149311b4Sbakhtiyar numWorkerThreadsVal = b.create<arith::ConstantIndexOp>(numWorkerThreads); 806149311b4Sbakhtiyar else 807149311b4Sbakhtiyar numWorkerThreadsVal = b.create<async::RuntimeNumWorkerThreadsOp>(); 808c1194c2eSEugene Zhulenev 809149311b4Sbakhtiyar // With large number of threads the value of creating many compute blocks 810149311b4Sbakhtiyar // is reduced because the problem typically becomes memory bound. For this 811149311b4Sbakhtiyar // reason we scale the number of workers using an equivalent to the 812149311b4Sbakhtiyar // following logic: 813149311b4Sbakhtiyar // float overshardingFactor = numWorkerThreads <= 4 ? 8.0 814149311b4Sbakhtiyar // : numWorkerThreads <= 8 ? 4.0 815149311b4Sbakhtiyar // : numWorkerThreads <= 16 ? 2.0 816149311b4Sbakhtiyar // : numWorkerThreads <= 32 ? 1.0 817149311b4Sbakhtiyar // : numWorkerThreads <= 64 ? 0.8 818149311b4Sbakhtiyar // : 0.6; 819149311b4Sbakhtiyar 820149311b4Sbakhtiyar // Pairs of non-inclusive lower end of the bracket and factor that the 821149311b4Sbakhtiyar // number of workers needs to be scaled with if it falls in that bucket. 822149311b4Sbakhtiyar const SmallVector<std::pair<int, float>> overshardingBrackets = { 823149311b4Sbakhtiyar {4, 4.0f}, {8, 2.0f}, {16, 1.0f}, {32, 0.8f}, {64, 0.6f}}; 824149311b4Sbakhtiyar const float initialOvershardingFactor = 8.0f; 825149311b4Sbakhtiyar 826149311b4Sbakhtiyar Value scalingFactor = b.create<arith::ConstantFloatOp>( 827149311b4Sbakhtiyar llvm::APFloat(initialOvershardingFactor), b.getF32Type()); 828149311b4Sbakhtiyar for (const std::pair<int, float> &p : overshardingBrackets) { 829149311b4Sbakhtiyar Value bracketBegin = b.create<arith::ConstantIndexOp>(p.first); 830149311b4Sbakhtiyar Value inBracket = b.create<arith::CmpIOp>( 831149311b4Sbakhtiyar arith::CmpIPredicate::sgt, numWorkerThreadsVal, bracketBegin); 832149311b4Sbakhtiyar Value bracketScalingFactor = b.create<arith::ConstantFloatOp>( 833149311b4Sbakhtiyar llvm::APFloat(p.second), b.getF32Type()); 834dec8af70SRiver Riddle scalingFactor = b.create<arith::SelectOp>(inBracket, bracketScalingFactor, 835dec8af70SRiver Riddle scalingFactor); 836149311b4Sbakhtiyar } 837149311b4Sbakhtiyar Value numWorkersIndex = 8383c69bc4dSRiver Riddle b.create<arith::IndexCastOp>(b.getI32Type(), numWorkerThreadsVal); 839149311b4Sbakhtiyar Value numWorkersFloat = 8403c69bc4dSRiver Riddle b.create<arith::SIToFPOp>(b.getF32Type(), numWorkersIndex); 841149311b4Sbakhtiyar Value scaledNumWorkers = 842149311b4Sbakhtiyar b.create<arith::MulFOp>(scalingFactor, numWorkersFloat); 843149311b4Sbakhtiyar Value scaledNumInt = 8443c69bc4dSRiver Riddle b.create<arith::FPToSIOp>(b.getI32Type(), scaledNumWorkers); 845149311b4Sbakhtiyar Value scaledWorkers = 8463c69bc4dSRiver Riddle b.create<arith::IndexCastOp>(b.getIndexType(), scaledNumInt); 847149311b4Sbakhtiyar 848149311b4Sbakhtiyar Value maxComputeBlocks = b.create<arith::MaxSIOp>( 849149311b4Sbakhtiyar b.create<arith::ConstantIndexOp>(1), scaledWorkers); 850c30ab6c2SEugene Zhulenev 85186ad0af8SEugene Zhulenev // Compute parallel block size from the parallel problem size: 85286ad0af8SEugene Zhulenev // blockSize = min(tripCount, 85334a164c9SEugene Zhulenev // max(ceil_div(tripCount, maxComputeBlocks), 854ec0e4545Sbakhtiyar // minTaskSize)) 8557bd87a03Sbakhtiyar Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks); 856ec0e4545Sbakhtiyar Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize); 8577bd87a03Sbakhtiyar Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1); 85849ce40e9SEugene Zhulenev 859ec0e4545Sbakhtiyar ParallelComputeFunction notUnrollableParallelComputeFunction = 860ec0e4545Sbakhtiyar createParallelComputeFunction(op, staticBounds, 0, rewriter); 861ec0e4545Sbakhtiyar 862ec0e4545Sbakhtiyar // Dispatch parallel compute function using async recursive work splitting, 863ec0e4545Sbakhtiyar // or by submitting compute task sequentially from a caller thread. 864ec0e4545Sbakhtiyar auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch; 865ec0e4545Sbakhtiyar 866ec0e4545Sbakhtiyar // Create a parallel compute function that takes a block id and computes 867ec0e4545Sbakhtiyar // the parallel operation body for a subset of iteration space. 86849ce40e9SEugene Zhulenev 86949ce40e9SEugene Zhulenev // Compute the number of parallel compute blocks. 870a54f4eaeSMogball Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize); 87186ad0af8SEugene Zhulenev 872ec0e4545Sbakhtiyar // Unroll when numUnrollableLoops > 0 && blockSize >= maxIterations. 873ec0e4545Sbakhtiyar bool staticShouldUnroll = numUnrollableLoops > 0; 874ec0e4545Sbakhtiyar auto dispatchNotUnrollable = [&](OpBuilder &nestedBuilder, Location loc) { 875*abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder); 876ec0e4545Sbakhtiyar doDispatch(b, rewriter, notUnrollableParallelComputeFunction, op, 877ec0e4545Sbakhtiyar blockSize, blockCount, tripCounts); 878*abe2dee5SEugene Zhulenev b.create<scf::YieldOp>(); 879ec0e4545Sbakhtiyar }; 880ec0e4545Sbakhtiyar 881ec0e4545Sbakhtiyar if (staticShouldUnroll) { 882ec0e4545Sbakhtiyar Value dynamicShouldUnroll = b.create<arith::CmpIOp>( 883ec0e4545Sbakhtiyar arith::CmpIPredicate::sge, blockSize, 884ec0e4545Sbakhtiyar b.create<arith::ConstantIndexOp>(maxIterations)); 885ec0e4545Sbakhtiyar 886ec0e4545Sbakhtiyar ParallelComputeFunction unrollableParallelComputeFunction = 88749ce40e9SEugene Zhulenev createParallelComputeFunction(op, staticBounds, numUnrollableLoops, 88849ce40e9SEugene Zhulenev rewriter); 88986ad0af8SEugene Zhulenev 890ec0e4545Sbakhtiyar auto dispatchUnrollable = [&](OpBuilder &nestedBuilder, Location loc) { 891*abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder); 892ec0e4545Sbakhtiyar // Align the block size to be a multiple of the statically known 893ec0e4545Sbakhtiyar // number of iterations in the inner loops. 894*abe2dee5SEugene Zhulenev Value numIters = b.create<arith::ConstantIndexOp>( 895ec0e4545Sbakhtiyar numIterations[op.getNumLoops() - numUnrollableLoops]); 896*abe2dee5SEugene Zhulenev Value alignedBlockSize = b.create<arith::MulIOp>( 897*abe2dee5SEugene Zhulenev b.create<arith::CeilDivSIOp>(blockSize, numIters), numIters); 898ec0e4545Sbakhtiyar doDispatch(b, rewriter, unrollableParallelComputeFunction, op, 899ec0e4545Sbakhtiyar alignedBlockSize, blockCount, tripCounts); 900*abe2dee5SEugene Zhulenev b.create<scf::YieldOp>(); 9016c1f6558SEugene Zhulenev }; 9026c1f6558SEugene Zhulenev 903ec0e4545Sbakhtiyar b.create<scf::IfOp>(TypeRange(), dynamicShouldUnroll, dispatchUnrollable, 904ec0e4545Sbakhtiyar dispatchNotUnrollable); 905*abe2dee5SEugene Zhulenev b.create<scf::YieldOp>(); 906ec0e4545Sbakhtiyar } else { 907*abe2dee5SEugene Zhulenev dispatchNotUnrollable(b, loc); 908ec0e4545Sbakhtiyar } 909ec0e4545Sbakhtiyar }; 910ec0e4545Sbakhtiyar 9116c1f6558SEugene Zhulenev // Replace the `scf.parallel` operation with the parallel compute function. 9126c1f6558SEugene Zhulenev b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch); 9136c1f6558SEugene Zhulenev 91434a164c9SEugene Zhulenev // Parallel operation was replaced with a block iteration loop. 915c30ab6c2SEugene Zhulenev rewriter.eraseOp(op); 916c30ab6c2SEugene Zhulenev 917c30ab6c2SEugene Zhulenev return success(); 918c30ab6c2SEugene Zhulenev } 919c30ab6c2SEugene Zhulenev 9208a316b00SEugene Zhulenev void AsyncParallelForPass::runOnOperation() { 921c30ab6c2SEugene Zhulenev MLIRContext *ctx = &getContext(); 922c30ab6c2SEugene Zhulenev 923dc4e913bSChris Lattner RewritePatternSet patterns(ctx); 924ec0e4545Sbakhtiyar populateAsyncParallelForPatterns( 925ec0e4545Sbakhtiyar patterns, asyncDispatch, numWorkerThreads, 926ec0e4545Sbakhtiyar [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) { 927ec0e4545Sbakhtiyar return builder.create<arith::ConstantIndexOp>(minTaskSize); 928ec0e4545Sbakhtiyar }); 9298a316b00SEugene Zhulenev if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)))) 930c30ab6c2SEugene Zhulenev signalPassFailure(); 931c30ab6c2SEugene Zhulenev } 932c30ab6c2SEugene Zhulenev 9338a316b00SEugene Zhulenev std::unique_ptr<Pass> mlir::createAsyncParallelForPass() { 934c30ab6c2SEugene Zhulenev return std::make_unique<AsyncParallelForPass>(); 935c30ab6c2SEugene Zhulenev } 93634a164c9SEugene Zhulenev 93755dfab39Sbakhtiyar std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch, 93855dfab39Sbakhtiyar int32_t numWorkerThreads, 93955dfab39Sbakhtiyar int32_t minTaskSize) { 94034a164c9SEugene Zhulenev return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads, 94155dfab39Sbakhtiyar minTaskSize); 94234a164c9SEugene Zhulenev } 943ec0e4545Sbakhtiyar 944ec0e4545Sbakhtiyar void mlir::async::populateAsyncParallelForPatterns( 945ec0e4545Sbakhtiyar RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads, 9461fc096afSMehdi Amini const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) { 947ec0e4545Sbakhtiyar MLIRContext *ctx = patterns.getContext(); 948ec0e4545Sbakhtiyar patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads, 949ec0e4545Sbakhtiyar computeMinTaskSize); 950ec0e4545Sbakhtiyar } 951