1c30ab6c2SEugene Zhulenev //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===//
2c30ab6c2SEugene Zhulenev //
3c30ab6c2SEugene Zhulenev // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4c30ab6c2SEugene Zhulenev // See https://llvm.org/LICENSE.txt for license information.
5c30ab6c2SEugene Zhulenev // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6c30ab6c2SEugene Zhulenev //
7c30ab6c2SEugene Zhulenev //===----------------------------------------------------------------------===//
8c30ab6c2SEugene Zhulenev //
986ad0af8SEugene Zhulenev // This file implements scf.parallel to scf.for + async.execute conversion pass.
10c30ab6c2SEugene Zhulenev //
11c30ab6c2SEugene Zhulenev //===----------------------------------------------------------------------===//
12c30ab6c2SEugene Zhulenev 
13c30ab6c2SEugene Zhulenev #include "PassDetail.h"
14a54f4eaeSMogball #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
15c30ab6c2SEugene Zhulenev #include "mlir/Dialect/Async/IR/Async.h"
16c30ab6c2SEugene Zhulenev #include "mlir/Dialect/Async/Passes.h"
17c30ab6c2SEugene Zhulenev #include "mlir/Dialect/SCF/SCF.h"
18c30ab6c2SEugene Zhulenev #include "mlir/Dialect/StandardOps/IR/Ops.h"
19c30ab6c2SEugene Zhulenev #include "mlir/IR/BlockAndValueMapping.h"
2086ad0af8SEugene Zhulenev #include "mlir/IR/ImplicitLocOpBuilder.h"
21*9f151b78SEugene Zhulenev #include "mlir/IR/Matchers.h"
22c30ab6c2SEugene Zhulenev #include "mlir/IR/PatternMatch.h"
23c30ab6c2SEugene Zhulenev #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
2486ad0af8SEugene Zhulenev #include "mlir/Transforms/RegionUtils.h"
25c30ab6c2SEugene Zhulenev 
26c30ab6c2SEugene Zhulenev using namespace mlir;
27c30ab6c2SEugene Zhulenev using namespace mlir::async;
28c30ab6c2SEugene Zhulenev 
29c30ab6c2SEugene Zhulenev #define DEBUG_TYPE "async-parallel-for"
30c30ab6c2SEugene Zhulenev 
31c30ab6c2SEugene Zhulenev namespace {
32c30ab6c2SEugene Zhulenev 
33c30ab6c2SEugene Zhulenev // Rewrite scf.parallel operation into multiple concurrent async.execute
34c30ab6c2SEugene Zhulenev // operations over non overlapping subranges of the original loop.
35c30ab6c2SEugene Zhulenev //
36c30ab6c2SEugene Zhulenev // Example:
37c30ab6c2SEugene Zhulenev //
3886ad0af8SEugene Zhulenev //   scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) {
39c30ab6c2SEugene Zhulenev //     "do_some_compute"(%i, %j): () -> ()
40c30ab6c2SEugene Zhulenev //   }
41c30ab6c2SEugene Zhulenev //
42c30ab6c2SEugene Zhulenev // Converted to:
43c30ab6c2SEugene Zhulenev //
4486ad0af8SEugene Zhulenev //   // Parallel compute function that executes the parallel body region for
4586ad0af8SEugene Zhulenev //   // a subset of the parallel iteration space defined by the one-dimensional
4686ad0af8SEugene Zhulenev //   // compute block index.
4786ad0af8SEugene Zhulenev //   func parallel_compute_function(%block_index : index, %block_size : index,
4886ad0af8SEugene Zhulenev //                                  <parallel operation properties>, ...) {
4986ad0af8SEugene Zhulenev //     // Compute multi-dimensional loop bounds for %block_index.
5086ad0af8SEugene Zhulenev //     %block_lbi, %block_lbj = ...
5186ad0af8SEugene Zhulenev //     %block_ubi, %block_ubj = ...
52c30ab6c2SEugene Zhulenev //
5386ad0af8SEugene Zhulenev //     // Clone parallel operation body into the scf.for loop nest.
5486ad0af8SEugene Zhulenev //     scf.for %i = %blockLbi to %blockUbi {
5586ad0af8SEugene Zhulenev //       scf.for %j = block_lbj to %block_ubj {
56c30ab6c2SEugene Zhulenev //         "do_some_compute"(%i, %j): () -> ()
57c30ab6c2SEugene Zhulenev //       }
58c30ab6c2SEugene Zhulenev //     }
59c30ab6c2SEugene Zhulenev //   }
60c30ab6c2SEugene Zhulenev //
6186ad0af8SEugene Zhulenev // And a dispatch function depending on the `asyncDispatch` option.
6286ad0af8SEugene Zhulenev //
6386ad0af8SEugene Zhulenev // When async dispatch is on: (pseudocode)
6486ad0af8SEugene Zhulenev //
6586ad0af8SEugene Zhulenev //   %block_size = ... compute parallel compute block size
6686ad0af8SEugene Zhulenev //   %block_count = ... compute the number of compute blocks
6786ad0af8SEugene Zhulenev //
6886ad0af8SEugene Zhulenev //   func @async_dispatch(%block_start : index, %block_end : index, ...) {
6986ad0af8SEugene Zhulenev //     // Keep splitting block range until we reached a range of size 1.
7086ad0af8SEugene Zhulenev //     while (%block_end - %block_start > 1) {
7186ad0af8SEugene Zhulenev //       %mid_index = block_start + (block_end - block_start) / 2;
7286ad0af8SEugene Zhulenev //       async.execute { call @async_dispatch(%mid_index, %block_end); }
7386ad0af8SEugene Zhulenev //       %block_end = %mid_index
74c30ab6c2SEugene Zhulenev //     }
75c30ab6c2SEugene Zhulenev //
7686ad0af8SEugene Zhulenev //     // Call parallel compute function for a single block.
7786ad0af8SEugene Zhulenev //     call @parallel_compute_fn(%block_start, %block_size, ...);
7886ad0af8SEugene Zhulenev //   }
79c30ab6c2SEugene Zhulenev //
8086ad0af8SEugene Zhulenev //   // Launch async dispatch for [0, block_count) range.
8186ad0af8SEugene Zhulenev //   call @async_dispatch(%c0, %block_count);
82c30ab6c2SEugene Zhulenev //
8386ad0af8SEugene Zhulenev // When async dispatch is off:
84c30ab6c2SEugene Zhulenev //
8586ad0af8SEugene Zhulenev //   %block_size = ... compute parallel compute block size
8686ad0af8SEugene Zhulenev //   %block_count = ... compute the number of compute blocks
8786ad0af8SEugene Zhulenev //
8886ad0af8SEugene Zhulenev //   scf.for %block_index = %c0 to %block_count {
8986ad0af8SEugene Zhulenev //      call @parallel_compute_fn(%block_index, %block_size, ...)
9086ad0af8SEugene Zhulenev //   }
9186ad0af8SEugene Zhulenev //
9286ad0af8SEugene Zhulenev struct AsyncParallelForPass
9386ad0af8SEugene Zhulenev     : public AsyncParallelForBase<AsyncParallelForPass> {
9486ad0af8SEugene Zhulenev   AsyncParallelForPass() = default;
9534a164c9SEugene Zhulenev 
9634a164c9SEugene Zhulenev   AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads,
9755dfab39Sbakhtiyar                        int32_t minTaskSize) {
9834a164c9SEugene Zhulenev     this->asyncDispatch = asyncDispatch;
9934a164c9SEugene Zhulenev     this->numWorkerThreads = numWorkerThreads;
10055dfab39Sbakhtiyar     this->minTaskSize = minTaskSize;
10134a164c9SEugene Zhulenev   }
10234a164c9SEugene Zhulenev 
10386ad0af8SEugene Zhulenev   void runOnOperation() override;
10486ad0af8SEugene Zhulenev };
10586ad0af8SEugene Zhulenev 
106c30ab6c2SEugene Zhulenev struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> {
107c30ab6c2SEugene Zhulenev public:
10886ad0af8SEugene Zhulenev   AsyncParallelForRewrite(MLIRContext *ctx, bool asyncDispatch,
10955dfab39Sbakhtiyar                           int32_t numWorkerThreads, int32_t minTaskSize)
11086ad0af8SEugene Zhulenev       : OpRewritePattern(ctx), asyncDispatch(asyncDispatch),
11155dfab39Sbakhtiyar         numWorkerThreads(numWorkerThreads), minTaskSize(minTaskSize) {}
112c30ab6c2SEugene Zhulenev 
113c30ab6c2SEugene Zhulenev   LogicalResult matchAndRewrite(scf::ParallelOp op,
114c30ab6c2SEugene Zhulenev                                 PatternRewriter &rewriter) const override;
115c30ab6c2SEugene Zhulenev 
116c30ab6c2SEugene Zhulenev private:
11786ad0af8SEugene Zhulenev   bool asyncDispatch;
11886ad0af8SEugene Zhulenev   int32_t numWorkerThreads;
11955dfab39Sbakhtiyar   int32_t minTaskSize;
120c30ab6c2SEugene Zhulenev };
121c30ab6c2SEugene Zhulenev 
12286ad0af8SEugene Zhulenev struct ParallelComputeFunctionType {
12386ad0af8SEugene Zhulenev   FunctionType type;
124*9f151b78SEugene Zhulenev   SmallVector<Value> captures;
125*9f151b78SEugene Zhulenev };
126*9f151b78SEugene Zhulenev 
127*9f151b78SEugene Zhulenev // Helper struct to parse parallel compute function argument list.
128*9f151b78SEugene Zhulenev struct ParallelComputeFunctionArgs {
129*9f151b78SEugene Zhulenev   BlockArgument blockIndex();
130*9f151b78SEugene Zhulenev   BlockArgument blockSize();
131*9f151b78SEugene Zhulenev   ArrayRef<BlockArgument> tripCounts();
132*9f151b78SEugene Zhulenev   ArrayRef<BlockArgument> lowerBounds();
133*9f151b78SEugene Zhulenev   ArrayRef<BlockArgument> upperBounds();
134*9f151b78SEugene Zhulenev   ArrayRef<BlockArgument> steps();
135*9f151b78SEugene Zhulenev   ArrayRef<BlockArgument> captures();
136*9f151b78SEugene Zhulenev 
137*9f151b78SEugene Zhulenev   unsigned numLoops;
138*9f151b78SEugene Zhulenev   ArrayRef<BlockArgument> args;
139*9f151b78SEugene Zhulenev };
140*9f151b78SEugene Zhulenev 
141*9f151b78SEugene Zhulenev struct ParallelComputeFunctionBounds {
142*9f151b78SEugene Zhulenev   SmallVector<IntegerAttr> tripCounts;
143*9f151b78SEugene Zhulenev   SmallVector<IntegerAttr> lowerBounds;
144*9f151b78SEugene Zhulenev   SmallVector<IntegerAttr> upperBounds;
145*9f151b78SEugene Zhulenev   SmallVector<IntegerAttr> steps;
14686ad0af8SEugene Zhulenev };
14786ad0af8SEugene Zhulenev 
14886ad0af8SEugene Zhulenev struct ParallelComputeFunction {
149*9f151b78SEugene Zhulenev   unsigned numLoops;
15086ad0af8SEugene Zhulenev   FuncOp func;
15186ad0af8SEugene Zhulenev   llvm::SmallVector<Value> captures;
152c30ab6c2SEugene Zhulenev };
153c30ab6c2SEugene Zhulenev 
154c30ab6c2SEugene Zhulenev } // namespace
155c30ab6c2SEugene Zhulenev 
156*9f151b78SEugene Zhulenev BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; }
157*9f151b78SEugene Zhulenev BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; }
158*9f151b78SEugene Zhulenev 
159*9f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() {
160*9f151b78SEugene Zhulenev   return args.drop_front(2).take_front(numLoops);
161*9f151b78SEugene Zhulenev }
162*9f151b78SEugene Zhulenev 
163*9f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() {
164*9f151b78SEugene Zhulenev   return args.drop_front(2 + 1 * numLoops).take_front(numLoops);
165*9f151b78SEugene Zhulenev }
166*9f151b78SEugene Zhulenev 
167*9f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() {
168*9f151b78SEugene Zhulenev   return args.drop_front(2 + 2 * numLoops).take_front(numLoops);
169*9f151b78SEugene Zhulenev }
170*9f151b78SEugene Zhulenev 
171*9f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() {
172*9f151b78SEugene Zhulenev   return args.drop_front(2 + 3 * numLoops).take_front(numLoops);
173*9f151b78SEugene Zhulenev }
174*9f151b78SEugene Zhulenev 
175*9f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() {
176*9f151b78SEugene Zhulenev   return args.drop_front(2 + 4 * numLoops);
177*9f151b78SEugene Zhulenev }
178*9f151b78SEugene Zhulenev 
179*9f151b78SEugene Zhulenev template <typename ValueRange>
180*9f151b78SEugene Zhulenev static SmallVector<IntegerAttr> integerConstants(ValueRange values) {
181*9f151b78SEugene Zhulenev   SmallVector<IntegerAttr> attrs(values.size());
182*9f151b78SEugene Zhulenev   for (unsigned i = 0; i < values.size(); ++i)
183*9f151b78SEugene Zhulenev     matchPattern(values[i], m_Constant(&attrs[i]));
184*9f151b78SEugene Zhulenev   return attrs;
185*9f151b78SEugene Zhulenev }
186*9f151b78SEugene Zhulenev 
18786ad0af8SEugene Zhulenev // Converts one-dimensional iteration index in the [0, tripCount) interval
18886ad0af8SEugene Zhulenev // into multidimensional iteration coordinate.
18986ad0af8SEugene Zhulenev static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index,
19034a164c9SEugene Zhulenev                                       ArrayRef<Value> tripCounts) {
19186ad0af8SEugene Zhulenev   SmallVector<Value> coords(tripCounts.size());
19286ad0af8SEugene Zhulenev   assert(!tripCounts.empty() && "tripCounts must be not empty");
19386ad0af8SEugene Zhulenev 
19486ad0af8SEugene Zhulenev   for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) {
195a54f4eaeSMogball     coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]);
196a54f4eaeSMogball     index = b.create<arith::DivSIOp>(index, tripCounts[i]);
19786ad0af8SEugene Zhulenev   }
19886ad0af8SEugene Zhulenev 
19986ad0af8SEugene Zhulenev   return coords;
20086ad0af8SEugene Zhulenev }
20186ad0af8SEugene Zhulenev 
20286ad0af8SEugene Zhulenev // Returns a function type and implicit captures for a parallel compute
20386ad0af8SEugene Zhulenev // function. We'll need a list of implicit captures to setup block and value
20486ad0af8SEugene Zhulenev // mapping when we'll clone the body of the parallel operation.
20586ad0af8SEugene Zhulenev static ParallelComputeFunctionType
20686ad0af8SEugene Zhulenev getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) {
20786ad0af8SEugene Zhulenev   // Values implicitly captured by the parallel operation.
20886ad0af8SEugene Zhulenev   llvm::SetVector<Value> captures;
20986ad0af8SEugene Zhulenev   getUsedValuesDefinedAbove(op.region(), op.region(), captures);
21086ad0af8SEugene Zhulenev 
211*9f151b78SEugene Zhulenev   SmallVector<Type> inputs;
21286ad0af8SEugene Zhulenev   inputs.reserve(2 + 4 * op.getNumLoops() + captures.size());
21386ad0af8SEugene Zhulenev 
21486ad0af8SEugene Zhulenev   Type indexTy = rewriter.getIndexType();
21586ad0af8SEugene Zhulenev 
21686ad0af8SEugene Zhulenev   // One-dimensional iteration space defined by the block index and size.
21786ad0af8SEugene Zhulenev   inputs.push_back(indexTy); // blockIndex
21886ad0af8SEugene Zhulenev   inputs.push_back(indexTy); // blockSize
21986ad0af8SEugene Zhulenev 
22086ad0af8SEugene Zhulenev   // Multi-dimensional parallel iteration space defined by the loop trip counts.
22186ad0af8SEugene Zhulenev   for (unsigned i = 0; i < op.getNumLoops(); ++i)
22286ad0af8SEugene Zhulenev     inputs.push_back(indexTy); // loop tripCount
22386ad0af8SEugene Zhulenev 
224*9f151b78SEugene Zhulenev   // Parallel operation lower bound, upper bound and step. Lower bound, upper
225*9f151b78SEugene Zhulenev   // bound and step passed as contiguous arguments:
226*9f151b78SEugene Zhulenev   //   call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...)
22786ad0af8SEugene Zhulenev   for (unsigned i = 0; i < op.getNumLoops(); ++i) {
22886ad0af8SEugene Zhulenev     inputs.push_back(indexTy); // lower bound
22986ad0af8SEugene Zhulenev     inputs.push_back(indexTy); // upper bound
23086ad0af8SEugene Zhulenev     inputs.push_back(indexTy); // step
23186ad0af8SEugene Zhulenev   }
23286ad0af8SEugene Zhulenev 
23386ad0af8SEugene Zhulenev   // Types of the implicit captures.
23486ad0af8SEugene Zhulenev   for (Value capture : captures)
23586ad0af8SEugene Zhulenev     inputs.push_back(capture.getType());
23686ad0af8SEugene Zhulenev 
23786ad0af8SEugene Zhulenev   // Convert captures to vector for later convenience.
23886ad0af8SEugene Zhulenev   SmallVector<Value> capturesVector(captures.begin(), captures.end());
23986ad0af8SEugene Zhulenev   return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector};
24086ad0af8SEugene Zhulenev }
24186ad0af8SEugene Zhulenev 
24286ad0af8SEugene Zhulenev // Create a parallel compute fuction from the parallel operation.
24386ad0af8SEugene Zhulenev static ParallelComputeFunction
244*9f151b78SEugene Zhulenev createParallelComputeFunction(scf::ParallelOp op,
245*9f151b78SEugene Zhulenev                               ParallelComputeFunctionBounds bounds,
246*9f151b78SEugene Zhulenev                               PatternRewriter &rewriter) {
24786ad0af8SEugene Zhulenev   OpBuilder::InsertionGuard guard(rewriter);
24886ad0af8SEugene Zhulenev   ImplicitLocOpBuilder b(op.getLoc(), rewriter);
24986ad0af8SEugene Zhulenev 
25086ad0af8SEugene Zhulenev   ModuleOp module = op->getParentOfType<ModuleOp>();
25186ad0af8SEugene Zhulenev 
25286ad0af8SEugene Zhulenev   ParallelComputeFunctionType computeFuncType =
25386ad0af8SEugene Zhulenev       getParallelComputeFunctionType(op, rewriter);
25486ad0af8SEugene Zhulenev 
25586ad0af8SEugene Zhulenev   FunctionType type = computeFuncType.type;
25686ad0af8SEugene Zhulenev   FuncOp func = FuncOp::create(op.getLoc(), "parallel_compute_fn", type);
25786ad0af8SEugene Zhulenev   func.setPrivate();
25886ad0af8SEugene Zhulenev 
25986ad0af8SEugene Zhulenev   // Insert function into the module symbol table and assign it unique name.
26086ad0af8SEugene Zhulenev   SymbolTable symbolTable(module);
26186ad0af8SEugene Zhulenev   symbolTable.insert(func);
26286ad0af8SEugene Zhulenev   rewriter.getListener()->notifyOperationInserted(func);
26386ad0af8SEugene Zhulenev 
26486ad0af8SEugene Zhulenev   // Create function entry block.
26586ad0af8SEugene Zhulenev   Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs());
26686ad0af8SEugene Zhulenev   b.setInsertionPointToEnd(block);
26786ad0af8SEugene Zhulenev 
268*9f151b78SEugene Zhulenev   ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()};
26986ad0af8SEugene Zhulenev 
27086ad0af8SEugene Zhulenev   // Block iteration position defined by the block index and size.
271*9f151b78SEugene Zhulenev   BlockArgument blockIndex = args.blockIndex();
272*9f151b78SEugene Zhulenev   BlockArgument blockSize = args.blockSize();
27386ad0af8SEugene Zhulenev 
27486ad0af8SEugene Zhulenev   // Constants used below.
275a54f4eaeSMogball   Value c0 = b.create<arith::ConstantIndexOp>(0);
276a54f4eaeSMogball   Value c1 = b.create<arith::ConstantIndexOp>(1);
27786ad0af8SEugene Zhulenev 
278*9f151b78SEugene Zhulenev   // Materialize known constants as constant operation in the function body.
279*9f151b78SEugene Zhulenev   auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) {
280*9f151b78SEugene Zhulenev     return llvm::to_vector(
281*9f151b78SEugene Zhulenev         llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value {
282*9f151b78SEugene Zhulenev           if (IntegerAttr attr = std::get<1>(tuple))
283*9f151b78SEugene Zhulenev             return b.create<ConstantOp>(attr);
284*9f151b78SEugene Zhulenev           return std::get<0>(tuple);
285*9f151b78SEugene Zhulenev         }));
286*9f151b78SEugene Zhulenev   };
287*9f151b78SEugene Zhulenev 
28886ad0af8SEugene Zhulenev   // Multi-dimensional parallel iteration space defined by the loop trip counts.
289*9f151b78SEugene Zhulenev   auto tripCounts = values(args.tripCounts(), bounds.tripCounts);
290*9f151b78SEugene Zhulenev 
291*9f151b78SEugene Zhulenev   // Parallel operation lower bound and step.
292*9f151b78SEugene Zhulenev   auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds);
293*9f151b78SEugene Zhulenev   auto steps = values(args.steps(), bounds.steps);
294*9f151b78SEugene Zhulenev 
295*9f151b78SEugene Zhulenev   // Remaining arguments are implicit captures of the parallel operation.
296*9f151b78SEugene Zhulenev   ArrayRef<BlockArgument> captures = args.captures();
29786ad0af8SEugene Zhulenev 
29886ad0af8SEugene Zhulenev   // Compute a product of trip counts to get the size of the flattened
29986ad0af8SEugene Zhulenev   // one-dimensional iteration space.
30086ad0af8SEugene Zhulenev   Value tripCount = tripCounts[0];
30186ad0af8SEugene Zhulenev   for (unsigned i = 1; i < tripCounts.size(); ++i)
302a54f4eaeSMogball     tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
30386ad0af8SEugene Zhulenev 
30486ad0af8SEugene Zhulenev   // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]:
30586ad0af8SEugene Zhulenev   //   blockFirstIndex = blockIndex * blockSize
306a54f4eaeSMogball   Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize);
30786ad0af8SEugene Zhulenev 
30886ad0af8SEugene Zhulenev   // The last one-dimensional index in the block defined by the `blockIndex`:
30968a7c001SEugene Zhulenev   //   blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1
310a54f4eaeSMogball   Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize);
3117bd87a03Sbakhtiyar   Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount);
3127bd87a03Sbakhtiyar   Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1);
31386ad0af8SEugene Zhulenev 
31486ad0af8SEugene Zhulenev   // Convert one-dimensional indices to multi-dimensional coordinates.
31586ad0af8SEugene Zhulenev   auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts);
31686ad0af8SEugene Zhulenev   auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts);
31786ad0af8SEugene Zhulenev 
31834a164c9SEugene Zhulenev   // Compute loops upper bounds derived from the block last coordinates:
31986ad0af8SEugene Zhulenev   //   blockEndCoord[i] = blockLastCoord[i] + 1
32086ad0af8SEugene Zhulenev   //
32186ad0af8SEugene Zhulenev   // Block first and last coordinates can be the same along the outer compute
32234a164c9SEugene Zhulenev   // dimension when inner compute dimension contains multiple blocks.
32386ad0af8SEugene Zhulenev   SmallVector<Value> blockEndCoord(op.getNumLoops());
32486ad0af8SEugene Zhulenev   for (size_t i = 0; i < blockLastCoord.size(); ++i)
325a54f4eaeSMogball     blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1);
32686ad0af8SEugene Zhulenev 
32786ad0af8SEugene Zhulenev   // Construct a loop nest out of scf.for operations that will iterate over
32886ad0af8SEugene Zhulenev   // all coordinates in [blockFirstCoord, blockLastCoord] range.
32986ad0af8SEugene Zhulenev   using LoopBodyBuilder =
33086ad0af8SEugene Zhulenev       std::function<void(OpBuilder &, Location, Value, ValueRange)>;
33186ad0af8SEugene Zhulenev   using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>;
33286ad0af8SEugene Zhulenev 
33386ad0af8SEugene Zhulenev   // Parallel region induction variables computed from the multi-dimensional
33486ad0af8SEugene Zhulenev   // iteration coordinate using parallel operation bounds and step:
33586ad0af8SEugene Zhulenev   //
33686ad0af8SEugene Zhulenev   //   computeBlockInductionVars[loopIdx] =
33768a7c001SEugene Zhulenev   //       lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx]
33886ad0af8SEugene Zhulenev   SmallVector<Value> computeBlockInductionVars(op.getNumLoops());
33986ad0af8SEugene Zhulenev 
34086ad0af8SEugene Zhulenev   // We need to know if we are in the first or last iteration of the
34186ad0af8SEugene Zhulenev   // multi-dimensional loop for each loop in the nest, so we can decide what
34286ad0af8SEugene Zhulenev   // loop bounds should we use for the nested loops: bounds defined by compute
34386ad0af8SEugene Zhulenev   // block interval, or bounds defined by the parallel operation.
34486ad0af8SEugene Zhulenev   //
34586ad0af8SEugene Zhulenev   // Example: 2d parallel operation
34686ad0af8SEugene Zhulenev   //                   i   j
34786ad0af8SEugene Zhulenev   //   loop sizes:   [50, 50]
34886ad0af8SEugene Zhulenev   //   first coord:  [25, 25]
34986ad0af8SEugene Zhulenev   //   last coord:   [30, 30]
35086ad0af8SEugene Zhulenev   //
35186ad0af8SEugene Zhulenev   // If `i` is equal to 25 then iteration over `j` should start at 25, when `i`
35286ad0af8SEugene Zhulenev   // is between 25 and 30 it should start at 0. The upper bound for `j` should
35386ad0af8SEugene Zhulenev   // be 50, except when `i` is equal to 30, then it should also be 30.
35486ad0af8SEugene Zhulenev   //
35586ad0af8SEugene Zhulenev   // Value at ith position specifies if all loops in [0, i) range of the loop
35686ad0af8SEugene Zhulenev   // nest are in the first/last iteration.
35786ad0af8SEugene Zhulenev   SmallVector<Value> isBlockFirstCoord(op.getNumLoops());
35886ad0af8SEugene Zhulenev   SmallVector<Value> isBlockLastCoord(op.getNumLoops());
35986ad0af8SEugene Zhulenev 
36086ad0af8SEugene Zhulenev   // Builds inner loop nest inside async.execute operation that does all the
36186ad0af8SEugene Zhulenev   // work concurrently.
36286ad0af8SEugene Zhulenev   LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder {
36386ad0af8SEugene Zhulenev     return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv,
36486ad0af8SEugene Zhulenev                         ValueRange args) {
36586ad0af8SEugene Zhulenev       ImplicitLocOpBuilder nb(loc, nestedBuilder);
36686ad0af8SEugene Zhulenev 
36786ad0af8SEugene Zhulenev       // Compute induction variable for `loopIdx`.
368a54f4eaeSMogball       computeBlockInductionVars[loopIdx] = nb.create<arith::AddIOp>(
369*9f151b78SEugene Zhulenev           lowerBounds[loopIdx], nb.create<arith::MulIOp>(iv, steps[loopIdx]));
37086ad0af8SEugene Zhulenev 
37186ad0af8SEugene Zhulenev       // Check if we are inside first or last iteration of the loop.
372a54f4eaeSMogball       isBlockFirstCoord[loopIdx] = nb.create<arith::CmpIOp>(
373a54f4eaeSMogball           arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]);
374a54f4eaeSMogball       isBlockLastCoord[loopIdx] = nb.create<arith::CmpIOp>(
375a54f4eaeSMogball           arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]);
37686ad0af8SEugene Zhulenev 
37734a164c9SEugene Zhulenev       // Check if the previous loop is in its first or last iteration.
37886ad0af8SEugene Zhulenev       if (loopIdx > 0) {
379a54f4eaeSMogball         isBlockFirstCoord[loopIdx] = nb.create<arith::AndIOp>(
38086ad0af8SEugene Zhulenev             isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]);
381a54f4eaeSMogball         isBlockLastCoord[loopIdx] = nb.create<arith::AndIOp>(
38286ad0af8SEugene Zhulenev             isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]);
38386ad0af8SEugene Zhulenev       }
38486ad0af8SEugene Zhulenev 
38586ad0af8SEugene Zhulenev       // Keep building loop nest.
38686ad0af8SEugene Zhulenev       if (loopIdx < op.getNumLoops() - 1) {
38768a7c001SEugene Zhulenev         // Select nested loop lower/upper bounds depending on our position in
38886ad0af8SEugene Zhulenev         // the multi-dimensional iteration space.
38986ad0af8SEugene Zhulenev         auto lb = nb.create<SelectOp>(isBlockFirstCoord[loopIdx],
39086ad0af8SEugene Zhulenev                                       blockFirstCoord[loopIdx + 1], c0);
39186ad0af8SEugene Zhulenev 
39286ad0af8SEugene Zhulenev         auto ub = nb.create<SelectOp>(isBlockLastCoord[loopIdx],
39386ad0af8SEugene Zhulenev                                       blockEndCoord[loopIdx + 1],
39486ad0af8SEugene Zhulenev                                       tripCounts[loopIdx + 1]);
39586ad0af8SEugene Zhulenev 
39686ad0af8SEugene Zhulenev         nb.create<scf::ForOp>(lb, ub, c1, ValueRange(),
39786ad0af8SEugene Zhulenev                               workLoopBuilder(loopIdx + 1));
39886ad0af8SEugene Zhulenev         nb.create<scf::YieldOp>(loc);
39986ad0af8SEugene Zhulenev         return;
40086ad0af8SEugene Zhulenev       }
40186ad0af8SEugene Zhulenev 
40286ad0af8SEugene Zhulenev       // Copy the body of the parallel op into the inner-most loop.
40386ad0af8SEugene Zhulenev       BlockAndValueMapping mapping;
40486ad0af8SEugene Zhulenev       mapping.map(op.getInductionVars(), computeBlockInductionVars);
40586ad0af8SEugene Zhulenev       mapping.map(computeFuncType.captures, captures);
40686ad0af8SEugene Zhulenev 
40786ad0af8SEugene Zhulenev       for (auto &bodyOp : op.getLoopBody().getOps())
40886ad0af8SEugene Zhulenev         nb.clone(bodyOp, mapping);
40986ad0af8SEugene Zhulenev     };
41086ad0af8SEugene Zhulenev   };
41186ad0af8SEugene Zhulenev 
41286ad0af8SEugene Zhulenev   b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(),
41386ad0af8SEugene Zhulenev                        workLoopBuilder(0));
41486ad0af8SEugene Zhulenev   b.create<ReturnOp>(ValueRange());
41586ad0af8SEugene Zhulenev 
416*9f151b78SEugene Zhulenev   return {op.getNumLoops(), func, std::move(computeFuncType.captures)};
41786ad0af8SEugene Zhulenev }
41886ad0af8SEugene Zhulenev 
41986ad0af8SEugene Zhulenev // Creates recursive async dispatch function for the given parallel compute
42086ad0af8SEugene Zhulenev // function. Dispatch function keeps splitting block range into halves until it
42186ad0af8SEugene Zhulenev // reaches a single block, and then excecutes it inline.
42286ad0af8SEugene Zhulenev //
42386ad0af8SEugene Zhulenev // Function pseudocode (mix of C++ and MLIR):
42486ad0af8SEugene Zhulenev //
42586ad0af8SEugene Zhulenev //   func @async_dispatch(%block_start : index, %block_end : index, ...) {
42686ad0af8SEugene Zhulenev //
42786ad0af8SEugene Zhulenev //     // Keep splitting block range until we reached a range of size 1.
42886ad0af8SEugene Zhulenev //     while (%block_end - %block_start > 1) {
42986ad0af8SEugene Zhulenev //       %mid_index = block_start + (block_end - block_start) / 2;
43086ad0af8SEugene Zhulenev //       async.execute { call @async_dispatch(%mid_index, %block_end); }
43186ad0af8SEugene Zhulenev //       %block_end = %mid_index
43286ad0af8SEugene Zhulenev //     }
43386ad0af8SEugene Zhulenev //
43486ad0af8SEugene Zhulenev //     // Call parallel compute function for a single block.
43586ad0af8SEugene Zhulenev //     call @parallel_compute_fn(%block_start, %block_size, ...);
43686ad0af8SEugene Zhulenev //   }
43786ad0af8SEugene Zhulenev //
43886ad0af8SEugene Zhulenev static FuncOp createAsyncDispatchFunction(ParallelComputeFunction &computeFunc,
43986ad0af8SEugene Zhulenev                                           PatternRewriter &rewriter) {
44086ad0af8SEugene Zhulenev   OpBuilder::InsertionGuard guard(rewriter);
44186ad0af8SEugene Zhulenev   Location loc = computeFunc.func.getLoc();
44286ad0af8SEugene Zhulenev   ImplicitLocOpBuilder b(loc, rewriter);
44386ad0af8SEugene Zhulenev 
44486ad0af8SEugene Zhulenev   ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>();
44586ad0af8SEugene Zhulenev 
44686ad0af8SEugene Zhulenev   ArrayRef<Type> computeFuncInputTypes =
44786ad0af8SEugene Zhulenev       computeFunc.func.type().cast<FunctionType>().getInputs();
44886ad0af8SEugene Zhulenev 
44986ad0af8SEugene Zhulenev   // Compared to the parallel compute function async dispatch function takes
45086ad0af8SEugene Zhulenev   // additional !async.group argument. Also instead of a single `blockIndex` it
45186ad0af8SEugene Zhulenev   // takes `blockStart` and `blockEnd` arguments to define the range of
45286ad0af8SEugene Zhulenev   // dispatched blocks.
45386ad0af8SEugene Zhulenev   SmallVector<Type> inputTypes;
45486ad0af8SEugene Zhulenev   inputTypes.push_back(async::GroupType::get(rewriter.getContext()));
45586ad0af8SEugene Zhulenev   inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument
45686ad0af8SEugene Zhulenev   inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end());
45786ad0af8SEugene Zhulenev 
45886ad0af8SEugene Zhulenev   FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange());
45986ad0af8SEugene Zhulenev   FuncOp func = FuncOp::create(loc, "async_dispatch_fn", type);
46086ad0af8SEugene Zhulenev   func.setPrivate();
46186ad0af8SEugene Zhulenev 
46286ad0af8SEugene Zhulenev   // Insert function into the module symbol table and assign it unique name.
46386ad0af8SEugene Zhulenev   SymbolTable symbolTable(module);
46486ad0af8SEugene Zhulenev   symbolTable.insert(func);
46586ad0af8SEugene Zhulenev   rewriter.getListener()->notifyOperationInserted(func);
46686ad0af8SEugene Zhulenev 
46786ad0af8SEugene Zhulenev   // Create function entry block.
46886ad0af8SEugene Zhulenev   Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs());
46986ad0af8SEugene Zhulenev   b.setInsertionPointToEnd(block);
47086ad0af8SEugene Zhulenev 
47186ad0af8SEugene Zhulenev   Type indexTy = b.getIndexType();
472a54f4eaeSMogball   Value c1 = b.create<arith::ConstantIndexOp>(1);
473a54f4eaeSMogball   Value c2 = b.create<arith::ConstantIndexOp>(2);
47486ad0af8SEugene Zhulenev 
47586ad0af8SEugene Zhulenev   // Get the async group that will track async dispatch completion.
47686ad0af8SEugene Zhulenev   Value group = block->getArgument(0);
47786ad0af8SEugene Zhulenev 
47886ad0af8SEugene Zhulenev   // Get the block iteration range: [blockStart, blockEnd)
47986ad0af8SEugene Zhulenev   Value blockStart = block->getArgument(1);
48086ad0af8SEugene Zhulenev   Value blockEnd = block->getArgument(2);
48186ad0af8SEugene Zhulenev 
48286ad0af8SEugene Zhulenev   // Create a work splitting while loop for the [blockStart, blockEnd) range.
48386ad0af8SEugene Zhulenev   SmallVector<Type> types = {indexTy, indexTy};
48486ad0af8SEugene Zhulenev   SmallVector<Value> operands = {blockStart, blockEnd};
48586ad0af8SEugene Zhulenev 
48686ad0af8SEugene Zhulenev   // Create a recursive dispatch loop.
48786ad0af8SEugene Zhulenev   scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands);
48886ad0af8SEugene Zhulenev   Block *before = b.createBlock(&whileOp.before(), {}, types);
48986ad0af8SEugene Zhulenev   Block *after = b.createBlock(&whileOp.after(), {}, types);
49086ad0af8SEugene Zhulenev 
49186ad0af8SEugene Zhulenev   // Setup dispatch loop condition block: decide if we need to go into the
49286ad0af8SEugene Zhulenev   // `after` block and launch one more async dispatch.
49386ad0af8SEugene Zhulenev   {
49486ad0af8SEugene Zhulenev     b.setInsertionPointToEnd(before);
49586ad0af8SEugene Zhulenev     Value start = before->getArgument(0);
49686ad0af8SEugene Zhulenev     Value end = before->getArgument(1);
497a54f4eaeSMogball     Value distance = b.create<arith::SubIOp>(end, start);
498a54f4eaeSMogball     Value dispatch =
499a54f4eaeSMogball         b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1);
50086ad0af8SEugene Zhulenev     b.create<scf::ConditionOp>(dispatch, before->getArguments());
50186ad0af8SEugene Zhulenev   }
50286ad0af8SEugene Zhulenev 
50386ad0af8SEugene Zhulenev   // Setup the async dispatch loop body: recursively call dispatch function
50434a164c9SEugene Zhulenev   // for the seconds half of the original range and go to the next iteration.
50586ad0af8SEugene Zhulenev   {
50686ad0af8SEugene Zhulenev     b.setInsertionPointToEnd(after);
50786ad0af8SEugene Zhulenev     Value start = after->getArgument(0);
50886ad0af8SEugene Zhulenev     Value end = after->getArgument(1);
509a54f4eaeSMogball     Value distance = b.create<arith::SubIOp>(end, start);
510a54f4eaeSMogball     Value halfDistance = b.create<arith::DivSIOp>(distance, c2);
511a54f4eaeSMogball     Value midIndex = b.create<arith::AddIOp>(start, halfDistance);
51286ad0af8SEugene Zhulenev 
51386ad0af8SEugene Zhulenev     // Call parallel compute function inside the async.execute region.
51486ad0af8SEugene Zhulenev     auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
51586ad0af8SEugene Zhulenev                                   Location executeLoc, ValueRange executeArgs) {
51686ad0af8SEugene Zhulenev       // Update the original `blockStart` and `blockEnd` with new range.
51786ad0af8SEugene Zhulenev       SmallVector<Value> operands{block->getArguments().begin(),
51886ad0af8SEugene Zhulenev                                   block->getArguments().end()};
51986ad0af8SEugene Zhulenev       operands[1] = midIndex;
52086ad0af8SEugene Zhulenev       operands[2] = end;
52186ad0af8SEugene Zhulenev 
52286ad0af8SEugene Zhulenev       executeBuilder.create<CallOp>(executeLoc, func.sym_name(),
52386ad0af8SEugene Zhulenev                                     func.getCallableResults(), operands);
52486ad0af8SEugene Zhulenev       executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
52586ad0af8SEugene Zhulenev     };
52686ad0af8SEugene Zhulenev 
52786ad0af8SEugene Zhulenev     // Create async.execute operation to dispatch half of the block range.
52886ad0af8SEugene Zhulenev     auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
52986ad0af8SEugene Zhulenev                                        executeBodyBuilder);
53086ad0af8SEugene Zhulenev     b.create<AddToGroupOp>(indexTy, execute.token(), group);
53134a164c9SEugene Zhulenev     b.create<scf::YieldOp>(ValueRange({start, midIndex}));
53286ad0af8SEugene Zhulenev   }
53386ad0af8SEugene Zhulenev 
53486ad0af8SEugene Zhulenev   // After dispatching async operations to process the tail of the block range
53586ad0af8SEugene Zhulenev   // call the parallel compute function for the first block of the range.
53686ad0af8SEugene Zhulenev   b.setInsertionPointAfter(whileOp);
53786ad0af8SEugene Zhulenev 
53886ad0af8SEugene Zhulenev   // Drop async dispatch specific arguments: async group, block start and end.
53986ad0af8SEugene Zhulenev   auto forwardedInputs = block->getArguments().drop_front(3);
54086ad0af8SEugene Zhulenev   SmallVector<Value> computeFuncOperands = {blockStart};
54186ad0af8SEugene Zhulenev   computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end());
54286ad0af8SEugene Zhulenev 
54386ad0af8SEugene Zhulenev   b.create<CallOp>(computeFunc.func.sym_name(),
54486ad0af8SEugene Zhulenev                    computeFunc.func.getCallableResults(), computeFuncOperands);
54586ad0af8SEugene Zhulenev   b.create<ReturnOp>(ValueRange());
54686ad0af8SEugene Zhulenev 
54786ad0af8SEugene Zhulenev   return func;
54886ad0af8SEugene Zhulenev }
54986ad0af8SEugene Zhulenev 
55086ad0af8SEugene Zhulenev // Launch async dispatch of the parallel compute function.
55186ad0af8SEugene Zhulenev static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
55286ad0af8SEugene Zhulenev                             ParallelComputeFunction &parallelComputeFunction,
55386ad0af8SEugene Zhulenev                             scf::ParallelOp op, Value blockSize,
55486ad0af8SEugene Zhulenev                             Value blockCount,
55586ad0af8SEugene Zhulenev                             const SmallVector<Value> &tripCounts) {
55686ad0af8SEugene Zhulenev   MLIRContext *ctx = op->getContext();
55786ad0af8SEugene Zhulenev 
55886ad0af8SEugene Zhulenev   // Add one more level of indirection to dispatch parallel compute functions
55986ad0af8SEugene Zhulenev   // using async operations and recursive work splitting.
56086ad0af8SEugene Zhulenev   FuncOp asyncDispatchFunction =
56186ad0af8SEugene Zhulenev       createAsyncDispatchFunction(parallelComputeFunction, rewriter);
56286ad0af8SEugene Zhulenev 
563a54f4eaeSMogball   Value c0 = b.create<arith::ConstantIndexOp>(0);
564a54f4eaeSMogball   Value c1 = b.create<arith::ConstantIndexOp>(1);
56586ad0af8SEugene Zhulenev 
566a8f819c6SEugene Zhulenev   // Appends operands shared by async dispatch and parallel compute functions to
567a8f819c6SEugene Zhulenev   // the given operands vector.
568a8f819c6SEugene Zhulenev   auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) {
569a8f819c6SEugene Zhulenev     operands.append(tripCounts);
570a8f819c6SEugene Zhulenev     operands.append(op.lowerBound().begin(), op.lowerBound().end());
571a8f819c6SEugene Zhulenev     operands.append(op.upperBound().begin(), op.upperBound().end());
572a8f819c6SEugene Zhulenev     operands.append(op.step().begin(), op.step().end());
573a8f819c6SEugene Zhulenev     operands.append(parallelComputeFunction.captures);
574a8f819c6SEugene Zhulenev   };
575a8f819c6SEugene Zhulenev 
576a8f819c6SEugene Zhulenev   // Check if the block size is one, in this case we can skip the async dispatch
577a8f819c6SEugene Zhulenev   // completely. If this will be known statically, then canonicalization will
578a8f819c6SEugene Zhulenev   // erase async group operations.
579a54f4eaeSMogball   Value isSingleBlock =
580a54f4eaeSMogball       b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1);
581a8f819c6SEugene Zhulenev 
582a8f819c6SEugene Zhulenev   auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
583a8f819c6SEugene Zhulenev     ImplicitLocOpBuilder nb(loc, nestedBuilder);
584a8f819c6SEugene Zhulenev 
585a8f819c6SEugene Zhulenev     // Call parallel compute function for the single block.
586a8f819c6SEugene Zhulenev     SmallVector<Value> operands = {c0, blockSize};
587a8f819c6SEugene Zhulenev     appendBlockComputeOperands(operands);
588a8f819c6SEugene Zhulenev 
589a8f819c6SEugene Zhulenev     nb.create<CallOp>(parallelComputeFunction.func.sym_name(),
590a8f819c6SEugene Zhulenev                       parallelComputeFunction.func.getCallableResults(),
591a8f819c6SEugene Zhulenev                       operands);
592a8f819c6SEugene Zhulenev     nb.create<scf::YieldOp>();
593a8f819c6SEugene Zhulenev   };
594a8f819c6SEugene Zhulenev 
595a8f819c6SEugene Zhulenev   auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
596bdde9595Sbakhtiyar     // Create an async.group to wait on all async tokens from the concurrent
597bdde9595Sbakhtiyar     // execution of multiple parallel compute function. First block will be
598bdde9595Sbakhtiyar     // executed synchronously in the caller thread.
599a54f4eaeSMogball     Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
600bdde9595Sbakhtiyar     Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
601bdde9595Sbakhtiyar 
602a8f819c6SEugene Zhulenev     ImplicitLocOpBuilder nb(loc, nestedBuilder);
60386ad0af8SEugene Zhulenev 
60486ad0af8SEugene Zhulenev     // Launch async dispatch function for [0, blockCount) range.
605a8f819c6SEugene Zhulenev     SmallVector<Value> operands = {group, c0, blockCount, blockSize};
606a8f819c6SEugene Zhulenev     appendBlockComputeOperands(operands);
607a8f819c6SEugene Zhulenev 
608a8f819c6SEugene Zhulenev     nb.create<CallOp>(asyncDispatchFunction.sym_name(),
609a8f819c6SEugene Zhulenev                       asyncDispatchFunction.getCallableResults(), operands);
610bdde9595Sbakhtiyar 
611bdde9595Sbakhtiyar     // Wait for the completion of all parallel compute operations.
612bdde9595Sbakhtiyar     b.create<AwaitAllOp>(group);
613bdde9595Sbakhtiyar 
614a8f819c6SEugene Zhulenev     nb.create<scf::YieldOp>();
615a8f819c6SEugene Zhulenev   };
616a8f819c6SEugene Zhulenev 
617a8f819c6SEugene Zhulenev   // Dispatch either single block compute function, or launch async dispatch.
618a8f819c6SEugene Zhulenev   b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch);
61986ad0af8SEugene Zhulenev }
62086ad0af8SEugene Zhulenev 
62186ad0af8SEugene Zhulenev // Dispatch parallel compute functions by submitting all async compute tasks
62286ad0af8SEugene Zhulenev // from a simple for loop in the caller thread.
62386ad0af8SEugene Zhulenev static void
62455dfab39Sbakhtiyar doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
62586ad0af8SEugene Zhulenev                      ParallelComputeFunction &parallelComputeFunction,
62686ad0af8SEugene Zhulenev                      scf::ParallelOp op, Value blockSize, Value blockCount,
62786ad0af8SEugene Zhulenev                      const SmallVector<Value> &tripCounts) {
62886ad0af8SEugene Zhulenev   MLIRContext *ctx = op->getContext();
62986ad0af8SEugene Zhulenev 
63086ad0af8SEugene Zhulenev   FuncOp compute = parallelComputeFunction.func;
63186ad0af8SEugene Zhulenev 
632a54f4eaeSMogball   Value c0 = b.create<arith::ConstantIndexOp>(0);
633a54f4eaeSMogball   Value c1 = b.create<arith::ConstantIndexOp>(1);
63486ad0af8SEugene Zhulenev 
63586ad0af8SEugene Zhulenev   // Create an async.group to wait on all async tokens from the concurrent
63686ad0af8SEugene Zhulenev   // execution of multiple parallel compute function. First block will be
63786ad0af8SEugene Zhulenev   // executed synchronously in the caller thread.
638a54f4eaeSMogball   Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
63986ad0af8SEugene Zhulenev   Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
64086ad0af8SEugene Zhulenev 
64186ad0af8SEugene Zhulenev   // Call parallel compute function for all blocks.
64286ad0af8SEugene Zhulenev   using LoopBodyBuilder =
64386ad0af8SEugene Zhulenev       std::function<void(OpBuilder &, Location, Value, ValueRange)>;
64486ad0af8SEugene Zhulenev 
64586ad0af8SEugene Zhulenev   // Returns parallel compute function operands to process the given block.
64686ad0af8SEugene Zhulenev   auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> {
64786ad0af8SEugene Zhulenev     SmallVector<Value> computeFuncOperands = {blockIndex, blockSize};
64886ad0af8SEugene Zhulenev     computeFuncOperands.append(tripCounts);
64986ad0af8SEugene Zhulenev     computeFuncOperands.append(op.lowerBound().begin(), op.lowerBound().end());
65086ad0af8SEugene Zhulenev     computeFuncOperands.append(op.upperBound().begin(), op.upperBound().end());
65186ad0af8SEugene Zhulenev     computeFuncOperands.append(op.step().begin(), op.step().end());
65286ad0af8SEugene Zhulenev     computeFuncOperands.append(parallelComputeFunction.captures);
65386ad0af8SEugene Zhulenev     return computeFuncOperands;
65486ad0af8SEugene Zhulenev   };
65586ad0af8SEugene Zhulenev 
65686ad0af8SEugene Zhulenev   // Induction variable is the index of the block: [0, blockCount).
65786ad0af8SEugene Zhulenev   LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc,
65886ad0af8SEugene Zhulenev                                     Value iv, ValueRange args) {
65986ad0af8SEugene Zhulenev     ImplicitLocOpBuilder nb(loc, loopBuilder);
66086ad0af8SEugene Zhulenev 
66186ad0af8SEugene Zhulenev     // Call parallel compute function inside the async.execute region.
66286ad0af8SEugene Zhulenev     auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
66386ad0af8SEugene Zhulenev                                   Location executeLoc, ValueRange executeArgs) {
66486ad0af8SEugene Zhulenev       executeBuilder.create<CallOp>(executeLoc, compute.sym_name(),
66586ad0af8SEugene Zhulenev                                     compute.getCallableResults(),
66686ad0af8SEugene Zhulenev                                     computeFuncOperands(iv));
66786ad0af8SEugene Zhulenev       executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
66886ad0af8SEugene Zhulenev     };
66986ad0af8SEugene Zhulenev 
67086ad0af8SEugene Zhulenev     // Create async.execute operation to launch parallel computate function.
67186ad0af8SEugene Zhulenev     auto execute = nb.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
67286ad0af8SEugene Zhulenev                                         executeBodyBuilder);
67386ad0af8SEugene Zhulenev     nb.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group);
67486ad0af8SEugene Zhulenev     nb.create<scf::YieldOp>();
67586ad0af8SEugene Zhulenev   };
67686ad0af8SEugene Zhulenev 
67786ad0af8SEugene Zhulenev   // Iterate over all compute blocks and launch parallel compute operations.
67886ad0af8SEugene Zhulenev   b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder);
67986ad0af8SEugene Zhulenev 
68086ad0af8SEugene Zhulenev   // Call parallel compute function for the first block in the caller thread.
68186ad0af8SEugene Zhulenev   b.create<CallOp>(compute.sym_name(), compute.getCallableResults(),
68286ad0af8SEugene Zhulenev                    computeFuncOperands(c0));
68386ad0af8SEugene Zhulenev 
68486ad0af8SEugene Zhulenev   // Wait for the completion of all async compute operations.
68586ad0af8SEugene Zhulenev   b.create<AwaitAllOp>(group);
68686ad0af8SEugene Zhulenev }
68786ad0af8SEugene Zhulenev 
688c30ab6c2SEugene Zhulenev LogicalResult
689c30ab6c2SEugene Zhulenev AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op,
690c30ab6c2SEugene Zhulenev                                          PatternRewriter &rewriter) const {
691c30ab6c2SEugene Zhulenev   // We do not currently support rewrite for parallel op with reductions.
692c30ab6c2SEugene Zhulenev   if (op.getNumReductions() != 0)
693c30ab6c2SEugene Zhulenev     return failure();
694c30ab6c2SEugene Zhulenev 
69586ad0af8SEugene Zhulenev   ImplicitLocOpBuilder b(op.getLoc(), rewriter);
696c30ab6c2SEugene Zhulenev 
697*9f151b78SEugene Zhulenev   // Make sure that all constants will be inside the parallel operation body to
698*9f151b78SEugene Zhulenev   // reduce the number of parallel compute function arguments.
699*9f151b78SEugene Zhulenev   cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter);
700*9f151b78SEugene Zhulenev 
701c30ab6c2SEugene Zhulenev   // Compute trip count for each loop induction variable:
70286ad0af8SEugene Zhulenev   //   tripCount = ceil_div(upperBound - lowerBound, step);
70386ad0af8SEugene Zhulenev   SmallVector<Value> tripCounts(op.getNumLoops());
704c30ab6c2SEugene Zhulenev   for (size_t i = 0; i < op.getNumLoops(); ++i) {
705c30ab6c2SEugene Zhulenev     auto lb = op.lowerBound()[i];
706c30ab6c2SEugene Zhulenev     auto ub = op.upperBound()[i];
707c30ab6c2SEugene Zhulenev     auto step = op.step()[i];
708*9f151b78SEugene Zhulenev     auto range = b.createOrFold<arith::SubIOp>(ub, lb);
709*9f151b78SEugene Zhulenev     tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step);
710c30ab6c2SEugene Zhulenev   }
711c30ab6c2SEugene Zhulenev 
71286ad0af8SEugene Zhulenev   // Compute a product of trip counts to get the 1-dimensional iteration space
71386ad0af8SEugene Zhulenev   // for the scf.parallel operation.
71486ad0af8SEugene Zhulenev   Value tripCount = tripCounts[0];
71586ad0af8SEugene Zhulenev   for (size_t i = 1; i < tripCounts.size(); ++i)
716a54f4eaeSMogball     tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
717c30ab6c2SEugene Zhulenev 
7186c1f6558SEugene Zhulenev   // Short circuit no-op parallel loops (zero iterations) that can arise from
7196c1f6558SEugene Zhulenev   // the memrefs with dynamic dimension(s) equal to zero.
720a54f4eaeSMogball   Value c0 = b.create<arith::ConstantIndexOp>(0);
721a54f4eaeSMogball   Value isZeroIterations =
722a54f4eaeSMogball       b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0);
7236c1f6558SEugene Zhulenev 
7246c1f6558SEugene Zhulenev   // Do absolutely nothing if the trip count is zero.
7256c1f6558SEugene Zhulenev   auto noOp = [&](OpBuilder &nestedBuilder, Location loc) {
7266c1f6558SEugene Zhulenev     nestedBuilder.create<scf::YieldOp>(loc);
7276c1f6558SEugene Zhulenev   };
7286c1f6558SEugene Zhulenev 
7296c1f6558SEugene Zhulenev   // Compute the parallel block size and dispatch concurrent tasks computing
7306c1f6558SEugene Zhulenev   // results for each block.
7316c1f6558SEugene Zhulenev   auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) {
7326c1f6558SEugene Zhulenev     ImplicitLocOpBuilder nb(loc, nestedBuilder);
7336c1f6558SEugene Zhulenev 
734c1194c2eSEugene Zhulenev     // With large number of threads the value of creating many compute blocks
735c1194c2eSEugene Zhulenev     // is reduced because the problem typically becomes memory bound. For small
736c1194c2eSEugene Zhulenev     // number of threads it helps with stragglers.
737c1194c2eSEugene Zhulenev     float overshardingFactor = numWorkerThreads <= 4    ? 8.0
738c1194c2eSEugene Zhulenev                                : numWorkerThreads <= 8  ? 4.0
739c1194c2eSEugene Zhulenev                                : numWorkerThreads <= 16 ? 2.0
740c1194c2eSEugene Zhulenev                                : numWorkerThreads <= 32 ? 1.0
741c1194c2eSEugene Zhulenev                                : numWorkerThreads <= 64 ? 0.8
742c1194c2eSEugene Zhulenev                                                         : 0.6;
743c1194c2eSEugene Zhulenev 
74486ad0af8SEugene Zhulenev     // Do not overload worker threads with too many compute blocks.
745a54f4eaeSMogball     Value maxComputeBlocks = b.create<arith::ConstantIndexOp>(
746c1194c2eSEugene Zhulenev         std::max(1, static_cast<int>(numWorkerThreads * overshardingFactor)));
747c30ab6c2SEugene Zhulenev 
74886ad0af8SEugene Zhulenev     // Target block size from the pass parameters.
749a54f4eaeSMogball     Value minTaskSizeCst = b.create<arith::ConstantIndexOp>(minTaskSize);
750c30ab6c2SEugene Zhulenev 
75186ad0af8SEugene Zhulenev     // Compute parallel block size from the parallel problem size:
75286ad0af8SEugene Zhulenev     //   blockSize = min(tripCount,
75334a164c9SEugene Zhulenev     //                   max(ceil_div(tripCount, maxComputeBlocks),
75455dfab39Sbakhtiyar     //                       ceil_div(minTaskSize, bodySize)))
7557bd87a03Sbakhtiyar     Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks);
7567bd87a03Sbakhtiyar     Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSizeCst);
7577bd87a03Sbakhtiyar     Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1);
758a54f4eaeSMogball     Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize);
75986ad0af8SEugene Zhulenev 
760*9f151b78SEugene Zhulenev     // Collect statically known constants defining the loop nest in the parallel
761*9f151b78SEugene Zhulenev     // compute function. LLVM can't always push constants across the non-trivial
762*9f151b78SEugene Zhulenev     // async dispatch call graph, by providing these values explicitly we can
763*9f151b78SEugene Zhulenev     // choose to build more efficient loop nest, and rely on a better constant
764*9f151b78SEugene Zhulenev     // folding, loop unrolling and vectorization.
765*9f151b78SEugene Zhulenev     ParallelComputeFunctionBounds staticBounds = {
766*9f151b78SEugene Zhulenev         integerConstants(tripCounts),
767*9f151b78SEugene Zhulenev         integerConstants(op.lowerBound()),
768*9f151b78SEugene Zhulenev         integerConstants(op.upperBound()),
769*9f151b78SEugene Zhulenev         integerConstants(op.step()),
770*9f151b78SEugene Zhulenev     };
771*9f151b78SEugene Zhulenev 
77286ad0af8SEugene Zhulenev     // Create a parallel compute function that takes a block id and computes the
77386ad0af8SEugene Zhulenev     // parallel operation body for a subset of iteration space.
77486ad0af8SEugene Zhulenev     ParallelComputeFunction parallelComputeFunction =
775*9f151b78SEugene Zhulenev         createParallelComputeFunction(op, staticBounds, rewriter);
77686ad0af8SEugene Zhulenev 
7776c1f6558SEugene Zhulenev     // Dispatch parallel compute function using async recursive work splitting,
7786c1f6558SEugene Zhulenev     // or by submitting compute task sequentially from a caller thread.
77986ad0af8SEugene Zhulenev     if (asyncDispatch) {
78086ad0af8SEugene Zhulenev       doAsyncDispatch(b, rewriter, parallelComputeFunction, op, blockSize,
78186ad0af8SEugene Zhulenev                       blockCount, tripCounts);
78286ad0af8SEugene Zhulenev     } else {
78355dfab39Sbakhtiyar       doSequentialDispatch(b, rewriter, parallelComputeFunction, op, blockSize,
78486ad0af8SEugene Zhulenev                            blockCount, tripCounts);
785c30ab6c2SEugene Zhulenev     }
786c30ab6c2SEugene Zhulenev 
7876c1f6558SEugene Zhulenev     nb.create<scf::YieldOp>();
7886c1f6558SEugene Zhulenev   };
7896c1f6558SEugene Zhulenev 
7906c1f6558SEugene Zhulenev   // Replace the `scf.parallel` operation with the parallel compute function.
7916c1f6558SEugene Zhulenev   b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch);
7926c1f6558SEugene Zhulenev 
79334a164c9SEugene Zhulenev   // Parallel operation was replaced with a block iteration loop.
794c30ab6c2SEugene Zhulenev   rewriter.eraseOp(op);
795c30ab6c2SEugene Zhulenev 
796c30ab6c2SEugene Zhulenev   return success();
797c30ab6c2SEugene Zhulenev }
798c30ab6c2SEugene Zhulenev 
7998a316b00SEugene Zhulenev void AsyncParallelForPass::runOnOperation() {
800c30ab6c2SEugene Zhulenev   MLIRContext *ctx = &getContext();
801c30ab6c2SEugene Zhulenev 
802dc4e913bSChris Lattner   RewritePatternSet patterns(ctx);
80386ad0af8SEugene Zhulenev   patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads,
80455dfab39Sbakhtiyar                                         minTaskSize);
805c30ab6c2SEugene Zhulenev 
8068a316b00SEugene Zhulenev   if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
807c30ab6c2SEugene Zhulenev     signalPassFailure();
808c30ab6c2SEugene Zhulenev }
809c30ab6c2SEugene Zhulenev 
8108a316b00SEugene Zhulenev std::unique_ptr<Pass> mlir::createAsyncParallelForPass() {
811c30ab6c2SEugene Zhulenev   return std::make_unique<AsyncParallelForPass>();
812c30ab6c2SEugene Zhulenev }
81334a164c9SEugene Zhulenev 
81455dfab39Sbakhtiyar std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch,
81555dfab39Sbakhtiyar                                                        int32_t numWorkerThreads,
81655dfab39Sbakhtiyar                                                        int32_t minTaskSize) {
81734a164c9SEugene Zhulenev   return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads,
81855dfab39Sbakhtiyar                                                 minTaskSize);
81934a164c9SEugene Zhulenev }
820