1c30ab6c2SEugene Zhulenev //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===//
2c30ab6c2SEugene Zhulenev //
3c30ab6c2SEugene Zhulenev // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4c30ab6c2SEugene Zhulenev // See https://llvm.org/LICENSE.txt for license information.
5c30ab6c2SEugene Zhulenev // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6c30ab6c2SEugene Zhulenev //
7c30ab6c2SEugene Zhulenev //===----------------------------------------------------------------------===//
8c30ab6c2SEugene Zhulenev //
986ad0af8SEugene Zhulenev // This file implements scf.parallel to scf.for + async.execute conversion pass.
10c30ab6c2SEugene Zhulenev //
11c30ab6c2SEugene Zhulenev //===----------------------------------------------------------------------===//
12c30ab6c2SEugene Zhulenev 
131fc096afSMehdi Amini #include <utility>
141fc096afSMehdi Amini 
15c30ab6c2SEugene Zhulenev #include "PassDetail.h"
16a54f4eaeSMogball #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17c30ab6c2SEugene Zhulenev #include "mlir/Dialect/Async/IR/Async.h"
18c30ab6c2SEugene Zhulenev #include "mlir/Dialect/Async/Passes.h"
19ec0e4545Sbakhtiyar #include "mlir/Dialect/Async/Transforms.h"
20c30ab6c2SEugene Zhulenev #include "mlir/Dialect/SCF/SCF.h"
21c30ab6c2SEugene Zhulenev #include "mlir/Dialect/StandardOps/IR/Ops.h"
22c30ab6c2SEugene Zhulenev #include "mlir/IR/BlockAndValueMapping.h"
2386ad0af8SEugene Zhulenev #include "mlir/IR/ImplicitLocOpBuilder.h"
249f151b78SEugene Zhulenev #include "mlir/IR/Matchers.h"
25c30ab6c2SEugene Zhulenev #include "mlir/IR/PatternMatch.h"
26149311b4Sbakhtiyar #include "mlir/Support/LLVM.h"
27c30ab6c2SEugene Zhulenev #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
2886ad0af8SEugene Zhulenev #include "mlir/Transforms/RegionUtils.h"
29c30ab6c2SEugene Zhulenev 
30c30ab6c2SEugene Zhulenev using namespace mlir;
31c30ab6c2SEugene Zhulenev using namespace mlir::async;
32c30ab6c2SEugene Zhulenev 
33c30ab6c2SEugene Zhulenev #define DEBUG_TYPE "async-parallel-for"
34c30ab6c2SEugene Zhulenev 
35c30ab6c2SEugene Zhulenev namespace {
36c30ab6c2SEugene Zhulenev 
37c30ab6c2SEugene Zhulenev // Rewrite scf.parallel operation into multiple concurrent async.execute
38c30ab6c2SEugene Zhulenev // operations over non overlapping subranges of the original loop.
39c30ab6c2SEugene Zhulenev //
40c30ab6c2SEugene Zhulenev // Example:
41c30ab6c2SEugene Zhulenev //
4286ad0af8SEugene Zhulenev //   scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) {
43c30ab6c2SEugene Zhulenev //     "do_some_compute"(%i, %j): () -> ()
44c30ab6c2SEugene Zhulenev //   }
45c30ab6c2SEugene Zhulenev //
46c30ab6c2SEugene Zhulenev // Converted to:
47c30ab6c2SEugene Zhulenev //
4886ad0af8SEugene Zhulenev //   // Parallel compute function that executes the parallel body region for
4986ad0af8SEugene Zhulenev //   // a subset of the parallel iteration space defined by the one-dimensional
5086ad0af8SEugene Zhulenev //   // compute block index.
5186ad0af8SEugene Zhulenev //   func parallel_compute_function(%block_index : index, %block_size : index,
5286ad0af8SEugene Zhulenev //                                  <parallel operation properties>, ...) {
5386ad0af8SEugene Zhulenev //     // Compute multi-dimensional loop bounds for %block_index.
5486ad0af8SEugene Zhulenev //     %block_lbi, %block_lbj = ...
5586ad0af8SEugene Zhulenev //     %block_ubi, %block_ubj = ...
56c30ab6c2SEugene Zhulenev //
5786ad0af8SEugene Zhulenev //     // Clone parallel operation body into the scf.for loop nest.
5886ad0af8SEugene Zhulenev //     scf.for %i = %blockLbi to %blockUbi {
5986ad0af8SEugene Zhulenev //       scf.for %j = block_lbj to %block_ubj {
60c30ab6c2SEugene Zhulenev //         "do_some_compute"(%i, %j): () -> ()
61c30ab6c2SEugene Zhulenev //       }
62c30ab6c2SEugene Zhulenev //     }
63c30ab6c2SEugene Zhulenev //   }
64c30ab6c2SEugene Zhulenev //
6586ad0af8SEugene Zhulenev // And a dispatch function depending on the `asyncDispatch` option.
6686ad0af8SEugene Zhulenev //
6786ad0af8SEugene Zhulenev // When async dispatch is on: (pseudocode)
6886ad0af8SEugene Zhulenev //
6986ad0af8SEugene Zhulenev //   %block_size = ... compute parallel compute block size
7086ad0af8SEugene Zhulenev //   %block_count = ... compute the number of compute blocks
7186ad0af8SEugene Zhulenev //
7286ad0af8SEugene Zhulenev //   func @async_dispatch(%block_start : index, %block_end : index, ...) {
7386ad0af8SEugene Zhulenev //     // Keep splitting block range until we reached a range of size 1.
7486ad0af8SEugene Zhulenev //     while (%block_end - %block_start > 1) {
7586ad0af8SEugene Zhulenev //       %mid_index = block_start + (block_end - block_start) / 2;
7686ad0af8SEugene Zhulenev //       async.execute { call @async_dispatch(%mid_index, %block_end); }
7786ad0af8SEugene Zhulenev //       %block_end = %mid_index
78c30ab6c2SEugene Zhulenev //     }
79c30ab6c2SEugene Zhulenev //
8086ad0af8SEugene Zhulenev //     // Call parallel compute function for a single block.
8186ad0af8SEugene Zhulenev //     call @parallel_compute_fn(%block_start, %block_size, ...);
8286ad0af8SEugene Zhulenev //   }
83c30ab6c2SEugene Zhulenev //
8486ad0af8SEugene Zhulenev //   // Launch async dispatch for [0, block_count) range.
8586ad0af8SEugene Zhulenev //   call @async_dispatch(%c0, %block_count);
86c30ab6c2SEugene Zhulenev //
8786ad0af8SEugene Zhulenev // When async dispatch is off:
88c30ab6c2SEugene Zhulenev //
8986ad0af8SEugene Zhulenev //   %block_size = ... compute parallel compute block size
9086ad0af8SEugene Zhulenev //   %block_count = ... compute the number of compute blocks
9186ad0af8SEugene Zhulenev //
9286ad0af8SEugene Zhulenev //   scf.for %block_index = %c0 to %block_count {
9386ad0af8SEugene Zhulenev //      call @parallel_compute_fn(%block_index, %block_size, ...)
9486ad0af8SEugene Zhulenev //   }
9586ad0af8SEugene Zhulenev //
9686ad0af8SEugene Zhulenev struct AsyncParallelForPass
9786ad0af8SEugene Zhulenev     : public AsyncParallelForBase<AsyncParallelForPass> {
9886ad0af8SEugene Zhulenev   AsyncParallelForPass() = default;
9934a164c9SEugene Zhulenev 
10034a164c9SEugene Zhulenev   AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads,
10155dfab39Sbakhtiyar                        int32_t minTaskSize) {
10234a164c9SEugene Zhulenev     this->asyncDispatch = asyncDispatch;
10334a164c9SEugene Zhulenev     this->numWorkerThreads = numWorkerThreads;
10455dfab39Sbakhtiyar     this->minTaskSize = minTaskSize;
10534a164c9SEugene Zhulenev   }
10634a164c9SEugene Zhulenev 
10786ad0af8SEugene Zhulenev   void runOnOperation() override;
10886ad0af8SEugene Zhulenev };
10986ad0af8SEugene Zhulenev 
110c30ab6c2SEugene Zhulenev struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> {
111c30ab6c2SEugene Zhulenev public:
112ec0e4545Sbakhtiyar   AsyncParallelForRewrite(
113ec0e4545Sbakhtiyar       MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads,
114ec0e4545Sbakhtiyar       AsyncMinTaskSizeComputationFunction computeMinTaskSize)
11586ad0af8SEugene Zhulenev       : OpRewritePattern(ctx), asyncDispatch(asyncDispatch),
116ec0e4545Sbakhtiyar         numWorkerThreads(numWorkerThreads),
1171fc096afSMehdi Amini         computeMinTaskSize(std::move(computeMinTaskSize)) {}
118c30ab6c2SEugene Zhulenev 
119c30ab6c2SEugene Zhulenev   LogicalResult matchAndRewrite(scf::ParallelOp op,
120c30ab6c2SEugene Zhulenev                                 PatternRewriter &rewriter) const override;
121c30ab6c2SEugene Zhulenev 
122c30ab6c2SEugene Zhulenev private:
12386ad0af8SEugene Zhulenev   bool asyncDispatch;
12486ad0af8SEugene Zhulenev   int32_t numWorkerThreads;
125ec0e4545Sbakhtiyar   AsyncMinTaskSizeComputationFunction computeMinTaskSize;
126c30ab6c2SEugene Zhulenev };
127c30ab6c2SEugene Zhulenev 
12886ad0af8SEugene Zhulenev struct ParallelComputeFunctionType {
12986ad0af8SEugene Zhulenev   FunctionType type;
1309f151b78SEugene Zhulenev   SmallVector<Value> captures;
1319f151b78SEugene Zhulenev };
1329f151b78SEugene Zhulenev 
1339f151b78SEugene Zhulenev // Helper struct to parse parallel compute function argument list.
1349f151b78SEugene Zhulenev struct ParallelComputeFunctionArgs {
1359f151b78SEugene Zhulenev   BlockArgument blockIndex();
1369f151b78SEugene Zhulenev   BlockArgument blockSize();
1379f151b78SEugene Zhulenev   ArrayRef<BlockArgument> tripCounts();
1389f151b78SEugene Zhulenev   ArrayRef<BlockArgument> lowerBounds();
1399f151b78SEugene Zhulenev   ArrayRef<BlockArgument> upperBounds();
1409f151b78SEugene Zhulenev   ArrayRef<BlockArgument> steps();
1419f151b78SEugene Zhulenev   ArrayRef<BlockArgument> captures();
1429f151b78SEugene Zhulenev 
1439f151b78SEugene Zhulenev   unsigned numLoops;
1449f151b78SEugene Zhulenev   ArrayRef<BlockArgument> args;
1459f151b78SEugene Zhulenev };
1469f151b78SEugene Zhulenev 
1479f151b78SEugene Zhulenev struct ParallelComputeFunctionBounds {
1489f151b78SEugene Zhulenev   SmallVector<IntegerAttr> tripCounts;
1499f151b78SEugene Zhulenev   SmallVector<IntegerAttr> lowerBounds;
1509f151b78SEugene Zhulenev   SmallVector<IntegerAttr> upperBounds;
1519f151b78SEugene Zhulenev   SmallVector<IntegerAttr> steps;
15286ad0af8SEugene Zhulenev };
15386ad0af8SEugene Zhulenev 
15486ad0af8SEugene Zhulenev struct ParallelComputeFunction {
1559f151b78SEugene Zhulenev   unsigned numLoops;
15686ad0af8SEugene Zhulenev   FuncOp func;
15786ad0af8SEugene Zhulenev   llvm::SmallVector<Value> captures;
158c30ab6c2SEugene Zhulenev };
159c30ab6c2SEugene Zhulenev 
160c30ab6c2SEugene Zhulenev } // namespace
161c30ab6c2SEugene Zhulenev 
1629f151b78SEugene Zhulenev BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; }
1639f151b78SEugene Zhulenev BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; }
1649f151b78SEugene Zhulenev 
1659f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() {
1669f151b78SEugene Zhulenev   return args.drop_front(2).take_front(numLoops);
1679f151b78SEugene Zhulenev }
1689f151b78SEugene Zhulenev 
1699f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() {
1709f151b78SEugene Zhulenev   return args.drop_front(2 + 1 * numLoops).take_front(numLoops);
1719f151b78SEugene Zhulenev }
1729f151b78SEugene Zhulenev 
1739f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() {
1749f151b78SEugene Zhulenev   return args.drop_front(2 + 2 * numLoops).take_front(numLoops);
1759f151b78SEugene Zhulenev }
1769f151b78SEugene Zhulenev 
1779f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() {
1789f151b78SEugene Zhulenev   return args.drop_front(2 + 3 * numLoops).take_front(numLoops);
1799f151b78SEugene Zhulenev }
1809f151b78SEugene Zhulenev 
1819f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() {
1829f151b78SEugene Zhulenev   return args.drop_front(2 + 4 * numLoops);
1839f151b78SEugene Zhulenev }
1849f151b78SEugene Zhulenev 
1859f151b78SEugene Zhulenev template <typename ValueRange>
1869f151b78SEugene Zhulenev static SmallVector<IntegerAttr> integerConstants(ValueRange values) {
1879f151b78SEugene Zhulenev   SmallVector<IntegerAttr> attrs(values.size());
1889f151b78SEugene Zhulenev   for (unsigned i = 0; i < values.size(); ++i)
1899f151b78SEugene Zhulenev     matchPattern(values[i], m_Constant(&attrs[i]));
1909f151b78SEugene Zhulenev   return attrs;
1919f151b78SEugene Zhulenev }
1929f151b78SEugene Zhulenev 
19386ad0af8SEugene Zhulenev // Converts one-dimensional iteration index in the [0, tripCount) interval
19486ad0af8SEugene Zhulenev // into multidimensional iteration coordinate.
19586ad0af8SEugene Zhulenev static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index,
19634a164c9SEugene Zhulenev                                       ArrayRef<Value> tripCounts) {
19786ad0af8SEugene Zhulenev   SmallVector<Value> coords(tripCounts.size());
19886ad0af8SEugene Zhulenev   assert(!tripCounts.empty() && "tripCounts must be not empty");
19986ad0af8SEugene Zhulenev 
20086ad0af8SEugene Zhulenev   for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) {
201a54f4eaeSMogball     coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]);
202a54f4eaeSMogball     index = b.create<arith::DivSIOp>(index, tripCounts[i]);
20386ad0af8SEugene Zhulenev   }
20486ad0af8SEugene Zhulenev 
20586ad0af8SEugene Zhulenev   return coords;
20686ad0af8SEugene Zhulenev }
20786ad0af8SEugene Zhulenev 
20886ad0af8SEugene Zhulenev // Returns a function type and implicit captures for a parallel compute
20986ad0af8SEugene Zhulenev // function. We'll need a list of implicit captures to setup block and value
21086ad0af8SEugene Zhulenev // mapping when we'll clone the body of the parallel operation.
21186ad0af8SEugene Zhulenev static ParallelComputeFunctionType
21286ad0af8SEugene Zhulenev getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) {
21386ad0af8SEugene Zhulenev   // Values implicitly captured by the parallel operation.
21486ad0af8SEugene Zhulenev   llvm::SetVector<Value> captures;
215c0342a2dSJacques Pienaar   getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures);
21686ad0af8SEugene Zhulenev 
2179f151b78SEugene Zhulenev   SmallVector<Type> inputs;
21886ad0af8SEugene Zhulenev   inputs.reserve(2 + 4 * op.getNumLoops() + captures.size());
21986ad0af8SEugene Zhulenev 
22086ad0af8SEugene Zhulenev   Type indexTy = rewriter.getIndexType();
22186ad0af8SEugene Zhulenev 
22286ad0af8SEugene Zhulenev   // One-dimensional iteration space defined by the block index and size.
22386ad0af8SEugene Zhulenev   inputs.push_back(indexTy); // blockIndex
22486ad0af8SEugene Zhulenev   inputs.push_back(indexTy); // blockSize
22586ad0af8SEugene Zhulenev 
22686ad0af8SEugene Zhulenev   // Multi-dimensional parallel iteration space defined by the loop trip counts.
22786ad0af8SEugene Zhulenev   for (unsigned i = 0; i < op.getNumLoops(); ++i)
22886ad0af8SEugene Zhulenev     inputs.push_back(indexTy); // loop tripCount
22986ad0af8SEugene Zhulenev 
2309f151b78SEugene Zhulenev   // Parallel operation lower bound, upper bound and step. Lower bound, upper
2319f151b78SEugene Zhulenev   // bound and step passed as contiguous arguments:
2329f151b78SEugene Zhulenev   //   call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...)
23386ad0af8SEugene Zhulenev   for (unsigned i = 0; i < op.getNumLoops(); ++i) {
23486ad0af8SEugene Zhulenev     inputs.push_back(indexTy); // lower bound
23586ad0af8SEugene Zhulenev     inputs.push_back(indexTy); // upper bound
23686ad0af8SEugene Zhulenev     inputs.push_back(indexTy); // step
23786ad0af8SEugene Zhulenev   }
23886ad0af8SEugene Zhulenev 
23986ad0af8SEugene Zhulenev   // Types of the implicit captures.
24086ad0af8SEugene Zhulenev   for (Value capture : captures)
24186ad0af8SEugene Zhulenev     inputs.push_back(capture.getType());
24286ad0af8SEugene Zhulenev 
24386ad0af8SEugene Zhulenev   // Convert captures to vector for later convenience.
24486ad0af8SEugene Zhulenev   SmallVector<Value> capturesVector(captures.begin(), captures.end());
24586ad0af8SEugene Zhulenev   return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector};
24686ad0af8SEugene Zhulenev }
24786ad0af8SEugene Zhulenev 
24886ad0af8SEugene Zhulenev // Create a parallel compute fuction from the parallel operation.
24949ce40e9SEugene Zhulenev static ParallelComputeFunction createParallelComputeFunction(
2501fc096afSMehdi Amini     scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds,
25149ce40e9SEugene Zhulenev     unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) {
25286ad0af8SEugene Zhulenev   OpBuilder::InsertionGuard guard(rewriter);
25386ad0af8SEugene Zhulenev   ImplicitLocOpBuilder b(op.getLoc(), rewriter);
25486ad0af8SEugene Zhulenev 
25586ad0af8SEugene Zhulenev   ModuleOp module = op->getParentOfType<ModuleOp>();
25686ad0af8SEugene Zhulenev 
25786ad0af8SEugene Zhulenev   ParallelComputeFunctionType computeFuncType =
25886ad0af8SEugene Zhulenev       getParallelComputeFunctionType(op, rewriter);
25986ad0af8SEugene Zhulenev 
26086ad0af8SEugene Zhulenev   FunctionType type = computeFuncType.type;
261ec0e4545Sbakhtiyar   FuncOp func = FuncOp::create(op.getLoc(),
262ec0e4545Sbakhtiyar                                numBlockAlignedInnerLoops > 0
263ec0e4545Sbakhtiyar                                    ? "parallel_compute_fn_with_aligned_loops"
264ec0e4545Sbakhtiyar                                    : "parallel_compute_fn",
265ec0e4545Sbakhtiyar                                type);
26686ad0af8SEugene Zhulenev   func.setPrivate();
26786ad0af8SEugene Zhulenev 
26886ad0af8SEugene Zhulenev   // Insert function into the module symbol table and assign it unique name.
26986ad0af8SEugene Zhulenev   SymbolTable symbolTable(module);
27086ad0af8SEugene Zhulenev   symbolTable.insert(func);
27186ad0af8SEugene Zhulenev   rewriter.getListener()->notifyOperationInserted(func);
27286ad0af8SEugene Zhulenev 
27386ad0af8SEugene Zhulenev   // Create function entry block.
274e084679fSRiver Riddle   Block *block =
275e084679fSRiver Riddle       b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
276e084679fSRiver Riddle                     SmallVector<Location>(type.getNumInputs(), op.getLoc()));
27786ad0af8SEugene Zhulenev   b.setInsertionPointToEnd(block);
27886ad0af8SEugene Zhulenev 
2799f151b78SEugene Zhulenev   ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()};
28086ad0af8SEugene Zhulenev 
28186ad0af8SEugene Zhulenev   // Block iteration position defined by the block index and size.
2829f151b78SEugene Zhulenev   BlockArgument blockIndex = args.blockIndex();
2839f151b78SEugene Zhulenev   BlockArgument blockSize = args.blockSize();
28486ad0af8SEugene Zhulenev 
28586ad0af8SEugene Zhulenev   // Constants used below.
286a54f4eaeSMogball   Value c0 = b.create<arith::ConstantIndexOp>(0);
287a54f4eaeSMogball   Value c1 = b.create<arith::ConstantIndexOp>(1);
28886ad0af8SEugene Zhulenev 
2899f151b78SEugene Zhulenev   // Materialize known constants as constant operation in the function body.
2909f151b78SEugene Zhulenev   auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) {
2919f151b78SEugene Zhulenev     return llvm::to_vector(
2929f151b78SEugene Zhulenev         llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value {
2939f151b78SEugene Zhulenev           if (IntegerAttr attr = std::get<1>(tuple))
2948e123ca6SRiver Riddle             return b.create<arith::ConstantOp>(attr);
2959f151b78SEugene Zhulenev           return std::get<0>(tuple);
2969f151b78SEugene Zhulenev         }));
2979f151b78SEugene Zhulenev   };
2989f151b78SEugene Zhulenev 
29986ad0af8SEugene Zhulenev   // Multi-dimensional parallel iteration space defined by the loop trip counts.
3009f151b78SEugene Zhulenev   auto tripCounts = values(args.tripCounts(), bounds.tripCounts);
3019f151b78SEugene Zhulenev 
3029f151b78SEugene Zhulenev   // Parallel operation lower bound and step.
3039f151b78SEugene Zhulenev   auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds);
3049f151b78SEugene Zhulenev   auto steps = values(args.steps(), bounds.steps);
3059f151b78SEugene Zhulenev 
3069f151b78SEugene Zhulenev   // Remaining arguments are implicit captures of the parallel operation.
3079f151b78SEugene Zhulenev   ArrayRef<BlockArgument> captures = args.captures();
30886ad0af8SEugene Zhulenev 
30986ad0af8SEugene Zhulenev   // Compute a product of trip counts to get the size of the flattened
31086ad0af8SEugene Zhulenev   // one-dimensional iteration space.
31186ad0af8SEugene Zhulenev   Value tripCount = tripCounts[0];
31286ad0af8SEugene Zhulenev   for (unsigned i = 1; i < tripCounts.size(); ++i)
313a54f4eaeSMogball     tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
31486ad0af8SEugene Zhulenev 
31586ad0af8SEugene Zhulenev   // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]:
31686ad0af8SEugene Zhulenev   //   blockFirstIndex = blockIndex * blockSize
317a54f4eaeSMogball   Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize);
31886ad0af8SEugene Zhulenev 
31986ad0af8SEugene Zhulenev   // The last one-dimensional index in the block defined by the `blockIndex`:
32068a7c001SEugene Zhulenev   //   blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1
321a54f4eaeSMogball   Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize);
3227bd87a03Sbakhtiyar   Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount);
3237bd87a03Sbakhtiyar   Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1);
32486ad0af8SEugene Zhulenev 
32586ad0af8SEugene Zhulenev   // Convert one-dimensional indices to multi-dimensional coordinates.
32686ad0af8SEugene Zhulenev   auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts);
32786ad0af8SEugene Zhulenev   auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts);
32886ad0af8SEugene Zhulenev 
32934a164c9SEugene Zhulenev   // Compute loops upper bounds derived from the block last coordinates:
33086ad0af8SEugene Zhulenev   //   blockEndCoord[i] = blockLastCoord[i] + 1
33186ad0af8SEugene Zhulenev   //
33286ad0af8SEugene Zhulenev   // Block first and last coordinates can be the same along the outer compute
33334a164c9SEugene Zhulenev   // dimension when inner compute dimension contains multiple blocks.
33486ad0af8SEugene Zhulenev   SmallVector<Value> blockEndCoord(op.getNumLoops());
33586ad0af8SEugene Zhulenev   for (size_t i = 0; i < blockLastCoord.size(); ++i)
336a54f4eaeSMogball     blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1);
33786ad0af8SEugene Zhulenev 
33886ad0af8SEugene Zhulenev   // Construct a loop nest out of scf.for operations that will iterate over
33986ad0af8SEugene Zhulenev   // all coordinates in [blockFirstCoord, blockLastCoord] range.
34086ad0af8SEugene Zhulenev   using LoopBodyBuilder =
34186ad0af8SEugene Zhulenev       std::function<void(OpBuilder &, Location, Value, ValueRange)>;
34286ad0af8SEugene Zhulenev   using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>;
34386ad0af8SEugene Zhulenev 
34486ad0af8SEugene Zhulenev   // Parallel region induction variables computed from the multi-dimensional
34586ad0af8SEugene Zhulenev   // iteration coordinate using parallel operation bounds and step:
34686ad0af8SEugene Zhulenev   //
34786ad0af8SEugene Zhulenev   //   computeBlockInductionVars[loopIdx] =
34868a7c001SEugene Zhulenev   //       lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx]
34986ad0af8SEugene Zhulenev   SmallVector<Value> computeBlockInductionVars(op.getNumLoops());
35086ad0af8SEugene Zhulenev 
35186ad0af8SEugene Zhulenev   // We need to know if we are in the first or last iteration of the
35286ad0af8SEugene Zhulenev   // multi-dimensional loop for each loop in the nest, so we can decide what
35386ad0af8SEugene Zhulenev   // loop bounds should we use for the nested loops: bounds defined by compute
35486ad0af8SEugene Zhulenev   // block interval, or bounds defined by the parallel operation.
35586ad0af8SEugene Zhulenev   //
35686ad0af8SEugene Zhulenev   // Example: 2d parallel operation
35786ad0af8SEugene Zhulenev   //                   i   j
35886ad0af8SEugene Zhulenev   //   loop sizes:   [50, 50]
35986ad0af8SEugene Zhulenev   //   first coord:  [25, 25]
36086ad0af8SEugene Zhulenev   //   last coord:   [30, 30]
36186ad0af8SEugene Zhulenev   //
36286ad0af8SEugene Zhulenev   // If `i` is equal to 25 then iteration over `j` should start at 25, when `i`
36386ad0af8SEugene Zhulenev   // is between 25 and 30 it should start at 0. The upper bound for `j` should
36486ad0af8SEugene Zhulenev   // be 50, except when `i` is equal to 30, then it should also be 30.
36586ad0af8SEugene Zhulenev   //
36686ad0af8SEugene Zhulenev   // Value at ith position specifies if all loops in [0, i) range of the loop
36786ad0af8SEugene Zhulenev   // nest are in the first/last iteration.
36886ad0af8SEugene Zhulenev   SmallVector<Value> isBlockFirstCoord(op.getNumLoops());
36986ad0af8SEugene Zhulenev   SmallVector<Value> isBlockLastCoord(op.getNumLoops());
37086ad0af8SEugene Zhulenev 
37186ad0af8SEugene Zhulenev   // Builds inner loop nest inside async.execute operation that does all the
37286ad0af8SEugene Zhulenev   // work concurrently.
37386ad0af8SEugene Zhulenev   LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder {
37486ad0af8SEugene Zhulenev     return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv,
37586ad0af8SEugene Zhulenev                         ValueRange args) {
376*abe2dee5SEugene Zhulenev       ImplicitLocOpBuilder b(loc, nestedBuilder);
37786ad0af8SEugene Zhulenev 
37886ad0af8SEugene Zhulenev       // Compute induction variable for `loopIdx`.
379*abe2dee5SEugene Zhulenev       computeBlockInductionVars[loopIdx] = b.create<arith::AddIOp>(
380*abe2dee5SEugene Zhulenev           lowerBounds[loopIdx], b.create<arith::MulIOp>(iv, steps[loopIdx]));
38186ad0af8SEugene Zhulenev 
38286ad0af8SEugene Zhulenev       // Check if we are inside first or last iteration of the loop.
383*abe2dee5SEugene Zhulenev       isBlockFirstCoord[loopIdx] = b.create<arith::CmpIOp>(
384a54f4eaeSMogball           arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]);
385*abe2dee5SEugene Zhulenev       isBlockLastCoord[loopIdx] = b.create<arith::CmpIOp>(
386a54f4eaeSMogball           arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]);
38786ad0af8SEugene Zhulenev 
38834a164c9SEugene Zhulenev       // Check if the previous loop is in its first or last iteration.
38986ad0af8SEugene Zhulenev       if (loopIdx > 0) {
390*abe2dee5SEugene Zhulenev         isBlockFirstCoord[loopIdx] = b.create<arith::AndIOp>(
39186ad0af8SEugene Zhulenev             isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]);
392*abe2dee5SEugene Zhulenev         isBlockLastCoord[loopIdx] = b.create<arith::AndIOp>(
39386ad0af8SEugene Zhulenev             isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]);
39486ad0af8SEugene Zhulenev       }
39586ad0af8SEugene Zhulenev 
39686ad0af8SEugene Zhulenev       // Keep building loop nest.
39786ad0af8SEugene Zhulenev       if (loopIdx < op.getNumLoops() - 1) {
39849ce40e9SEugene Zhulenev         if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) {
39949ce40e9SEugene Zhulenev           // For block aligned loops we always iterate starting from 0 up to
40049ce40e9SEugene Zhulenev           // the loop trip counts.
401*abe2dee5SEugene Zhulenev           b.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(),
40249ce40e9SEugene Zhulenev                                workLoopBuilder(loopIdx + 1));
40349ce40e9SEugene Zhulenev 
40449ce40e9SEugene Zhulenev         } else {
40568a7c001SEugene Zhulenev           // Select nested loop lower/upper bounds depending on our position in
40686ad0af8SEugene Zhulenev           // the multi-dimensional iteration space.
407*abe2dee5SEugene Zhulenev           auto lb = b.create<arith::SelectOp>(isBlockFirstCoord[loopIdx],
408*abe2dee5SEugene Zhulenev                                               blockFirstCoord[loopIdx + 1], c0);
40986ad0af8SEugene Zhulenev 
410*abe2dee5SEugene Zhulenev           auto ub = b.create<arith::SelectOp>(isBlockLastCoord[loopIdx],
41186ad0af8SEugene Zhulenev                                               blockEndCoord[loopIdx + 1],
41286ad0af8SEugene Zhulenev                                               tripCounts[loopIdx + 1]);
41386ad0af8SEugene Zhulenev 
414*abe2dee5SEugene Zhulenev           b.create<scf::ForOp>(lb, ub, c1, ValueRange(),
41586ad0af8SEugene Zhulenev                                workLoopBuilder(loopIdx + 1));
41649ce40e9SEugene Zhulenev         }
41749ce40e9SEugene Zhulenev 
418*abe2dee5SEugene Zhulenev         b.create<scf::YieldOp>(loc);
41986ad0af8SEugene Zhulenev         return;
42086ad0af8SEugene Zhulenev       }
42186ad0af8SEugene Zhulenev 
42286ad0af8SEugene Zhulenev       // Copy the body of the parallel op into the inner-most loop.
42386ad0af8SEugene Zhulenev       BlockAndValueMapping mapping;
42486ad0af8SEugene Zhulenev       mapping.map(op.getInductionVars(), computeBlockInductionVars);
42586ad0af8SEugene Zhulenev       mapping.map(computeFuncType.captures, captures);
42686ad0af8SEugene Zhulenev 
42786ad0af8SEugene Zhulenev       for (auto &bodyOp : op.getLoopBody().getOps())
428*abe2dee5SEugene Zhulenev         b.clone(bodyOp, mapping);
42986ad0af8SEugene Zhulenev     };
43086ad0af8SEugene Zhulenev   };
43186ad0af8SEugene Zhulenev 
43286ad0af8SEugene Zhulenev   b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(),
43386ad0af8SEugene Zhulenev                        workLoopBuilder(0));
43486ad0af8SEugene Zhulenev   b.create<ReturnOp>(ValueRange());
43586ad0af8SEugene Zhulenev 
4369f151b78SEugene Zhulenev   return {op.getNumLoops(), func, std::move(computeFuncType.captures)};
43786ad0af8SEugene Zhulenev }
43886ad0af8SEugene Zhulenev 
43986ad0af8SEugene Zhulenev // Creates recursive async dispatch function for the given parallel compute
44086ad0af8SEugene Zhulenev // function. Dispatch function keeps splitting block range into halves until it
44186ad0af8SEugene Zhulenev // reaches a single block, and then excecutes it inline.
44286ad0af8SEugene Zhulenev //
44386ad0af8SEugene Zhulenev // Function pseudocode (mix of C++ and MLIR):
44486ad0af8SEugene Zhulenev //
44586ad0af8SEugene Zhulenev //   func @async_dispatch(%block_start : index, %block_end : index, ...) {
44686ad0af8SEugene Zhulenev //
44786ad0af8SEugene Zhulenev //     // Keep splitting block range until we reached a range of size 1.
44886ad0af8SEugene Zhulenev //     while (%block_end - %block_start > 1) {
44986ad0af8SEugene Zhulenev //       %mid_index = block_start + (block_end - block_start) / 2;
45086ad0af8SEugene Zhulenev //       async.execute { call @async_dispatch(%mid_index, %block_end); }
45186ad0af8SEugene Zhulenev //       %block_end = %mid_index
45286ad0af8SEugene Zhulenev //     }
45386ad0af8SEugene Zhulenev //
45486ad0af8SEugene Zhulenev //     // Call parallel compute function for a single block.
45586ad0af8SEugene Zhulenev //     call @parallel_compute_fn(%block_start, %block_size, ...);
45686ad0af8SEugene Zhulenev //   }
45786ad0af8SEugene Zhulenev //
45886ad0af8SEugene Zhulenev static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc,
45986ad0af8SEugene Zhulenev                                           PatternRewriter &rewriter) {
46086ad0af8SEugene Zhulenev   OpBuilder::InsertionGuard guard(rewriter);
46186ad0af8SEugene Zhulenev   Location loc = computeFunc.func.getLoc();
46286ad0af8SEugene Zhulenev   ImplicitLocOpBuilder b(loc, rewriter);
46386ad0af8SEugene Zhulenev 
46486ad0af8SEugene Zhulenev   ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>();
46586ad0af8SEugene Zhulenev 
46686ad0af8SEugene Zhulenev   ArrayRef<Type> computeFuncInputTypes =
46786ad0af8SEugene Zhulenev       computeFunc.func.type().cast<FunctionType>().getInputs();
46886ad0af8SEugene Zhulenev 
46986ad0af8SEugene Zhulenev   // Compared to the parallel compute function async dispatch function takes
47086ad0af8SEugene Zhulenev   // additional !async.group argument. Also instead of a single `blockIndex` it
47186ad0af8SEugene Zhulenev   // takes `blockStart` and `blockEnd` arguments to define the range of
47286ad0af8SEugene Zhulenev   // dispatched blocks.
47386ad0af8SEugene Zhulenev   SmallVector<Type> inputTypes;
47486ad0af8SEugene Zhulenev   inputTypes.push_back(async::GroupType::get(rewriter.getContext()));
47586ad0af8SEugene Zhulenev   inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument
47686ad0af8SEugene Zhulenev   inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end());
47786ad0af8SEugene Zhulenev 
47886ad0af8SEugene Zhulenev   FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange());
47986ad0af8SEugene Zhulenev   FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type);
48086ad0af8SEugene Zhulenev   func.setPrivate();
48186ad0af8SEugene Zhulenev 
48286ad0af8SEugene Zhulenev   // Insert function into the module symbol table and assign it unique name.
48386ad0af8SEugene Zhulenev   SymbolTable symbolTable(module);
48486ad0af8SEugene Zhulenev   symbolTable.insert(func);
48586ad0af8SEugene Zhulenev   rewriter.getListener()->notifyOperationInserted(func);
48686ad0af8SEugene Zhulenev 
48786ad0af8SEugene Zhulenev   // Create function entry block.
488e084679fSRiver Riddle   Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
489e084679fSRiver Riddle                                SmallVector<Location>(type.getNumInputs(), loc));
49086ad0af8SEugene Zhulenev   b.setInsertionPointToEnd(block);
49186ad0af8SEugene Zhulenev 
49286ad0af8SEugene Zhulenev   Type indexTy = b.getIndexType();
493a54f4eaeSMogball   Value c1 = b.create<arith::ConstantIndexOp>(1);
494a54f4eaeSMogball   Value c2 = b.create<arith::ConstantIndexOp>(2);
49586ad0af8SEugene Zhulenev 
49686ad0af8SEugene Zhulenev   // Get the async group that will track async dispatch completion.
49786ad0af8SEugene Zhulenev   Value group = block->getArgument(0);
49886ad0af8SEugene Zhulenev 
49986ad0af8SEugene Zhulenev   // Get the block iteration range: [blockStart, blockEnd)
50086ad0af8SEugene Zhulenev   Value blockStart = block->getArgument(1);
50186ad0af8SEugene Zhulenev   Value blockEnd = block->getArgument(2);
50286ad0af8SEugene Zhulenev 
50386ad0af8SEugene Zhulenev   // Create a work splitting while loop for the [blockStart, blockEnd) range.
50486ad0af8SEugene Zhulenev   SmallVector<Type> types = {indexTy, indexTy};
50586ad0af8SEugene Zhulenev   SmallVector<Value> operands = {blockStart, blockEnd};
506e084679fSRiver Riddle   SmallVector<Location> locations = {loc, loc};
50786ad0af8SEugene Zhulenev 
50886ad0af8SEugene Zhulenev   // Create a recursive dispatch loop.
50986ad0af8SEugene Zhulenev   scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands);
510e084679fSRiver Riddle   Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations);
511e084679fSRiver Riddle   Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations);
51286ad0af8SEugene Zhulenev 
51386ad0af8SEugene Zhulenev   // Setup dispatch loop condition block: decide if we need to go into the
51486ad0af8SEugene Zhulenev   // `after` block and launch one more async dispatch.
51586ad0af8SEugene Zhulenev   {
51686ad0af8SEugene Zhulenev     b.setInsertionPointToEnd(before);
51786ad0af8SEugene Zhulenev     Value start = before->getArgument(0);
51886ad0af8SEugene Zhulenev     Value end = before->getArgument(1);
519a54f4eaeSMogball     Value distance = b.create<arith::SubIOp>(end, start);
520a54f4eaeSMogball     Value dispatch =
521a54f4eaeSMogball         b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1);
52286ad0af8SEugene Zhulenev     b.create<scf::ConditionOp>(dispatch, before->getArguments());
52386ad0af8SEugene Zhulenev   }
52486ad0af8SEugene Zhulenev 
52586ad0af8SEugene Zhulenev   // Setup the async dispatch loop body: recursively call dispatch function
52634a164c9SEugene Zhulenev   // for the seconds half of the original range and go to the next iteration.
52786ad0af8SEugene Zhulenev   {
52886ad0af8SEugene Zhulenev     b.setInsertionPointToEnd(after);
52986ad0af8SEugene Zhulenev     Value start = after->getArgument(0);
53086ad0af8SEugene Zhulenev     Value end = after->getArgument(1);
531a54f4eaeSMogball     Value distance = b.create<arith::SubIOp>(end, start);
532a54f4eaeSMogball     Value halfDistance = b.create<arith::DivSIOp>(distance, c2);
533a54f4eaeSMogball     Value midIndex = b.create<arith::AddIOp>(start, halfDistance);
53486ad0af8SEugene Zhulenev 
53586ad0af8SEugene Zhulenev     // Call parallel compute function inside the async.execute region.
53686ad0af8SEugene Zhulenev     auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
53786ad0af8SEugene Zhulenev                                   Location executeLoc, ValueRange executeArgs) {
53886ad0af8SEugene Zhulenev       // Update the original `blockStart` and `blockEnd` with new range.
53986ad0af8SEugene Zhulenev       SmallVector<Value> operands{block->getArguments().begin(),
54086ad0af8SEugene Zhulenev                                   block->getArguments().end()};
54186ad0af8SEugene Zhulenev       operands[1] = midIndex;
54286ad0af8SEugene Zhulenev       operands[2] = end;
54386ad0af8SEugene Zhulenev 
54486ad0af8SEugene Zhulenev       executeBuilder.create<CallOp>(executeLoc, func.sym_name(),
54586ad0af8SEugene Zhulenev                                     func.getCallableResults(), operands);
54686ad0af8SEugene Zhulenev       executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
54786ad0af8SEugene Zhulenev     };
54886ad0af8SEugene Zhulenev 
54986ad0af8SEugene Zhulenev     // Create async.execute operation to dispatch half of the block range.
55086ad0af8SEugene Zhulenev     auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
55186ad0af8SEugene Zhulenev                                        executeBodyBuilder);
55286ad0af8SEugene Zhulenev     b.create<AddToGroupOp>(indexTy, execute.token(), group);
55334a164c9SEugene Zhulenev     b.create<scf::YieldOp>(ValueRange({start, midIndex}));
55486ad0af8SEugene Zhulenev   }
55586ad0af8SEugene Zhulenev 
55686ad0af8SEugene Zhulenev   // After dispatching async operations to process the tail of the block range
55786ad0af8SEugene Zhulenev   // call the parallel compute function for the first block of the range.
55886ad0af8SEugene Zhulenev   b.setInsertionPointAfter(whileOp);
55986ad0af8SEugene Zhulenev 
56086ad0af8SEugene Zhulenev   // Drop async dispatch specific arguments: async group, block start and end.
56186ad0af8SEugene Zhulenev   auto forwardedInputs = block->getArguments().drop_front(3);
56286ad0af8SEugene Zhulenev   SmallVector<Value> computeFuncOperands = {blockStart};
56386ad0af8SEugene Zhulenev   computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end());
56486ad0af8SEugene Zhulenev 
56586ad0af8SEugene Zhulenev   b.create<CallOp>(computeFunc.func.sym_name(),
56686ad0af8SEugene Zhulenev                    computeFunc.func.getCallableResults(), computeFuncOperands);
56786ad0af8SEugene Zhulenev   b.create<ReturnOp>(ValueRange());
56886ad0af8SEugene Zhulenev 
56986ad0af8SEugene Zhulenev   return func;
57086ad0af8SEugene Zhulenev }
57186ad0af8SEugene Zhulenev 
57286ad0af8SEugene Zhulenev // Launch async dispatch of the parallel compute function.
57386ad0af8SEugene Zhulenev static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
57486ad0af8SEugene Zhulenev                             ParallelComputeFunction &parallelComputeFunction,
57586ad0af8SEugene Zhulenev                             scf::ParallelOp op, Value blockSize,
57686ad0af8SEugene Zhulenev                             Value blockCount,
57786ad0af8SEugene Zhulenev                             const SmallVector<Value> &tripCounts) {
57886ad0af8SEugene Zhulenev   MLIRContext *ctx = op->getContext();
57986ad0af8SEugene Zhulenev 
58086ad0af8SEugene Zhulenev   // Add one more level of indirection to dispatch parallel compute functions
58186ad0af8SEugene Zhulenev   // using async operations and recursive work splitting.
58286ad0af8SEugene Zhulenev   FuncOp asyncDispatchFunction =
58386ad0af8SEugene Zhulenev       createAsyncDispatchFunction(parallelComputeFunction, rewriter);
58486ad0af8SEugene Zhulenev 
585a54f4eaeSMogball   Value c0 = b.create<arith::ConstantIndexOp>(0);
586a54f4eaeSMogball   Value c1 = b.create<arith::ConstantIndexOp>(1);
58786ad0af8SEugene Zhulenev 
588a8f819c6SEugene Zhulenev   // Appends operands shared by async dispatch and parallel compute functions to
589a8f819c6SEugene Zhulenev   // the given operands vector.
590a8f819c6SEugene Zhulenev   auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) {
591a8f819c6SEugene Zhulenev     operands.append(tripCounts);
592c0342a2dSJacques Pienaar     operands.append(op.getLowerBound().begin(), op.getLowerBound().end());
593c0342a2dSJacques Pienaar     operands.append(op.getUpperBound().begin(), op.getUpperBound().end());
594c0342a2dSJacques Pienaar     operands.append(op.getStep().begin(), op.getStep().end());
595a8f819c6SEugene Zhulenev     operands.append(parallelComputeFunction.captures);
596a8f819c6SEugene Zhulenev   };
597a8f819c6SEugene Zhulenev 
598a8f819c6SEugene Zhulenev   // Check if the block size is one, in this case we can skip the async dispatch
599a8f819c6SEugene Zhulenev   // completely. If this will be known statically, then canonicalization will
600a8f819c6SEugene Zhulenev   // erase async group operations.
601a54f4eaeSMogball   Value isSingleBlock =
602a54f4eaeSMogball       b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1);
603a8f819c6SEugene Zhulenev 
604a8f819c6SEugene Zhulenev   auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
605*abe2dee5SEugene Zhulenev     ImplicitLocOpBuilder b(loc, nestedBuilder);
606a8f819c6SEugene Zhulenev 
607a8f819c6SEugene Zhulenev     // Call parallel compute function for the single block.
608a8f819c6SEugene Zhulenev     SmallVector<Value> operands = {c0, blockSize};
609a8f819c6SEugene Zhulenev     appendBlockComputeOperands(operands);
610a8f819c6SEugene Zhulenev 
611*abe2dee5SEugene Zhulenev     b.create<CallOp>(parallelComputeFunction.func.sym_name(),
612a8f819c6SEugene Zhulenev                      parallelComputeFunction.func.getCallableResults(),
613a8f819c6SEugene Zhulenev                      operands);
614*abe2dee5SEugene Zhulenev     b.create<scf::YieldOp>();
615a8f819c6SEugene Zhulenev   };
616a8f819c6SEugene Zhulenev 
617a8f819c6SEugene Zhulenev   auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
618*abe2dee5SEugene Zhulenev     ImplicitLocOpBuilder b(loc, nestedBuilder);
619b171583aSEugene Zhulenev 
620bdde9595Sbakhtiyar     // Create an async.group to wait on all async tokens from the concurrent
621bdde9595Sbakhtiyar     // execution of multiple parallel compute function. First block will be
622bdde9595Sbakhtiyar     // executed synchronously in the caller thread.
623*abe2dee5SEugene Zhulenev     Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
624*abe2dee5SEugene Zhulenev     Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
62586ad0af8SEugene Zhulenev 
62686ad0af8SEugene Zhulenev     // Launch async dispatch function for [0, blockCount) range.
627a8f819c6SEugene Zhulenev     SmallVector<Value> operands = {group, c0, blockCount, blockSize};
628a8f819c6SEugene Zhulenev     appendBlockComputeOperands(operands);
629a8f819c6SEugene Zhulenev 
630*abe2dee5SEugene Zhulenev     b.create<CallOp>(asyncDispatchFunction.sym_name(),
631a8f819c6SEugene Zhulenev                      asyncDispatchFunction.getCallableResults(), operands);
632bdde9595Sbakhtiyar 
633bdde9595Sbakhtiyar     // Wait for the completion of all parallel compute operations.
634*abe2dee5SEugene Zhulenev     b.create<AwaitAllOp>(group);
635bdde9595Sbakhtiyar 
636*abe2dee5SEugene Zhulenev     b.create<scf::YieldOp>();
637a8f819c6SEugene Zhulenev   };
638a8f819c6SEugene Zhulenev 
639a8f819c6SEugene Zhulenev   // Dispatch either single block compute function, or launch async dispatch.
640a8f819c6SEugene Zhulenev   b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch);
64186ad0af8SEugene Zhulenev }
64286ad0af8SEugene Zhulenev 
64386ad0af8SEugene Zhulenev // Dispatch parallel compute functions by submitting all async compute tasks
64486ad0af8SEugene Zhulenev // from a simple for loop in the caller thread.
64586ad0af8SEugene Zhulenev static void
64655dfab39Sbakhtiyar doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
64786ad0af8SEugene Zhulenev                      ParallelComputeFunction &parallelComputeFunction,
64886ad0af8SEugene Zhulenev                      scf::ParallelOp op, Value blockSize, Value blockCount,
64986ad0af8SEugene Zhulenev                      const SmallVector<Value> &tripCounts) {
65086ad0af8SEugene Zhulenev   MLIRContext *ctx = op->getContext();
65186ad0af8SEugene Zhulenev 
65286ad0af8SEugene Zhulenev   FuncOp compute = parallelComputeFunction.func;
65386ad0af8SEugene Zhulenev 
654a54f4eaeSMogball   Value c0 = b.create<arith::ConstantIndexOp>(0);
655a54f4eaeSMogball   Value c1 = b.create<arith::ConstantIndexOp>(1);
65686ad0af8SEugene Zhulenev 
65786ad0af8SEugene Zhulenev   // Create an async.group to wait on all async tokens from the concurrent
65886ad0af8SEugene Zhulenev   // execution of multiple parallel compute function. First block will be
65986ad0af8SEugene Zhulenev   // executed synchronously in the caller thread.
660a54f4eaeSMogball   Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
66186ad0af8SEugene Zhulenev   Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
66286ad0af8SEugene Zhulenev 
66386ad0af8SEugene Zhulenev   // Call parallel compute function for all blocks.
66486ad0af8SEugene Zhulenev   using LoopBodyBuilder =
66586ad0af8SEugene Zhulenev       std::function<void(OpBuilder &, Location, Value, ValueRange)>;
66686ad0af8SEugene Zhulenev 
66786ad0af8SEugene Zhulenev   // Returns parallel compute function operands to process the given block.
66886ad0af8SEugene Zhulenev   auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> {
66986ad0af8SEugene Zhulenev     SmallVector<Value> computeFuncOperands = {blockIndex, blockSize};
67086ad0af8SEugene Zhulenev     computeFuncOperands.append(tripCounts);
671c0342a2dSJacques Pienaar     computeFuncOperands.append(op.getLowerBound().begin(),
672c0342a2dSJacques Pienaar                                op.getLowerBound().end());
673c0342a2dSJacques Pienaar     computeFuncOperands.append(op.getUpperBound().begin(),
674c0342a2dSJacques Pienaar                                op.getUpperBound().end());
675c0342a2dSJacques Pienaar     computeFuncOperands.append(op.getStep().begin(), op.getStep().end());
67686ad0af8SEugene Zhulenev     computeFuncOperands.append(parallelComputeFunction.captures);
67786ad0af8SEugene Zhulenev     return computeFuncOperands;
67886ad0af8SEugene Zhulenev   };
67986ad0af8SEugene Zhulenev 
68086ad0af8SEugene Zhulenev   // Induction variable is the index of the block: [0, blockCount).
68186ad0af8SEugene Zhulenev   LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc,
68286ad0af8SEugene Zhulenev                                     Value iv, ValueRange args) {
683*abe2dee5SEugene Zhulenev     ImplicitLocOpBuilder b(loc, loopBuilder);
68486ad0af8SEugene Zhulenev 
68586ad0af8SEugene Zhulenev     // Call parallel compute function inside the async.execute region.
68686ad0af8SEugene Zhulenev     auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
68786ad0af8SEugene Zhulenev                                   Location executeLoc, ValueRange executeArgs) {
68886ad0af8SEugene Zhulenev       executeBuilder.create<CallOp>(executeLoc, compute.sym_name(),
68986ad0af8SEugene Zhulenev                                     compute.getCallableResults(),
69086ad0af8SEugene Zhulenev                                     computeFuncOperands(iv));
69186ad0af8SEugene Zhulenev       executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
69286ad0af8SEugene Zhulenev     };
69386ad0af8SEugene Zhulenev 
69486ad0af8SEugene Zhulenev     // Create async.execute operation to launch parallel computate function.
695*abe2dee5SEugene Zhulenev     auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
69686ad0af8SEugene Zhulenev                                        executeBodyBuilder);
697*abe2dee5SEugene Zhulenev     b.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group);
698*abe2dee5SEugene Zhulenev     b.create<scf::YieldOp>();
69986ad0af8SEugene Zhulenev   };
70086ad0af8SEugene Zhulenev 
70186ad0af8SEugene Zhulenev   // Iterate over all compute blocks and launch parallel compute operations.
70286ad0af8SEugene Zhulenev   b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder);
70386ad0af8SEugene Zhulenev 
70486ad0af8SEugene Zhulenev   // Call parallel compute function for the first block in the caller thread.
70586ad0af8SEugene Zhulenev   b.create<CallOp>(compute.sym_name(), compute.getCallableResults(),
70686ad0af8SEugene Zhulenev                    computeFuncOperands(c0));
70786ad0af8SEugene Zhulenev 
70886ad0af8SEugene Zhulenev   // Wait for the completion of all async compute operations.
70986ad0af8SEugene Zhulenev   b.create<AwaitAllOp>(group);
71086ad0af8SEugene Zhulenev }
71186ad0af8SEugene Zhulenev 
712c30ab6c2SEugene Zhulenev LogicalResult
713c30ab6c2SEugene Zhulenev AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op,
714c30ab6c2SEugene Zhulenev                                          PatternRewriter &rewriter) const {
715c30ab6c2SEugene Zhulenev   // We do not currently support rewrite for parallel op with reductions.
716c30ab6c2SEugene Zhulenev   if (op.getNumReductions() != 0)
717c30ab6c2SEugene Zhulenev     return failure();
718c30ab6c2SEugene Zhulenev 
71986ad0af8SEugene Zhulenev   ImplicitLocOpBuilder b(op.getLoc(), rewriter);
720c30ab6c2SEugene Zhulenev 
721ec0e4545Sbakhtiyar   // Computing minTaskSize emits IR and can be implemented as executing a cost
722ec0e4545Sbakhtiyar   // model on the body of the scf.parallel. Thus it needs to be computed before
723ec0e4545Sbakhtiyar   // the body of the scf.parallel has been manipulated.
724ec0e4545Sbakhtiyar   Value minTaskSize = computeMinTaskSize(b, op);
725ec0e4545Sbakhtiyar 
7269f151b78SEugene Zhulenev   // Make sure that all constants will be inside the parallel operation body to
7279f151b78SEugene Zhulenev   // reduce the number of parallel compute function arguments.
7289f151b78SEugene Zhulenev   cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter);
7299f151b78SEugene Zhulenev 
730c30ab6c2SEugene Zhulenev   // Compute trip count for each loop induction variable:
73186ad0af8SEugene Zhulenev   //   tripCount = ceil_div(upperBound - lowerBound, step);
73286ad0af8SEugene Zhulenev   SmallVector<Value> tripCounts(op.getNumLoops());
733c30ab6c2SEugene Zhulenev   for (size_t i = 0; i < op.getNumLoops(); ++i) {
734c0342a2dSJacques Pienaar     auto lb = op.getLowerBound()[i];
735c0342a2dSJacques Pienaar     auto ub = op.getUpperBound()[i];
736c0342a2dSJacques Pienaar     auto step = op.getStep()[i];
7379f151b78SEugene Zhulenev     auto range = b.createOrFold<arith::SubIOp>(ub, lb);
7389f151b78SEugene Zhulenev     tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step);
739c30ab6c2SEugene Zhulenev   }
740c30ab6c2SEugene Zhulenev 
74186ad0af8SEugene Zhulenev   // Compute a product of trip counts to get the 1-dimensional iteration space
74286ad0af8SEugene Zhulenev   // for the scf.parallel operation.
74386ad0af8SEugene Zhulenev   Value tripCount = tripCounts[0];
74486ad0af8SEugene Zhulenev   for (size_t i = 1; i < tripCounts.size(); ++i)
745a54f4eaeSMogball     tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
746c30ab6c2SEugene Zhulenev 
7476c1f6558SEugene Zhulenev   // Short circuit no-op parallel loops (zero iterations) that can arise from
7486c1f6558SEugene Zhulenev   // the memrefs with dynamic dimension(s) equal to zero.
749a54f4eaeSMogball   Value c0 = b.create<arith::ConstantIndexOp>(0);
750a54f4eaeSMogball   Value isZeroIterations =
751a54f4eaeSMogball       b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0);
7526c1f6558SEugene Zhulenev 
7536c1f6558SEugene Zhulenev   // Do absolutely nothing if the trip count is zero.
7546c1f6558SEugene Zhulenev   auto noOp = [&](OpBuilder &nestedBuilder, Location loc) {
7556c1f6558SEugene Zhulenev     nestedBuilder.create<scf::YieldOp>(loc);
7566c1f6558SEugene Zhulenev   };
7576c1f6558SEugene Zhulenev 
7586c1f6558SEugene Zhulenev   // Compute the parallel block size and dispatch concurrent tasks computing
7596c1f6558SEugene Zhulenev   // results for each block.
7606c1f6558SEugene Zhulenev   auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) {
761*abe2dee5SEugene Zhulenev     ImplicitLocOpBuilder b(loc, nestedBuilder);
7626c1f6558SEugene Zhulenev 
76349ce40e9SEugene Zhulenev     // Collect statically known constants defining the loop nest in the parallel
76449ce40e9SEugene Zhulenev     // compute function. LLVM can't always push constants across the non-trivial
76549ce40e9SEugene Zhulenev     // async dispatch call graph, by providing these values explicitly we can
76649ce40e9SEugene Zhulenev     // choose to build more efficient loop nest, and rely on a better constant
76749ce40e9SEugene Zhulenev     // folding, loop unrolling and vectorization.
76849ce40e9SEugene Zhulenev     ParallelComputeFunctionBounds staticBounds = {
76949ce40e9SEugene Zhulenev         integerConstants(tripCounts),
770c0342a2dSJacques Pienaar         integerConstants(op.getLowerBound()),
771c0342a2dSJacques Pienaar         integerConstants(op.getUpperBound()),
772c0342a2dSJacques Pienaar         integerConstants(op.getStep()),
77349ce40e9SEugene Zhulenev     };
77449ce40e9SEugene Zhulenev 
77549ce40e9SEugene Zhulenev     // Find how many inner iteration dimensions are statically known, and their
776ec0e4545Sbakhtiyar     // product is smaller than the `512`. We align the parallel compute block
77749ce40e9SEugene Zhulenev     // size by the product of statically known dimensions, so that we can
77849ce40e9SEugene Zhulenev     // guarantee that the inner loops executes from 0 to the loop trip counts
77949ce40e9SEugene Zhulenev     // and we can elide dynamic loop boundaries, and give LLVM an opportunity to
78049ce40e9SEugene Zhulenev     // unroll the loops. The constant `512` is arbitrary, it should depend on
78149ce40e9SEugene Zhulenev     // how many iterations LLVM will typically decide to unroll.
78249ce40e9SEugene Zhulenev     static constexpr int64_t maxIterations = 512;
78349ce40e9SEugene Zhulenev 
78449ce40e9SEugene Zhulenev     // The number of inner loops with statically known number of iterations less
78549ce40e9SEugene Zhulenev     // than the `maxIterations` value.
78649ce40e9SEugene Zhulenev     int numUnrollableLoops = 0;
78749ce40e9SEugene Zhulenev 
78849ce40e9SEugene Zhulenev     auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; };
78949ce40e9SEugene Zhulenev 
79049ce40e9SEugene Zhulenev     SmallVector<int64_t> numIterations(op.getNumLoops());
79149ce40e9SEugene Zhulenev     numIterations.back() = getInt(staticBounds.tripCounts.back());
79249ce40e9SEugene Zhulenev 
79349ce40e9SEugene Zhulenev     for (int i = op.getNumLoops() - 2; i >= 0; --i) {
79449ce40e9SEugene Zhulenev       int64_t tripCount = getInt(staticBounds.tripCounts[i]);
79549ce40e9SEugene Zhulenev       int64_t innerIterations = numIterations[i + 1];
79649ce40e9SEugene Zhulenev       numIterations[i] = tripCount * innerIterations;
79749ce40e9SEugene Zhulenev 
79849ce40e9SEugene Zhulenev       // Update the number of inner loops that we can potentially unroll.
79949ce40e9SEugene Zhulenev       if (innerIterations > 0 && innerIterations <= maxIterations)
80049ce40e9SEugene Zhulenev         numUnrollableLoops++;
80149ce40e9SEugene Zhulenev     }
80249ce40e9SEugene Zhulenev 
803149311b4Sbakhtiyar     Value numWorkerThreadsVal;
804149311b4Sbakhtiyar     if (numWorkerThreads >= 0)
805149311b4Sbakhtiyar       numWorkerThreadsVal = b.create<arith::ConstantIndexOp>(numWorkerThreads);
806149311b4Sbakhtiyar     else
807149311b4Sbakhtiyar       numWorkerThreadsVal = b.create<async::RuntimeNumWorkerThreadsOp>();
808c1194c2eSEugene Zhulenev 
809149311b4Sbakhtiyar     // With large number of threads the value of creating many compute blocks
810149311b4Sbakhtiyar     // is reduced because the problem typically becomes memory bound. For this
811149311b4Sbakhtiyar     // reason we scale the number of workers using an equivalent to the
812149311b4Sbakhtiyar     // following logic:
813149311b4Sbakhtiyar     //   float overshardingFactor = numWorkerThreads <= 4    ? 8.0
814149311b4Sbakhtiyar     //                              : numWorkerThreads <= 8  ? 4.0
815149311b4Sbakhtiyar     //                              : numWorkerThreads <= 16 ? 2.0
816149311b4Sbakhtiyar     //                              : numWorkerThreads <= 32 ? 1.0
817149311b4Sbakhtiyar     //                              : numWorkerThreads <= 64 ? 0.8
818149311b4Sbakhtiyar     //                                                       : 0.6;
819149311b4Sbakhtiyar 
820149311b4Sbakhtiyar     // Pairs of non-inclusive lower end of the bracket and factor that the
821149311b4Sbakhtiyar     // number of workers needs to be scaled with if it falls in that bucket.
822149311b4Sbakhtiyar     const SmallVector<std::pair<int, float>> overshardingBrackets = {
823149311b4Sbakhtiyar         {4, 4.0f}, {8, 2.0f}, {16, 1.0f}, {32, 0.8f}, {64, 0.6f}};
824149311b4Sbakhtiyar     const float initialOvershardingFactor = 8.0f;
825149311b4Sbakhtiyar 
826149311b4Sbakhtiyar     Value scalingFactor = b.create<arith::ConstantFloatOp>(
827149311b4Sbakhtiyar         llvm::APFloat(initialOvershardingFactor), b.getF32Type());
828149311b4Sbakhtiyar     for (const std::pair<int, float> &p : overshardingBrackets) {
829149311b4Sbakhtiyar       Value bracketBegin = b.create<arith::ConstantIndexOp>(p.first);
830149311b4Sbakhtiyar       Value inBracket = b.create<arith::CmpIOp>(
831149311b4Sbakhtiyar           arith::CmpIPredicate::sgt, numWorkerThreadsVal, bracketBegin);
832149311b4Sbakhtiyar       Value bracketScalingFactor = b.create<arith::ConstantFloatOp>(
833149311b4Sbakhtiyar           llvm::APFloat(p.second), b.getF32Type());
834dec8af70SRiver Riddle       scalingFactor = b.create<arith::SelectOp>(inBracket, bracketScalingFactor,
835dec8af70SRiver Riddle                                                 scalingFactor);
836149311b4Sbakhtiyar     }
837149311b4Sbakhtiyar     Value numWorkersIndex =
8383c69bc4dSRiver Riddle         b.create<arith::IndexCastOp>(b.getI32Type(), numWorkerThreadsVal);
839149311b4Sbakhtiyar     Value numWorkersFloat =
8403c69bc4dSRiver Riddle         b.create<arith::SIToFPOp>(b.getF32Type(), numWorkersIndex);
841149311b4Sbakhtiyar     Value scaledNumWorkers =
842149311b4Sbakhtiyar         b.create<arith::MulFOp>(scalingFactor, numWorkersFloat);
843149311b4Sbakhtiyar     Value scaledNumInt =
8443c69bc4dSRiver Riddle         b.create<arith::FPToSIOp>(b.getI32Type(), scaledNumWorkers);
845149311b4Sbakhtiyar     Value scaledWorkers =
8463c69bc4dSRiver Riddle         b.create<arith::IndexCastOp>(b.getIndexType(), scaledNumInt);
847149311b4Sbakhtiyar 
848149311b4Sbakhtiyar     Value maxComputeBlocks = b.create<arith::MaxSIOp>(
849149311b4Sbakhtiyar         b.create<arith::ConstantIndexOp>(1), scaledWorkers);
850c30ab6c2SEugene Zhulenev 
85186ad0af8SEugene Zhulenev     // Compute parallel block size from the parallel problem size:
85286ad0af8SEugene Zhulenev     //   blockSize = min(tripCount,
85334a164c9SEugene Zhulenev     //                   max(ceil_div(tripCount, maxComputeBlocks),
854ec0e4545Sbakhtiyar     //                       minTaskSize))
8557bd87a03Sbakhtiyar     Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks);
856ec0e4545Sbakhtiyar     Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize);
8577bd87a03Sbakhtiyar     Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1);
85849ce40e9SEugene Zhulenev 
859ec0e4545Sbakhtiyar     ParallelComputeFunction notUnrollableParallelComputeFunction =
860ec0e4545Sbakhtiyar         createParallelComputeFunction(op, staticBounds, 0, rewriter);
861ec0e4545Sbakhtiyar 
862ec0e4545Sbakhtiyar     // Dispatch parallel compute function using async recursive work splitting,
863ec0e4545Sbakhtiyar     // or by submitting compute task sequentially from a caller thread.
864ec0e4545Sbakhtiyar     auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch;
865ec0e4545Sbakhtiyar 
866ec0e4545Sbakhtiyar     // Create a parallel compute function that takes a block id and computes
867ec0e4545Sbakhtiyar     // the parallel operation body for a subset of iteration space.
86849ce40e9SEugene Zhulenev 
86949ce40e9SEugene Zhulenev     // Compute the number of parallel compute blocks.
870a54f4eaeSMogball     Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize);
87186ad0af8SEugene Zhulenev 
872ec0e4545Sbakhtiyar     // Unroll when numUnrollableLoops > 0 && blockSize >= maxIterations.
873ec0e4545Sbakhtiyar     bool staticShouldUnroll = numUnrollableLoops > 0;
874ec0e4545Sbakhtiyar     auto dispatchNotUnrollable = [&](OpBuilder &nestedBuilder, Location loc) {
875*abe2dee5SEugene Zhulenev       ImplicitLocOpBuilder b(loc, nestedBuilder);
876ec0e4545Sbakhtiyar       doDispatch(b, rewriter, notUnrollableParallelComputeFunction, op,
877ec0e4545Sbakhtiyar                  blockSize, blockCount, tripCounts);
878*abe2dee5SEugene Zhulenev       b.create<scf::YieldOp>();
879ec0e4545Sbakhtiyar     };
880ec0e4545Sbakhtiyar 
881ec0e4545Sbakhtiyar     if (staticShouldUnroll) {
882ec0e4545Sbakhtiyar       Value dynamicShouldUnroll = b.create<arith::CmpIOp>(
883ec0e4545Sbakhtiyar           arith::CmpIPredicate::sge, blockSize,
884ec0e4545Sbakhtiyar           b.create<arith::ConstantIndexOp>(maxIterations));
885ec0e4545Sbakhtiyar 
886ec0e4545Sbakhtiyar       ParallelComputeFunction unrollableParallelComputeFunction =
88749ce40e9SEugene Zhulenev           createParallelComputeFunction(op, staticBounds, numUnrollableLoops,
88849ce40e9SEugene Zhulenev                                         rewriter);
88986ad0af8SEugene Zhulenev 
890ec0e4545Sbakhtiyar       auto dispatchUnrollable = [&](OpBuilder &nestedBuilder, Location loc) {
891*abe2dee5SEugene Zhulenev         ImplicitLocOpBuilder b(loc, nestedBuilder);
892ec0e4545Sbakhtiyar         // Align the block size to be a multiple of the statically known
893ec0e4545Sbakhtiyar         // number of iterations in the inner loops.
894*abe2dee5SEugene Zhulenev         Value numIters = b.create<arith::ConstantIndexOp>(
895ec0e4545Sbakhtiyar             numIterations[op.getNumLoops() - numUnrollableLoops]);
896*abe2dee5SEugene Zhulenev         Value alignedBlockSize = b.create<arith::MulIOp>(
897*abe2dee5SEugene Zhulenev             b.create<arith::CeilDivSIOp>(blockSize, numIters), numIters);
898ec0e4545Sbakhtiyar         doDispatch(b, rewriter, unrollableParallelComputeFunction, op,
899ec0e4545Sbakhtiyar                    alignedBlockSize, blockCount, tripCounts);
900*abe2dee5SEugene Zhulenev         b.create<scf::YieldOp>();
9016c1f6558SEugene Zhulenev       };
9026c1f6558SEugene Zhulenev 
903ec0e4545Sbakhtiyar       b.create<scf::IfOp>(TypeRange(), dynamicShouldUnroll, dispatchUnrollable,
904ec0e4545Sbakhtiyar                           dispatchNotUnrollable);
905*abe2dee5SEugene Zhulenev       b.create<scf::YieldOp>();
906ec0e4545Sbakhtiyar     } else {
907*abe2dee5SEugene Zhulenev       dispatchNotUnrollable(b, loc);
908ec0e4545Sbakhtiyar     }
909ec0e4545Sbakhtiyar   };
910ec0e4545Sbakhtiyar 
9116c1f6558SEugene Zhulenev   // Replace the `scf.parallel` operation with the parallel compute function.
9126c1f6558SEugene Zhulenev   b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch);
9136c1f6558SEugene Zhulenev 
91434a164c9SEugene Zhulenev   // Parallel operation was replaced with a block iteration loop.
915c30ab6c2SEugene Zhulenev   rewriter.eraseOp(op);
916c30ab6c2SEugene Zhulenev 
917c30ab6c2SEugene Zhulenev   return success();
918c30ab6c2SEugene Zhulenev }
919c30ab6c2SEugene Zhulenev 
9208a316b00SEugene Zhulenev void AsyncParallelForPass::runOnOperation() {
921c30ab6c2SEugene Zhulenev   MLIRContext *ctx = &getContext();
922c30ab6c2SEugene Zhulenev 
923dc4e913bSChris Lattner   RewritePatternSet patterns(ctx);
924ec0e4545Sbakhtiyar   populateAsyncParallelForPatterns(
925ec0e4545Sbakhtiyar       patterns, asyncDispatch, numWorkerThreads,
926ec0e4545Sbakhtiyar       [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) {
927ec0e4545Sbakhtiyar         return builder.create<arith::ConstantIndexOp>(minTaskSize);
928ec0e4545Sbakhtiyar       });
9298a316b00SEugene Zhulenev   if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
930c30ab6c2SEugene Zhulenev     signalPassFailure();
931c30ab6c2SEugene Zhulenev }
932c30ab6c2SEugene Zhulenev 
9338a316b00SEugene Zhulenev std::unique_ptr<Pass> mlir::createAsyncParallelForPass() {
934c30ab6c2SEugene Zhulenev   return std::make_unique<AsyncParallelForPass>();
935c30ab6c2SEugene Zhulenev }
93634a164c9SEugene Zhulenev 
93755dfab39Sbakhtiyar std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch,
93855dfab39Sbakhtiyar                                                        int32_t numWorkerThreads,
93955dfab39Sbakhtiyar                                                        int32_t minTaskSize) {
94034a164c9SEugene Zhulenev   return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads,
94155dfab39Sbakhtiyar                                                 minTaskSize);
94234a164c9SEugene Zhulenev }
943ec0e4545Sbakhtiyar 
944ec0e4545Sbakhtiyar void mlir::async::populateAsyncParallelForPatterns(
945ec0e4545Sbakhtiyar     RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads,
9461fc096afSMehdi Amini     const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) {
947ec0e4545Sbakhtiyar   MLIRContext *ctx = patterns.getContext();
948ec0e4545Sbakhtiyar   patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads,
949ec0e4545Sbakhtiyar                                         computeMinTaskSize);
950ec0e4545Sbakhtiyar }
951