1c30ab6c2SEugene Zhulenev //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===//
2c30ab6c2SEugene Zhulenev //
3c30ab6c2SEugene Zhulenev // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4c30ab6c2SEugene Zhulenev // See https://llvm.org/LICENSE.txt for license information.
5c30ab6c2SEugene Zhulenev // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6c30ab6c2SEugene Zhulenev //
7c30ab6c2SEugene Zhulenev //===----------------------------------------------------------------------===//
8c30ab6c2SEugene Zhulenev //
986ad0af8SEugene Zhulenev // This file implements scf.parallel to scf.for + async.execute conversion pass.
10c30ab6c2SEugene Zhulenev //
11c30ab6c2SEugene Zhulenev //===----------------------------------------------------------------------===//
12c30ab6c2SEugene Zhulenev
131fc096afSMehdi Amini #include <utility>
141fc096afSMehdi Amini
15c30ab6c2SEugene Zhulenev #include "PassDetail.h"
16a54f4eaeSMogball #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
17c30ab6c2SEugene Zhulenev #include "mlir/Dialect/Async/IR/Async.h"
18c30ab6c2SEugene Zhulenev #include "mlir/Dialect/Async/Passes.h"
19ec0e4545Sbakhtiyar #include "mlir/Dialect/Async/Transforms.h"
2023aa5a74SRiver Riddle #include "mlir/Dialect/Func/IR/FuncOps.h"
21*8b68da2cSAlex Zinenko #include "mlir/Dialect/SCF/IR/SCF.h"
22c30ab6c2SEugene Zhulenev #include "mlir/IR/BlockAndValueMapping.h"
2386ad0af8SEugene Zhulenev #include "mlir/IR/ImplicitLocOpBuilder.h"
249f151b78SEugene Zhulenev #include "mlir/IR/Matchers.h"
25c30ab6c2SEugene Zhulenev #include "mlir/IR/PatternMatch.h"
26149311b4Sbakhtiyar #include "mlir/Support/LLVM.h"
27c30ab6c2SEugene Zhulenev #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
2886ad0af8SEugene Zhulenev #include "mlir/Transforms/RegionUtils.h"
29c30ab6c2SEugene Zhulenev
30c30ab6c2SEugene Zhulenev using namespace mlir;
31c30ab6c2SEugene Zhulenev using namespace mlir::async;
32c30ab6c2SEugene Zhulenev
33c30ab6c2SEugene Zhulenev #define DEBUG_TYPE "async-parallel-for"
34c30ab6c2SEugene Zhulenev
35c30ab6c2SEugene Zhulenev namespace {
36c30ab6c2SEugene Zhulenev
37c30ab6c2SEugene Zhulenev // Rewrite scf.parallel operation into multiple concurrent async.execute
38c30ab6c2SEugene Zhulenev // operations over non overlapping subranges of the original loop.
39c30ab6c2SEugene Zhulenev //
40c30ab6c2SEugene Zhulenev // Example:
41c30ab6c2SEugene Zhulenev //
4286ad0af8SEugene Zhulenev // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) {
43c30ab6c2SEugene Zhulenev // "do_some_compute"(%i, %j): () -> ()
44c30ab6c2SEugene Zhulenev // }
45c30ab6c2SEugene Zhulenev //
46c30ab6c2SEugene Zhulenev // Converted to:
47c30ab6c2SEugene Zhulenev //
4886ad0af8SEugene Zhulenev // // Parallel compute function that executes the parallel body region for
4986ad0af8SEugene Zhulenev // // a subset of the parallel iteration space defined by the one-dimensional
5086ad0af8SEugene Zhulenev // // compute block index.
5186ad0af8SEugene Zhulenev // func parallel_compute_function(%block_index : index, %block_size : index,
5286ad0af8SEugene Zhulenev // <parallel operation properties>, ...) {
5386ad0af8SEugene Zhulenev // // Compute multi-dimensional loop bounds for %block_index.
5486ad0af8SEugene Zhulenev // %block_lbi, %block_lbj = ...
5586ad0af8SEugene Zhulenev // %block_ubi, %block_ubj = ...
56c30ab6c2SEugene Zhulenev //
5786ad0af8SEugene Zhulenev // // Clone parallel operation body into the scf.for loop nest.
5886ad0af8SEugene Zhulenev // scf.for %i = %blockLbi to %blockUbi {
5986ad0af8SEugene Zhulenev // scf.for %j = block_lbj to %block_ubj {
60c30ab6c2SEugene Zhulenev // "do_some_compute"(%i, %j): () -> ()
61c30ab6c2SEugene Zhulenev // }
62c30ab6c2SEugene Zhulenev // }
63c30ab6c2SEugene Zhulenev // }
64c30ab6c2SEugene Zhulenev //
6586ad0af8SEugene Zhulenev // And a dispatch function depending on the `asyncDispatch` option.
6686ad0af8SEugene Zhulenev //
6786ad0af8SEugene Zhulenev // When async dispatch is on: (pseudocode)
6886ad0af8SEugene Zhulenev //
6986ad0af8SEugene Zhulenev // %block_size = ... compute parallel compute block size
7086ad0af8SEugene Zhulenev // %block_count = ... compute the number of compute blocks
7186ad0af8SEugene Zhulenev //
7286ad0af8SEugene Zhulenev // func @async_dispatch(%block_start : index, %block_end : index, ...) {
7386ad0af8SEugene Zhulenev // // Keep splitting block range until we reached a range of size 1.
7486ad0af8SEugene Zhulenev // while (%block_end - %block_start > 1) {
7586ad0af8SEugene Zhulenev // %mid_index = block_start + (block_end - block_start) / 2;
7686ad0af8SEugene Zhulenev // async.execute { call @async_dispatch(%mid_index, %block_end); }
7786ad0af8SEugene Zhulenev // %block_end = %mid_index
78c30ab6c2SEugene Zhulenev // }
79c30ab6c2SEugene Zhulenev //
8086ad0af8SEugene Zhulenev // // Call parallel compute function for a single block.
8186ad0af8SEugene Zhulenev // call @parallel_compute_fn(%block_start, %block_size, ...);
8286ad0af8SEugene Zhulenev // }
83c30ab6c2SEugene Zhulenev //
8486ad0af8SEugene Zhulenev // // Launch async dispatch for [0, block_count) range.
8586ad0af8SEugene Zhulenev // call @async_dispatch(%c0, %block_count);
86c30ab6c2SEugene Zhulenev //
8786ad0af8SEugene Zhulenev // When async dispatch is off:
88c30ab6c2SEugene Zhulenev //
8986ad0af8SEugene Zhulenev // %block_size = ... compute parallel compute block size
9086ad0af8SEugene Zhulenev // %block_count = ... compute the number of compute blocks
9186ad0af8SEugene Zhulenev //
9286ad0af8SEugene Zhulenev // scf.for %block_index = %c0 to %block_count {
9386ad0af8SEugene Zhulenev // call @parallel_compute_fn(%block_index, %block_size, ...)
9486ad0af8SEugene Zhulenev // }
9586ad0af8SEugene Zhulenev //
9686ad0af8SEugene Zhulenev struct AsyncParallelForPass
9786ad0af8SEugene Zhulenev : public AsyncParallelForBase<AsyncParallelForPass> {
9886ad0af8SEugene Zhulenev AsyncParallelForPass() = default;
9934a164c9SEugene Zhulenev
AsyncParallelForPass__anon4364cdbb0111::AsyncParallelForPass10034a164c9SEugene Zhulenev AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads,
10155dfab39Sbakhtiyar int32_t minTaskSize) {
10234a164c9SEugene Zhulenev this->asyncDispatch = asyncDispatch;
10334a164c9SEugene Zhulenev this->numWorkerThreads = numWorkerThreads;
10455dfab39Sbakhtiyar this->minTaskSize = minTaskSize;
10534a164c9SEugene Zhulenev }
10634a164c9SEugene Zhulenev
10786ad0af8SEugene Zhulenev void runOnOperation() override;
10886ad0af8SEugene Zhulenev };
10986ad0af8SEugene Zhulenev
110c30ab6c2SEugene Zhulenev struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> {
111c30ab6c2SEugene Zhulenev public:
AsyncParallelForRewrite__anon4364cdbb0111::AsyncParallelForRewrite112ec0e4545Sbakhtiyar AsyncParallelForRewrite(
113ec0e4545Sbakhtiyar MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads,
114ec0e4545Sbakhtiyar AsyncMinTaskSizeComputationFunction computeMinTaskSize)
11586ad0af8SEugene Zhulenev : OpRewritePattern(ctx), asyncDispatch(asyncDispatch),
116ec0e4545Sbakhtiyar numWorkerThreads(numWorkerThreads),
1171fc096afSMehdi Amini computeMinTaskSize(std::move(computeMinTaskSize)) {}
118c30ab6c2SEugene Zhulenev
119c30ab6c2SEugene Zhulenev LogicalResult matchAndRewrite(scf::ParallelOp op,
120c30ab6c2SEugene Zhulenev PatternRewriter &rewriter) const override;
121c30ab6c2SEugene Zhulenev
122c30ab6c2SEugene Zhulenev private:
12386ad0af8SEugene Zhulenev bool asyncDispatch;
12486ad0af8SEugene Zhulenev int32_t numWorkerThreads;
125ec0e4545Sbakhtiyar AsyncMinTaskSizeComputationFunction computeMinTaskSize;
126c30ab6c2SEugene Zhulenev };
127c30ab6c2SEugene Zhulenev
12886ad0af8SEugene Zhulenev struct ParallelComputeFunctionType {
12986ad0af8SEugene Zhulenev FunctionType type;
1309f151b78SEugene Zhulenev SmallVector<Value> captures;
1319f151b78SEugene Zhulenev };
1329f151b78SEugene Zhulenev
1339f151b78SEugene Zhulenev // Helper struct to parse parallel compute function argument list.
1349f151b78SEugene Zhulenev struct ParallelComputeFunctionArgs {
1359f151b78SEugene Zhulenev BlockArgument blockIndex();
1369f151b78SEugene Zhulenev BlockArgument blockSize();
1379f151b78SEugene Zhulenev ArrayRef<BlockArgument> tripCounts();
1389f151b78SEugene Zhulenev ArrayRef<BlockArgument> lowerBounds();
1399f151b78SEugene Zhulenev ArrayRef<BlockArgument> upperBounds();
1409f151b78SEugene Zhulenev ArrayRef<BlockArgument> steps();
1419f151b78SEugene Zhulenev ArrayRef<BlockArgument> captures();
1429f151b78SEugene Zhulenev
1439f151b78SEugene Zhulenev unsigned numLoops;
1449f151b78SEugene Zhulenev ArrayRef<BlockArgument> args;
1459f151b78SEugene Zhulenev };
1469f151b78SEugene Zhulenev
1479f151b78SEugene Zhulenev struct ParallelComputeFunctionBounds {
1489f151b78SEugene Zhulenev SmallVector<IntegerAttr> tripCounts;
1499f151b78SEugene Zhulenev SmallVector<IntegerAttr> lowerBounds;
1509f151b78SEugene Zhulenev SmallVector<IntegerAttr> upperBounds;
1519f151b78SEugene Zhulenev SmallVector<IntegerAttr> steps;
15286ad0af8SEugene Zhulenev };
15386ad0af8SEugene Zhulenev
15486ad0af8SEugene Zhulenev struct ParallelComputeFunction {
1559f151b78SEugene Zhulenev unsigned numLoops;
15658ceae95SRiver Riddle func::FuncOp func;
15786ad0af8SEugene Zhulenev llvm::SmallVector<Value> captures;
158c30ab6c2SEugene Zhulenev };
159c30ab6c2SEugene Zhulenev
160c30ab6c2SEugene Zhulenev } // namespace
161c30ab6c2SEugene Zhulenev
blockIndex()1629f151b78SEugene Zhulenev BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; }
blockSize()1639f151b78SEugene Zhulenev BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; }
1649f151b78SEugene Zhulenev
tripCounts()1659f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() {
1669f151b78SEugene Zhulenev return args.drop_front(2).take_front(numLoops);
1679f151b78SEugene Zhulenev }
1689f151b78SEugene Zhulenev
lowerBounds()1699f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() {
1709f151b78SEugene Zhulenev return args.drop_front(2 + 1 * numLoops).take_front(numLoops);
1719f151b78SEugene Zhulenev }
1729f151b78SEugene Zhulenev
upperBounds()1739f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::upperBounds() {
1749f151b78SEugene Zhulenev return args.drop_front(2 + 2 * numLoops).take_front(numLoops);
1759f151b78SEugene Zhulenev }
1769f151b78SEugene Zhulenev
steps()1779f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() {
1789f151b78SEugene Zhulenev return args.drop_front(2 + 3 * numLoops).take_front(numLoops);
1799f151b78SEugene Zhulenev }
1809f151b78SEugene Zhulenev
captures()1819f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() {
1829f151b78SEugene Zhulenev return args.drop_front(2 + 4 * numLoops);
1839f151b78SEugene Zhulenev }
1849f151b78SEugene Zhulenev
1859f151b78SEugene Zhulenev template <typename ValueRange>
integerConstants(ValueRange values)1869f151b78SEugene Zhulenev static SmallVector<IntegerAttr> integerConstants(ValueRange values) {
1879f151b78SEugene Zhulenev SmallVector<IntegerAttr> attrs(values.size());
1889f151b78SEugene Zhulenev for (unsigned i = 0; i < values.size(); ++i)
1899f151b78SEugene Zhulenev matchPattern(values[i], m_Constant(&attrs[i]));
1909f151b78SEugene Zhulenev return attrs;
1919f151b78SEugene Zhulenev }
1929f151b78SEugene Zhulenev
19386ad0af8SEugene Zhulenev // Converts one-dimensional iteration index in the [0, tripCount) interval
19486ad0af8SEugene Zhulenev // into multidimensional iteration coordinate.
delinearize(ImplicitLocOpBuilder & b,Value index,ArrayRef<Value> tripCounts)19586ad0af8SEugene Zhulenev static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index,
19634a164c9SEugene Zhulenev ArrayRef<Value> tripCounts) {
19786ad0af8SEugene Zhulenev SmallVector<Value> coords(tripCounts.size());
19886ad0af8SEugene Zhulenev assert(!tripCounts.empty() && "tripCounts must be not empty");
19986ad0af8SEugene Zhulenev
20086ad0af8SEugene Zhulenev for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) {
201a54f4eaeSMogball coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]);
202a54f4eaeSMogball index = b.create<arith::DivSIOp>(index, tripCounts[i]);
20386ad0af8SEugene Zhulenev }
20486ad0af8SEugene Zhulenev
20586ad0af8SEugene Zhulenev return coords;
20686ad0af8SEugene Zhulenev }
20786ad0af8SEugene Zhulenev
20886ad0af8SEugene Zhulenev // Returns a function type and implicit captures for a parallel compute
20986ad0af8SEugene Zhulenev // function. We'll need a list of implicit captures to setup block and value
21086ad0af8SEugene Zhulenev // mapping when we'll clone the body of the parallel operation.
21186ad0af8SEugene Zhulenev static ParallelComputeFunctionType
getParallelComputeFunctionType(scf::ParallelOp op,PatternRewriter & rewriter)21286ad0af8SEugene Zhulenev getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) {
21386ad0af8SEugene Zhulenev // Values implicitly captured by the parallel operation.
21486ad0af8SEugene Zhulenev llvm::SetVector<Value> captures;
215c0342a2dSJacques Pienaar getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures);
21686ad0af8SEugene Zhulenev
2179f151b78SEugene Zhulenev SmallVector<Type> inputs;
21886ad0af8SEugene Zhulenev inputs.reserve(2 + 4 * op.getNumLoops() + captures.size());
21986ad0af8SEugene Zhulenev
22086ad0af8SEugene Zhulenev Type indexTy = rewriter.getIndexType();
22186ad0af8SEugene Zhulenev
22286ad0af8SEugene Zhulenev // One-dimensional iteration space defined by the block index and size.
22386ad0af8SEugene Zhulenev inputs.push_back(indexTy); // blockIndex
22486ad0af8SEugene Zhulenev inputs.push_back(indexTy); // blockSize
22586ad0af8SEugene Zhulenev
22686ad0af8SEugene Zhulenev // Multi-dimensional parallel iteration space defined by the loop trip counts.
22786ad0af8SEugene Zhulenev for (unsigned i = 0; i < op.getNumLoops(); ++i)
22886ad0af8SEugene Zhulenev inputs.push_back(indexTy); // loop tripCount
22986ad0af8SEugene Zhulenev
2309f151b78SEugene Zhulenev // Parallel operation lower bound, upper bound and step. Lower bound, upper
2319f151b78SEugene Zhulenev // bound and step passed as contiguous arguments:
2329f151b78SEugene Zhulenev // call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...)
23386ad0af8SEugene Zhulenev for (unsigned i = 0; i < op.getNumLoops(); ++i) {
23486ad0af8SEugene Zhulenev inputs.push_back(indexTy); // lower bound
23586ad0af8SEugene Zhulenev inputs.push_back(indexTy); // upper bound
23686ad0af8SEugene Zhulenev inputs.push_back(indexTy); // step
23786ad0af8SEugene Zhulenev }
23886ad0af8SEugene Zhulenev
23986ad0af8SEugene Zhulenev // Types of the implicit captures.
24086ad0af8SEugene Zhulenev for (Value capture : captures)
24186ad0af8SEugene Zhulenev inputs.push_back(capture.getType());
24286ad0af8SEugene Zhulenev
24386ad0af8SEugene Zhulenev // Convert captures to vector for later convenience.
24486ad0af8SEugene Zhulenev SmallVector<Value> capturesVector(captures.begin(), captures.end());
24586ad0af8SEugene Zhulenev return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector};
24686ad0af8SEugene Zhulenev }
24786ad0af8SEugene Zhulenev
24886ad0af8SEugene Zhulenev // Create a parallel compute fuction from the parallel operation.
createParallelComputeFunction(scf::ParallelOp op,const ParallelComputeFunctionBounds & bounds,unsigned numBlockAlignedInnerLoops,PatternRewriter & rewriter)24949ce40e9SEugene Zhulenev static ParallelComputeFunction createParallelComputeFunction(
2501fc096afSMehdi Amini scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds,
25149ce40e9SEugene Zhulenev unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) {
25286ad0af8SEugene Zhulenev OpBuilder::InsertionGuard guard(rewriter);
25386ad0af8SEugene Zhulenev ImplicitLocOpBuilder b(op.getLoc(), rewriter);
25486ad0af8SEugene Zhulenev
25586ad0af8SEugene Zhulenev ModuleOp module = op->getParentOfType<ModuleOp>();
25686ad0af8SEugene Zhulenev
25786ad0af8SEugene Zhulenev ParallelComputeFunctionType computeFuncType =
25886ad0af8SEugene Zhulenev getParallelComputeFunctionType(op, rewriter);
25986ad0af8SEugene Zhulenev
26086ad0af8SEugene Zhulenev FunctionType type = computeFuncType.type;
26158ceae95SRiver Riddle func::FuncOp func = func::FuncOp::create(
26258ceae95SRiver Riddle op.getLoc(),
26358ceae95SRiver Riddle numBlockAlignedInnerLoops > 0 ? "parallel_compute_fn_with_aligned_loops"
264ec0e4545Sbakhtiyar : "parallel_compute_fn",
265ec0e4545Sbakhtiyar type);
26686ad0af8SEugene Zhulenev func.setPrivate();
26786ad0af8SEugene Zhulenev
26886ad0af8SEugene Zhulenev // Insert function into the module symbol table and assign it unique name.
26986ad0af8SEugene Zhulenev SymbolTable symbolTable(module);
27086ad0af8SEugene Zhulenev symbolTable.insert(func);
27186ad0af8SEugene Zhulenev rewriter.getListener()->notifyOperationInserted(func);
27286ad0af8SEugene Zhulenev
27386ad0af8SEugene Zhulenev // Create function entry block.
274e084679fSRiver Riddle Block *block =
275e084679fSRiver Riddle b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
276e084679fSRiver Riddle SmallVector<Location>(type.getNumInputs(), op.getLoc()));
27786ad0af8SEugene Zhulenev b.setInsertionPointToEnd(block);
27886ad0af8SEugene Zhulenev
2799f151b78SEugene Zhulenev ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()};
28086ad0af8SEugene Zhulenev
28186ad0af8SEugene Zhulenev // Block iteration position defined by the block index and size.
2829f151b78SEugene Zhulenev BlockArgument blockIndex = args.blockIndex();
2839f151b78SEugene Zhulenev BlockArgument blockSize = args.blockSize();
28486ad0af8SEugene Zhulenev
28586ad0af8SEugene Zhulenev // Constants used below.
286a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0);
287a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1);
28886ad0af8SEugene Zhulenev
2899f151b78SEugene Zhulenev // Materialize known constants as constant operation in the function body.
2909f151b78SEugene Zhulenev auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) {
2919f151b78SEugene Zhulenev return llvm::to_vector(
2929f151b78SEugene Zhulenev llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value {
2939f151b78SEugene Zhulenev if (IntegerAttr attr = std::get<1>(tuple))
2948e123ca6SRiver Riddle return b.create<arith::ConstantOp>(attr);
2959f151b78SEugene Zhulenev return std::get<0>(tuple);
2969f151b78SEugene Zhulenev }));
2979f151b78SEugene Zhulenev };
2989f151b78SEugene Zhulenev
29986ad0af8SEugene Zhulenev // Multi-dimensional parallel iteration space defined by the loop trip counts.
3009f151b78SEugene Zhulenev auto tripCounts = values(args.tripCounts(), bounds.tripCounts);
3019f151b78SEugene Zhulenev
3029f151b78SEugene Zhulenev // Parallel operation lower bound and step.
3039f151b78SEugene Zhulenev auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds);
3049f151b78SEugene Zhulenev auto steps = values(args.steps(), bounds.steps);
3059f151b78SEugene Zhulenev
3069f151b78SEugene Zhulenev // Remaining arguments are implicit captures of the parallel operation.
3079f151b78SEugene Zhulenev ArrayRef<BlockArgument> captures = args.captures();
30886ad0af8SEugene Zhulenev
30986ad0af8SEugene Zhulenev // Compute a product of trip counts to get the size of the flattened
31086ad0af8SEugene Zhulenev // one-dimensional iteration space.
31186ad0af8SEugene Zhulenev Value tripCount = tripCounts[0];
31286ad0af8SEugene Zhulenev for (unsigned i = 1; i < tripCounts.size(); ++i)
313a54f4eaeSMogball tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
31486ad0af8SEugene Zhulenev
31586ad0af8SEugene Zhulenev // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]:
31686ad0af8SEugene Zhulenev // blockFirstIndex = blockIndex * blockSize
317a54f4eaeSMogball Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize);
31886ad0af8SEugene Zhulenev
31986ad0af8SEugene Zhulenev // The last one-dimensional index in the block defined by the `blockIndex`:
32068a7c001SEugene Zhulenev // blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1
321a54f4eaeSMogball Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize);
3227bd87a03Sbakhtiyar Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount);
3237bd87a03Sbakhtiyar Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1);
32486ad0af8SEugene Zhulenev
32586ad0af8SEugene Zhulenev // Convert one-dimensional indices to multi-dimensional coordinates.
32686ad0af8SEugene Zhulenev auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts);
32786ad0af8SEugene Zhulenev auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts);
32886ad0af8SEugene Zhulenev
32934a164c9SEugene Zhulenev // Compute loops upper bounds derived from the block last coordinates:
33086ad0af8SEugene Zhulenev // blockEndCoord[i] = blockLastCoord[i] + 1
33186ad0af8SEugene Zhulenev //
33286ad0af8SEugene Zhulenev // Block first and last coordinates can be the same along the outer compute
33334a164c9SEugene Zhulenev // dimension when inner compute dimension contains multiple blocks.
33486ad0af8SEugene Zhulenev SmallVector<Value> blockEndCoord(op.getNumLoops());
33586ad0af8SEugene Zhulenev for (size_t i = 0; i < blockLastCoord.size(); ++i)
336a54f4eaeSMogball blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1);
33786ad0af8SEugene Zhulenev
33886ad0af8SEugene Zhulenev // Construct a loop nest out of scf.for operations that will iterate over
33986ad0af8SEugene Zhulenev // all coordinates in [blockFirstCoord, blockLastCoord] range.
34086ad0af8SEugene Zhulenev using LoopBodyBuilder =
34186ad0af8SEugene Zhulenev std::function<void(OpBuilder &, Location, Value, ValueRange)>;
34286ad0af8SEugene Zhulenev using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>;
34386ad0af8SEugene Zhulenev
34486ad0af8SEugene Zhulenev // Parallel region induction variables computed from the multi-dimensional
34586ad0af8SEugene Zhulenev // iteration coordinate using parallel operation bounds and step:
34686ad0af8SEugene Zhulenev //
34786ad0af8SEugene Zhulenev // computeBlockInductionVars[loopIdx] =
34868a7c001SEugene Zhulenev // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx]
34986ad0af8SEugene Zhulenev SmallVector<Value> computeBlockInductionVars(op.getNumLoops());
35086ad0af8SEugene Zhulenev
35186ad0af8SEugene Zhulenev // We need to know if we are in the first or last iteration of the
35286ad0af8SEugene Zhulenev // multi-dimensional loop for each loop in the nest, so we can decide what
35386ad0af8SEugene Zhulenev // loop bounds should we use for the nested loops: bounds defined by compute
35486ad0af8SEugene Zhulenev // block interval, or bounds defined by the parallel operation.
35586ad0af8SEugene Zhulenev //
35686ad0af8SEugene Zhulenev // Example: 2d parallel operation
35786ad0af8SEugene Zhulenev // i j
35886ad0af8SEugene Zhulenev // loop sizes: [50, 50]
35986ad0af8SEugene Zhulenev // first coord: [25, 25]
36086ad0af8SEugene Zhulenev // last coord: [30, 30]
36186ad0af8SEugene Zhulenev //
36286ad0af8SEugene Zhulenev // If `i` is equal to 25 then iteration over `j` should start at 25, when `i`
36386ad0af8SEugene Zhulenev // is between 25 and 30 it should start at 0. The upper bound for `j` should
36486ad0af8SEugene Zhulenev // be 50, except when `i` is equal to 30, then it should also be 30.
36586ad0af8SEugene Zhulenev //
36686ad0af8SEugene Zhulenev // Value at ith position specifies if all loops in [0, i) range of the loop
36786ad0af8SEugene Zhulenev // nest are in the first/last iteration.
36886ad0af8SEugene Zhulenev SmallVector<Value> isBlockFirstCoord(op.getNumLoops());
36986ad0af8SEugene Zhulenev SmallVector<Value> isBlockLastCoord(op.getNumLoops());
37086ad0af8SEugene Zhulenev
37186ad0af8SEugene Zhulenev // Builds inner loop nest inside async.execute operation that does all the
37286ad0af8SEugene Zhulenev // work concurrently.
37386ad0af8SEugene Zhulenev LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder {
37486ad0af8SEugene Zhulenev return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv,
37586ad0af8SEugene Zhulenev ValueRange args) {
376abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder);
37786ad0af8SEugene Zhulenev
37886ad0af8SEugene Zhulenev // Compute induction variable for `loopIdx`.
379abe2dee5SEugene Zhulenev computeBlockInductionVars[loopIdx] = b.create<arith::AddIOp>(
380abe2dee5SEugene Zhulenev lowerBounds[loopIdx], b.create<arith::MulIOp>(iv, steps[loopIdx]));
38186ad0af8SEugene Zhulenev
38286ad0af8SEugene Zhulenev // Check if we are inside first or last iteration of the loop.
383abe2dee5SEugene Zhulenev isBlockFirstCoord[loopIdx] = b.create<arith::CmpIOp>(
384a54f4eaeSMogball arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]);
385abe2dee5SEugene Zhulenev isBlockLastCoord[loopIdx] = b.create<arith::CmpIOp>(
386a54f4eaeSMogball arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]);
38786ad0af8SEugene Zhulenev
38834a164c9SEugene Zhulenev // Check if the previous loop is in its first or last iteration.
38986ad0af8SEugene Zhulenev if (loopIdx > 0) {
390abe2dee5SEugene Zhulenev isBlockFirstCoord[loopIdx] = b.create<arith::AndIOp>(
39186ad0af8SEugene Zhulenev isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]);
392abe2dee5SEugene Zhulenev isBlockLastCoord[loopIdx] = b.create<arith::AndIOp>(
39386ad0af8SEugene Zhulenev isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]);
39486ad0af8SEugene Zhulenev }
39586ad0af8SEugene Zhulenev
39686ad0af8SEugene Zhulenev // Keep building loop nest.
39786ad0af8SEugene Zhulenev if (loopIdx < op.getNumLoops() - 1) {
39849ce40e9SEugene Zhulenev if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) {
39949ce40e9SEugene Zhulenev // For block aligned loops we always iterate starting from 0 up to
40049ce40e9SEugene Zhulenev // the loop trip counts.
401abe2dee5SEugene Zhulenev b.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(),
40249ce40e9SEugene Zhulenev workLoopBuilder(loopIdx + 1));
40349ce40e9SEugene Zhulenev
40449ce40e9SEugene Zhulenev } else {
40568a7c001SEugene Zhulenev // Select nested loop lower/upper bounds depending on our position in
40686ad0af8SEugene Zhulenev // the multi-dimensional iteration space.
407abe2dee5SEugene Zhulenev auto lb = b.create<arith::SelectOp>(isBlockFirstCoord[loopIdx],
408abe2dee5SEugene Zhulenev blockFirstCoord[loopIdx + 1], c0);
40986ad0af8SEugene Zhulenev
410abe2dee5SEugene Zhulenev auto ub = b.create<arith::SelectOp>(isBlockLastCoord[loopIdx],
41186ad0af8SEugene Zhulenev blockEndCoord[loopIdx + 1],
41286ad0af8SEugene Zhulenev tripCounts[loopIdx + 1]);
41386ad0af8SEugene Zhulenev
414abe2dee5SEugene Zhulenev b.create<scf::ForOp>(lb, ub, c1, ValueRange(),
41586ad0af8SEugene Zhulenev workLoopBuilder(loopIdx + 1));
41649ce40e9SEugene Zhulenev }
41749ce40e9SEugene Zhulenev
418abe2dee5SEugene Zhulenev b.create<scf::YieldOp>(loc);
41986ad0af8SEugene Zhulenev return;
42086ad0af8SEugene Zhulenev }
42186ad0af8SEugene Zhulenev
42286ad0af8SEugene Zhulenev // Copy the body of the parallel op into the inner-most loop.
42386ad0af8SEugene Zhulenev BlockAndValueMapping mapping;
42486ad0af8SEugene Zhulenev mapping.map(op.getInductionVars(), computeBlockInductionVars);
42586ad0af8SEugene Zhulenev mapping.map(computeFuncType.captures, captures);
42686ad0af8SEugene Zhulenev
42786ad0af8SEugene Zhulenev for (auto &bodyOp : op.getLoopBody().getOps())
428abe2dee5SEugene Zhulenev b.clone(bodyOp, mapping);
42986ad0af8SEugene Zhulenev };
43086ad0af8SEugene Zhulenev };
43186ad0af8SEugene Zhulenev
43286ad0af8SEugene Zhulenev b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(),
43386ad0af8SEugene Zhulenev workLoopBuilder(0));
43423aa5a74SRiver Riddle b.create<func::ReturnOp>(ValueRange());
43586ad0af8SEugene Zhulenev
4369f151b78SEugene Zhulenev return {op.getNumLoops(), func, std::move(computeFuncType.captures)};
43786ad0af8SEugene Zhulenev }
43886ad0af8SEugene Zhulenev
43986ad0af8SEugene Zhulenev // Creates recursive async dispatch function for the given parallel compute
44086ad0af8SEugene Zhulenev // function. Dispatch function keeps splitting block range into halves until it
44186ad0af8SEugene Zhulenev // reaches a single block, and then excecutes it inline.
44286ad0af8SEugene Zhulenev //
44386ad0af8SEugene Zhulenev // Function pseudocode (mix of C++ and MLIR):
44486ad0af8SEugene Zhulenev //
44586ad0af8SEugene Zhulenev // func @async_dispatch(%block_start : index, %block_end : index, ...) {
44686ad0af8SEugene Zhulenev //
44786ad0af8SEugene Zhulenev // // Keep splitting block range until we reached a range of size 1.
44886ad0af8SEugene Zhulenev // while (%block_end - %block_start > 1) {
44986ad0af8SEugene Zhulenev // %mid_index = block_start + (block_end - block_start) / 2;
45086ad0af8SEugene Zhulenev // async.execute { call @async_dispatch(%mid_index, %block_end); }
45186ad0af8SEugene Zhulenev // %block_end = %mid_index
45286ad0af8SEugene Zhulenev // }
45386ad0af8SEugene Zhulenev //
45486ad0af8SEugene Zhulenev // // Call parallel compute function for a single block.
45586ad0af8SEugene Zhulenev // call @parallel_compute_fn(%block_start, %block_size, ...);
45686ad0af8SEugene Zhulenev // }
45786ad0af8SEugene Zhulenev //
45858ceae95SRiver Riddle static func::FuncOp
createAsyncDispatchFunction(ParallelComputeFunction & computeFunc,PatternRewriter & rewriter)45958ceae95SRiver Riddle createAsyncDispatchFunction(ParallelComputeFunction &computeFunc,
46086ad0af8SEugene Zhulenev PatternRewriter &rewriter) {
46186ad0af8SEugene Zhulenev OpBuilder::InsertionGuard guard(rewriter);
46286ad0af8SEugene Zhulenev Location loc = computeFunc.func.getLoc();
46386ad0af8SEugene Zhulenev ImplicitLocOpBuilder b(loc, rewriter);
46486ad0af8SEugene Zhulenev
46586ad0af8SEugene Zhulenev ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>();
46686ad0af8SEugene Zhulenev
4674a3460a7SRiver Riddle ArrayRef<Type> computeFuncInputTypes =
4684a3460a7SRiver Riddle computeFunc.func.getFunctionType().getInputs();
46986ad0af8SEugene Zhulenev
47086ad0af8SEugene Zhulenev // Compared to the parallel compute function async dispatch function takes
47186ad0af8SEugene Zhulenev // additional !async.group argument. Also instead of a single `blockIndex` it
47286ad0af8SEugene Zhulenev // takes `blockStart` and `blockEnd` arguments to define the range of
47386ad0af8SEugene Zhulenev // dispatched blocks.
47486ad0af8SEugene Zhulenev SmallVector<Type> inputTypes;
47586ad0af8SEugene Zhulenev inputTypes.push_back(async::GroupType::get(rewriter.getContext()));
47686ad0af8SEugene Zhulenev inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument
47786ad0af8SEugene Zhulenev inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end());
47886ad0af8SEugene Zhulenev
47986ad0af8SEugene Zhulenev FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange());
48058ceae95SRiver Riddle func::FuncOp func = func::FuncOp::create(loc, "async_dispatch_fn", type);
48186ad0af8SEugene Zhulenev func.setPrivate();
48286ad0af8SEugene Zhulenev
48386ad0af8SEugene Zhulenev // Insert function into the module symbol table and assign it unique name.
48486ad0af8SEugene Zhulenev SymbolTable symbolTable(module);
48586ad0af8SEugene Zhulenev symbolTable.insert(func);
48686ad0af8SEugene Zhulenev rewriter.getListener()->notifyOperationInserted(func);
48786ad0af8SEugene Zhulenev
48886ad0af8SEugene Zhulenev // Create function entry block.
489e084679fSRiver Riddle Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
490e084679fSRiver Riddle SmallVector<Location>(type.getNumInputs(), loc));
49186ad0af8SEugene Zhulenev b.setInsertionPointToEnd(block);
49286ad0af8SEugene Zhulenev
49386ad0af8SEugene Zhulenev Type indexTy = b.getIndexType();
494a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1);
495a54f4eaeSMogball Value c2 = b.create<arith::ConstantIndexOp>(2);
49686ad0af8SEugene Zhulenev
49786ad0af8SEugene Zhulenev // Get the async group that will track async dispatch completion.
49886ad0af8SEugene Zhulenev Value group = block->getArgument(0);
49986ad0af8SEugene Zhulenev
50086ad0af8SEugene Zhulenev // Get the block iteration range: [blockStart, blockEnd)
50186ad0af8SEugene Zhulenev Value blockStart = block->getArgument(1);
50286ad0af8SEugene Zhulenev Value blockEnd = block->getArgument(2);
50386ad0af8SEugene Zhulenev
50486ad0af8SEugene Zhulenev // Create a work splitting while loop for the [blockStart, blockEnd) range.
50586ad0af8SEugene Zhulenev SmallVector<Type> types = {indexTy, indexTy};
50686ad0af8SEugene Zhulenev SmallVector<Value> operands = {blockStart, blockEnd};
507e084679fSRiver Riddle SmallVector<Location> locations = {loc, loc};
50886ad0af8SEugene Zhulenev
50986ad0af8SEugene Zhulenev // Create a recursive dispatch loop.
51086ad0af8SEugene Zhulenev scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands);
511e084679fSRiver Riddle Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations);
512e084679fSRiver Riddle Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations);
51386ad0af8SEugene Zhulenev
51486ad0af8SEugene Zhulenev // Setup dispatch loop condition block: decide if we need to go into the
51586ad0af8SEugene Zhulenev // `after` block and launch one more async dispatch.
51686ad0af8SEugene Zhulenev {
51786ad0af8SEugene Zhulenev b.setInsertionPointToEnd(before);
51886ad0af8SEugene Zhulenev Value start = before->getArgument(0);
51986ad0af8SEugene Zhulenev Value end = before->getArgument(1);
520a54f4eaeSMogball Value distance = b.create<arith::SubIOp>(end, start);
521a54f4eaeSMogball Value dispatch =
522a54f4eaeSMogball b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1);
52386ad0af8SEugene Zhulenev b.create<scf::ConditionOp>(dispatch, before->getArguments());
52486ad0af8SEugene Zhulenev }
52586ad0af8SEugene Zhulenev
52686ad0af8SEugene Zhulenev // Setup the async dispatch loop body: recursively call dispatch function
52734a164c9SEugene Zhulenev // for the seconds half of the original range and go to the next iteration.
52886ad0af8SEugene Zhulenev {
52986ad0af8SEugene Zhulenev b.setInsertionPointToEnd(after);
53086ad0af8SEugene Zhulenev Value start = after->getArgument(0);
53186ad0af8SEugene Zhulenev Value end = after->getArgument(1);
532a54f4eaeSMogball Value distance = b.create<arith::SubIOp>(end, start);
533a54f4eaeSMogball Value halfDistance = b.create<arith::DivSIOp>(distance, c2);
534a54f4eaeSMogball Value midIndex = b.create<arith::AddIOp>(start, halfDistance);
53586ad0af8SEugene Zhulenev
53686ad0af8SEugene Zhulenev // Call parallel compute function inside the async.execute region.
53786ad0af8SEugene Zhulenev auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
53886ad0af8SEugene Zhulenev Location executeLoc, ValueRange executeArgs) {
53986ad0af8SEugene Zhulenev // Update the original `blockStart` and `blockEnd` with new range.
54086ad0af8SEugene Zhulenev SmallVector<Value> operands{block->getArguments().begin(),
54186ad0af8SEugene Zhulenev block->getArguments().end()};
54286ad0af8SEugene Zhulenev operands[1] = midIndex;
54386ad0af8SEugene Zhulenev operands[2] = end;
54486ad0af8SEugene Zhulenev
545f8d5c73cSRiver Riddle executeBuilder.create<func::CallOp>(executeLoc, func.getSymName(),
54686ad0af8SEugene Zhulenev func.getCallableResults(), operands);
54786ad0af8SEugene Zhulenev executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
54886ad0af8SEugene Zhulenev };
54986ad0af8SEugene Zhulenev
55086ad0af8SEugene Zhulenev // Create async.execute operation to dispatch half of the block range.
55186ad0af8SEugene Zhulenev auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
55286ad0af8SEugene Zhulenev executeBodyBuilder);
55386ad0af8SEugene Zhulenev b.create<AddToGroupOp>(indexTy, execute.token(), group);
55434a164c9SEugene Zhulenev b.create<scf::YieldOp>(ValueRange({start, midIndex}));
55586ad0af8SEugene Zhulenev }
55686ad0af8SEugene Zhulenev
55786ad0af8SEugene Zhulenev // After dispatching async operations to process the tail of the block range
55886ad0af8SEugene Zhulenev // call the parallel compute function for the first block of the range.
55986ad0af8SEugene Zhulenev b.setInsertionPointAfter(whileOp);
56086ad0af8SEugene Zhulenev
56186ad0af8SEugene Zhulenev // Drop async dispatch specific arguments: async group, block start and end.
56286ad0af8SEugene Zhulenev auto forwardedInputs = block->getArguments().drop_front(3);
56386ad0af8SEugene Zhulenev SmallVector<Value> computeFuncOperands = {blockStart};
56486ad0af8SEugene Zhulenev computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end());
56586ad0af8SEugene Zhulenev
566f8d5c73cSRiver Riddle b.create<func::CallOp>(computeFunc.func.getSymName(),
56723aa5a74SRiver Riddle computeFunc.func.getCallableResults(),
56823aa5a74SRiver Riddle computeFuncOperands);
56923aa5a74SRiver Riddle b.create<func::ReturnOp>(ValueRange());
57086ad0af8SEugene Zhulenev
57186ad0af8SEugene Zhulenev return func;
57286ad0af8SEugene Zhulenev }
57386ad0af8SEugene Zhulenev
57486ad0af8SEugene Zhulenev // Launch async dispatch of the parallel compute function.
doAsyncDispatch(ImplicitLocOpBuilder & b,PatternRewriter & rewriter,ParallelComputeFunction & parallelComputeFunction,scf::ParallelOp op,Value blockSize,Value blockCount,const SmallVector<Value> & tripCounts)57586ad0af8SEugene Zhulenev static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
57686ad0af8SEugene Zhulenev ParallelComputeFunction ¶llelComputeFunction,
57786ad0af8SEugene Zhulenev scf::ParallelOp op, Value blockSize,
57886ad0af8SEugene Zhulenev Value blockCount,
57986ad0af8SEugene Zhulenev const SmallVector<Value> &tripCounts) {
58086ad0af8SEugene Zhulenev MLIRContext *ctx = op->getContext();
58186ad0af8SEugene Zhulenev
58286ad0af8SEugene Zhulenev // Add one more level of indirection to dispatch parallel compute functions
58386ad0af8SEugene Zhulenev // using async operations and recursive work splitting.
58458ceae95SRiver Riddle func::FuncOp asyncDispatchFunction =
58586ad0af8SEugene Zhulenev createAsyncDispatchFunction(parallelComputeFunction, rewriter);
58686ad0af8SEugene Zhulenev
587a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0);
588a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1);
58986ad0af8SEugene Zhulenev
590a8f819c6SEugene Zhulenev // Appends operands shared by async dispatch and parallel compute functions to
591a8f819c6SEugene Zhulenev // the given operands vector.
592a8f819c6SEugene Zhulenev auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) {
593a8f819c6SEugene Zhulenev operands.append(tripCounts);
594c0342a2dSJacques Pienaar operands.append(op.getLowerBound().begin(), op.getLowerBound().end());
595c0342a2dSJacques Pienaar operands.append(op.getUpperBound().begin(), op.getUpperBound().end());
596c0342a2dSJacques Pienaar operands.append(op.getStep().begin(), op.getStep().end());
597a8f819c6SEugene Zhulenev operands.append(parallelComputeFunction.captures);
598a8f819c6SEugene Zhulenev };
599a8f819c6SEugene Zhulenev
600a8f819c6SEugene Zhulenev // Check if the block size is one, in this case we can skip the async dispatch
601a8f819c6SEugene Zhulenev // completely. If this will be known statically, then canonicalization will
602a8f819c6SEugene Zhulenev // erase async group operations.
603a54f4eaeSMogball Value isSingleBlock =
604a54f4eaeSMogball b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1);
605a8f819c6SEugene Zhulenev
606a8f819c6SEugene Zhulenev auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
607abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder);
608a8f819c6SEugene Zhulenev
609a8f819c6SEugene Zhulenev // Call parallel compute function for the single block.
610a8f819c6SEugene Zhulenev SmallVector<Value> operands = {c0, blockSize};
611a8f819c6SEugene Zhulenev appendBlockComputeOperands(operands);
612a8f819c6SEugene Zhulenev
613f8d5c73cSRiver Riddle b.create<func::CallOp>(parallelComputeFunction.func.getSymName(),
614a8f819c6SEugene Zhulenev parallelComputeFunction.func.getCallableResults(),
615a8f819c6SEugene Zhulenev operands);
616abe2dee5SEugene Zhulenev b.create<scf::YieldOp>();
617a8f819c6SEugene Zhulenev };
618a8f819c6SEugene Zhulenev
619a8f819c6SEugene Zhulenev auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
620abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder);
621b171583aSEugene Zhulenev
622bdde9595Sbakhtiyar // Create an async.group to wait on all async tokens from the concurrent
623bdde9595Sbakhtiyar // execution of multiple parallel compute function. First block will be
624bdde9595Sbakhtiyar // executed synchronously in the caller thread.
625abe2dee5SEugene Zhulenev Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
626abe2dee5SEugene Zhulenev Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
62786ad0af8SEugene Zhulenev
62886ad0af8SEugene Zhulenev // Launch async dispatch function for [0, blockCount) range.
629a8f819c6SEugene Zhulenev SmallVector<Value> operands = {group, c0, blockCount, blockSize};
630a8f819c6SEugene Zhulenev appendBlockComputeOperands(operands);
631a8f819c6SEugene Zhulenev
632f8d5c73cSRiver Riddle b.create<func::CallOp>(asyncDispatchFunction.getSymName(),
63323aa5a74SRiver Riddle asyncDispatchFunction.getCallableResults(),
63423aa5a74SRiver Riddle operands);
635bdde9595Sbakhtiyar
636bdde9595Sbakhtiyar // Wait for the completion of all parallel compute operations.
637abe2dee5SEugene Zhulenev b.create<AwaitAllOp>(group);
638bdde9595Sbakhtiyar
639abe2dee5SEugene Zhulenev b.create<scf::YieldOp>();
640a8f819c6SEugene Zhulenev };
641a8f819c6SEugene Zhulenev
642a8f819c6SEugene Zhulenev // Dispatch either single block compute function, or launch async dispatch.
643a8f819c6SEugene Zhulenev b.create<scf::IfOp>(TypeRange(), isSingleBlock, syncDispatch, asyncDispatch);
64486ad0af8SEugene Zhulenev }
64586ad0af8SEugene Zhulenev
64686ad0af8SEugene Zhulenev // Dispatch parallel compute functions by submitting all async compute tasks
64786ad0af8SEugene Zhulenev // from a simple for loop in the caller thread.
64886ad0af8SEugene Zhulenev static void
doSequentialDispatch(ImplicitLocOpBuilder & b,PatternRewriter & rewriter,ParallelComputeFunction & parallelComputeFunction,scf::ParallelOp op,Value blockSize,Value blockCount,const SmallVector<Value> & tripCounts)64955dfab39Sbakhtiyar doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
65086ad0af8SEugene Zhulenev ParallelComputeFunction ¶llelComputeFunction,
65186ad0af8SEugene Zhulenev scf::ParallelOp op, Value blockSize, Value blockCount,
65286ad0af8SEugene Zhulenev const SmallVector<Value> &tripCounts) {
65386ad0af8SEugene Zhulenev MLIRContext *ctx = op->getContext();
65486ad0af8SEugene Zhulenev
65558ceae95SRiver Riddle func::FuncOp compute = parallelComputeFunction.func;
65686ad0af8SEugene Zhulenev
657a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0);
658a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1);
65986ad0af8SEugene Zhulenev
66086ad0af8SEugene Zhulenev // Create an async.group to wait on all async tokens from the concurrent
66186ad0af8SEugene Zhulenev // execution of multiple parallel compute function. First block will be
66286ad0af8SEugene Zhulenev // executed synchronously in the caller thread.
663a54f4eaeSMogball Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
66486ad0af8SEugene Zhulenev Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
66586ad0af8SEugene Zhulenev
66686ad0af8SEugene Zhulenev // Call parallel compute function for all blocks.
66786ad0af8SEugene Zhulenev using LoopBodyBuilder =
66886ad0af8SEugene Zhulenev std::function<void(OpBuilder &, Location, Value, ValueRange)>;
66986ad0af8SEugene Zhulenev
67086ad0af8SEugene Zhulenev // Returns parallel compute function operands to process the given block.
67186ad0af8SEugene Zhulenev auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> {
67286ad0af8SEugene Zhulenev SmallVector<Value> computeFuncOperands = {blockIndex, blockSize};
67386ad0af8SEugene Zhulenev computeFuncOperands.append(tripCounts);
674c0342a2dSJacques Pienaar computeFuncOperands.append(op.getLowerBound().begin(),
675c0342a2dSJacques Pienaar op.getLowerBound().end());
676c0342a2dSJacques Pienaar computeFuncOperands.append(op.getUpperBound().begin(),
677c0342a2dSJacques Pienaar op.getUpperBound().end());
678c0342a2dSJacques Pienaar computeFuncOperands.append(op.getStep().begin(), op.getStep().end());
67986ad0af8SEugene Zhulenev computeFuncOperands.append(parallelComputeFunction.captures);
68086ad0af8SEugene Zhulenev return computeFuncOperands;
68186ad0af8SEugene Zhulenev };
68286ad0af8SEugene Zhulenev
68386ad0af8SEugene Zhulenev // Induction variable is the index of the block: [0, blockCount).
68486ad0af8SEugene Zhulenev LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc,
68586ad0af8SEugene Zhulenev Value iv, ValueRange args) {
686abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, loopBuilder);
68786ad0af8SEugene Zhulenev
68886ad0af8SEugene Zhulenev // Call parallel compute function inside the async.execute region.
68986ad0af8SEugene Zhulenev auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
69086ad0af8SEugene Zhulenev Location executeLoc, ValueRange executeArgs) {
691f8d5c73cSRiver Riddle executeBuilder.create<func::CallOp>(executeLoc, compute.getSymName(),
69286ad0af8SEugene Zhulenev compute.getCallableResults(),
69386ad0af8SEugene Zhulenev computeFuncOperands(iv));
69486ad0af8SEugene Zhulenev executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
69586ad0af8SEugene Zhulenev };
69686ad0af8SEugene Zhulenev
69786ad0af8SEugene Zhulenev // Create async.execute operation to launch parallel computate function.
698abe2dee5SEugene Zhulenev auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
69986ad0af8SEugene Zhulenev executeBodyBuilder);
700abe2dee5SEugene Zhulenev b.create<AddToGroupOp>(rewriter.getIndexType(), execute.token(), group);
701abe2dee5SEugene Zhulenev b.create<scf::YieldOp>();
70286ad0af8SEugene Zhulenev };
70386ad0af8SEugene Zhulenev
70486ad0af8SEugene Zhulenev // Iterate over all compute blocks and launch parallel compute operations.
70586ad0af8SEugene Zhulenev b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder);
70686ad0af8SEugene Zhulenev
70786ad0af8SEugene Zhulenev // Call parallel compute function for the first block in the caller thread.
708f8d5c73cSRiver Riddle b.create<func::CallOp>(compute.getSymName(), compute.getCallableResults(),
70986ad0af8SEugene Zhulenev computeFuncOperands(c0));
71086ad0af8SEugene Zhulenev
71186ad0af8SEugene Zhulenev // Wait for the completion of all async compute operations.
71286ad0af8SEugene Zhulenev b.create<AwaitAllOp>(group);
71386ad0af8SEugene Zhulenev }
71486ad0af8SEugene Zhulenev
715c30ab6c2SEugene Zhulenev LogicalResult
matchAndRewrite(scf::ParallelOp op,PatternRewriter & rewriter) const716c30ab6c2SEugene Zhulenev AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op,
717c30ab6c2SEugene Zhulenev PatternRewriter &rewriter) const {
718c30ab6c2SEugene Zhulenev // We do not currently support rewrite for parallel op with reductions.
719c30ab6c2SEugene Zhulenev if (op.getNumReductions() != 0)
720c30ab6c2SEugene Zhulenev return failure();
721c30ab6c2SEugene Zhulenev
72286ad0af8SEugene Zhulenev ImplicitLocOpBuilder b(op.getLoc(), rewriter);
723c30ab6c2SEugene Zhulenev
724ec0e4545Sbakhtiyar // Computing minTaskSize emits IR and can be implemented as executing a cost
725ec0e4545Sbakhtiyar // model on the body of the scf.parallel. Thus it needs to be computed before
726ec0e4545Sbakhtiyar // the body of the scf.parallel has been manipulated.
727ec0e4545Sbakhtiyar Value minTaskSize = computeMinTaskSize(b, op);
728ec0e4545Sbakhtiyar
7299f151b78SEugene Zhulenev // Make sure that all constants will be inside the parallel operation body to
7309f151b78SEugene Zhulenev // reduce the number of parallel compute function arguments.
7319f151b78SEugene Zhulenev cloneConstantsIntoTheRegion(op.getLoopBody(), rewriter);
7329f151b78SEugene Zhulenev
733c30ab6c2SEugene Zhulenev // Compute trip count for each loop induction variable:
73486ad0af8SEugene Zhulenev // tripCount = ceil_div(upperBound - lowerBound, step);
73586ad0af8SEugene Zhulenev SmallVector<Value> tripCounts(op.getNumLoops());
736c30ab6c2SEugene Zhulenev for (size_t i = 0; i < op.getNumLoops(); ++i) {
737c0342a2dSJacques Pienaar auto lb = op.getLowerBound()[i];
738c0342a2dSJacques Pienaar auto ub = op.getUpperBound()[i];
739c0342a2dSJacques Pienaar auto step = op.getStep()[i];
7409f151b78SEugene Zhulenev auto range = b.createOrFold<arith::SubIOp>(ub, lb);
7419f151b78SEugene Zhulenev tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step);
742c30ab6c2SEugene Zhulenev }
743c30ab6c2SEugene Zhulenev
74486ad0af8SEugene Zhulenev // Compute a product of trip counts to get the 1-dimensional iteration space
74586ad0af8SEugene Zhulenev // for the scf.parallel operation.
74686ad0af8SEugene Zhulenev Value tripCount = tripCounts[0];
74786ad0af8SEugene Zhulenev for (size_t i = 1; i < tripCounts.size(); ++i)
748a54f4eaeSMogball tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
749c30ab6c2SEugene Zhulenev
7506c1f6558SEugene Zhulenev // Short circuit no-op parallel loops (zero iterations) that can arise from
7516c1f6558SEugene Zhulenev // the memrefs with dynamic dimension(s) equal to zero.
752a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0);
753a54f4eaeSMogball Value isZeroIterations =
754a54f4eaeSMogball b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0);
7556c1f6558SEugene Zhulenev
7566c1f6558SEugene Zhulenev // Do absolutely nothing if the trip count is zero.
7576c1f6558SEugene Zhulenev auto noOp = [&](OpBuilder &nestedBuilder, Location loc) {
7586c1f6558SEugene Zhulenev nestedBuilder.create<scf::YieldOp>(loc);
7596c1f6558SEugene Zhulenev };
7606c1f6558SEugene Zhulenev
7616c1f6558SEugene Zhulenev // Compute the parallel block size and dispatch concurrent tasks computing
7626c1f6558SEugene Zhulenev // results for each block.
7636c1f6558SEugene Zhulenev auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) {
764abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder);
7656c1f6558SEugene Zhulenev
76649ce40e9SEugene Zhulenev // Collect statically known constants defining the loop nest in the parallel
76749ce40e9SEugene Zhulenev // compute function. LLVM can't always push constants across the non-trivial
76849ce40e9SEugene Zhulenev // async dispatch call graph, by providing these values explicitly we can
76949ce40e9SEugene Zhulenev // choose to build more efficient loop nest, and rely on a better constant
77049ce40e9SEugene Zhulenev // folding, loop unrolling and vectorization.
77149ce40e9SEugene Zhulenev ParallelComputeFunctionBounds staticBounds = {
77249ce40e9SEugene Zhulenev integerConstants(tripCounts),
773c0342a2dSJacques Pienaar integerConstants(op.getLowerBound()),
774c0342a2dSJacques Pienaar integerConstants(op.getUpperBound()),
775c0342a2dSJacques Pienaar integerConstants(op.getStep()),
77649ce40e9SEugene Zhulenev };
77749ce40e9SEugene Zhulenev
77849ce40e9SEugene Zhulenev // Find how many inner iteration dimensions are statically known, and their
779ec0e4545Sbakhtiyar // product is smaller than the `512`. We align the parallel compute block
78049ce40e9SEugene Zhulenev // size by the product of statically known dimensions, so that we can
78149ce40e9SEugene Zhulenev // guarantee that the inner loops executes from 0 to the loop trip counts
78249ce40e9SEugene Zhulenev // and we can elide dynamic loop boundaries, and give LLVM an opportunity to
78349ce40e9SEugene Zhulenev // unroll the loops. The constant `512` is arbitrary, it should depend on
78449ce40e9SEugene Zhulenev // how many iterations LLVM will typically decide to unroll.
785beff16f7SEugene Zhulenev static constexpr int64_t maxUnrollableIterations = 512;
78649ce40e9SEugene Zhulenev
78749ce40e9SEugene Zhulenev // The number of inner loops with statically known number of iterations less
788beff16f7SEugene Zhulenev // than the `maxUnrollableIterations` value.
78949ce40e9SEugene Zhulenev int numUnrollableLoops = 0;
79049ce40e9SEugene Zhulenev
79149ce40e9SEugene Zhulenev auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; };
79249ce40e9SEugene Zhulenev
79349ce40e9SEugene Zhulenev SmallVector<int64_t> numIterations(op.getNumLoops());
79449ce40e9SEugene Zhulenev numIterations.back() = getInt(staticBounds.tripCounts.back());
79549ce40e9SEugene Zhulenev
79649ce40e9SEugene Zhulenev for (int i = op.getNumLoops() - 2; i >= 0; --i) {
79749ce40e9SEugene Zhulenev int64_t tripCount = getInt(staticBounds.tripCounts[i]);
79849ce40e9SEugene Zhulenev int64_t innerIterations = numIterations[i + 1];
79949ce40e9SEugene Zhulenev numIterations[i] = tripCount * innerIterations;
80049ce40e9SEugene Zhulenev
80149ce40e9SEugene Zhulenev // Update the number of inner loops that we can potentially unroll.
802beff16f7SEugene Zhulenev if (innerIterations > 0 && innerIterations <= maxUnrollableIterations)
80349ce40e9SEugene Zhulenev numUnrollableLoops++;
80449ce40e9SEugene Zhulenev }
80549ce40e9SEugene Zhulenev
806149311b4Sbakhtiyar Value numWorkerThreadsVal;
807149311b4Sbakhtiyar if (numWorkerThreads >= 0)
808149311b4Sbakhtiyar numWorkerThreadsVal = b.create<arith::ConstantIndexOp>(numWorkerThreads);
809149311b4Sbakhtiyar else
810149311b4Sbakhtiyar numWorkerThreadsVal = b.create<async::RuntimeNumWorkerThreadsOp>();
811c1194c2eSEugene Zhulenev
812149311b4Sbakhtiyar // With large number of threads the value of creating many compute blocks
813149311b4Sbakhtiyar // is reduced because the problem typically becomes memory bound. For this
814149311b4Sbakhtiyar // reason we scale the number of workers using an equivalent to the
815149311b4Sbakhtiyar // following logic:
816149311b4Sbakhtiyar // float overshardingFactor = numWorkerThreads <= 4 ? 8.0
817149311b4Sbakhtiyar // : numWorkerThreads <= 8 ? 4.0
818149311b4Sbakhtiyar // : numWorkerThreads <= 16 ? 2.0
819149311b4Sbakhtiyar // : numWorkerThreads <= 32 ? 1.0
820149311b4Sbakhtiyar // : numWorkerThreads <= 64 ? 0.8
821149311b4Sbakhtiyar // : 0.6;
822149311b4Sbakhtiyar
823149311b4Sbakhtiyar // Pairs of non-inclusive lower end of the bracket and factor that the
824149311b4Sbakhtiyar // number of workers needs to be scaled with if it falls in that bucket.
825149311b4Sbakhtiyar const SmallVector<std::pair<int, float>> overshardingBrackets = {
826149311b4Sbakhtiyar {4, 4.0f}, {8, 2.0f}, {16, 1.0f}, {32, 0.8f}, {64, 0.6f}};
827149311b4Sbakhtiyar const float initialOvershardingFactor = 8.0f;
828149311b4Sbakhtiyar
829149311b4Sbakhtiyar Value scalingFactor = b.create<arith::ConstantFloatOp>(
830149311b4Sbakhtiyar llvm::APFloat(initialOvershardingFactor), b.getF32Type());
831149311b4Sbakhtiyar for (const std::pair<int, float> &p : overshardingBrackets) {
832149311b4Sbakhtiyar Value bracketBegin = b.create<arith::ConstantIndexOp>(p.first);
833149311b4Sbakhtiyar Value inBracket = b.create<arith::CmpIOp>(
834149311b4Sbakhtiyar arith::CmpIPredicate::sgt, numWorkerThreadsVal, bracketBegin);
835149311b4Sbakhtiyar Value bracketScalingFactor = b.create<arith::ConstantFloatOp>(
836149311b4Sbakhtiyar llvm::APFloat(p.second), b.getF32Type());
837dec8af70SRiver Riddle scalingFactor = b.create<arith::SelectOp>(inBracket, bracketScalingFactor,
838dec8af70SRiver Riddle scalingFactor);
839149311b4Sbakhtiyar }
840149311b4Sbakhtiyar Value numWorkersIndex =
8413c69bc4dSRiver Riddle b.create<arith::IndexCastOp>(b.getI32Type(), numWorkerThreadsVal);
842149311b4Sbakhtiyar Value numWorkersFloat =
8433c69bc4dSRiver Riddle b.create<arith::SIToFPOp>(b.getF32Type(), numWorkersIndex);
844149311b4Sbakhtiyar Value scaledNumWorkers =
845149311b4Sbakhtiyar b.create<arith::MulFOp>(scalingFactor, numWorkersFloat);
846149311b4Sbakhtiyar Value scaledNumInt =
8473c69bc4dSRiver Riddle b.create<arith::FPToSIOp>(b.getI32Type(), scaledNumWorkers);
848149311b4Sbakhtiyar Value scaledWorkers =
8493c69bc4dSRiver Riddle b.create<arith::IndexCastOp>(b.getIndexType(), scaledNumInt);
850149311b4Sbakhtiyar
851149311b4Sbakhtiyar Value maxComputeBlocks = b.create<arith::MaxSIOp>(
852149311b4Sbakhtiyar b.create<arith::ConstantIndexOp>(1), scaledWorkers);
853c30ab6c2SEugene Zhulenev
85486ad0af8SEugene Zhulenev // Compute parallel block size from the parallel problem size:
85586ad0af8SEugene Zhulenev // blockSize = min(tripCount,
85634a164c9SEugene Zhulenev // max(ceil_div(tripCount, maxComputeBlocks),
857ec0e4545Sbakhtiyar // minTaskSize))
8587bd87a03Sbakhtiyar Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks);
859ec0e4545Sbakhtiyar Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize);
8607bd87a03Sbakhtiyar Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1);
86149ce40e9SEugene Zhulenev
862ec0e4545Sbakhtiyar // Dispatch parallel compute function using async recursive work splitting,
863ec0e4545Sbakhtiyar // or by submitting compute task sequentially from a caller thread.
864ec0e4545Sbakhtiyar auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch;
865ec0e4545Sbakhtiyar
866ec0e4545Sbakhtiyar // Create a parallel compute function that takes a block id and computes
867ec0e4545Sbakhtiyar // the parallel operation body for a subset of iteration space.
86849ce40e9SEugene Zhulenev
86949ce40e9SEugene Zhulenev // Compute the number of parallel compute blocks.
870a54f4eaeSMogball Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize);
87186ad0af8SEugene Zhulenev
872beff16f7SEugene Zhulenev // Dispatch parallel compute function without hints to unroll inner loops.
873beff16f7SEugene Zhulenev auto dispatchDefault = [&](OpBuilder &nestedBuilder, Location loc) {
874beff16f7SEugene Zhulenev ParallelComputeFunction compute =
875beff16f7SEugene Zhulenev createParallelComputeFunction(op, staticBounds, 0, rewriter);
876beff16f7SEugene Zhulenev
877abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder);
878beff16f7SEugene Zhulenev doDispatch(b, rewriter, compute, op, blockSize, blockCount, tripCounts);
879abe2dee5SEugene Zhulenev b.create<scf::YieldOp>();
880ec0e4545Sbakhtiyar };
881ec0e4545Sbakhtiyar
882beff16f7SEugene Zhulenev // Dispatch parallel compute function with hints for unrolling inner loops.
883beff16f7SEugene Zhulenev auto dispatchBlockAligned = [&](OpBuilder &nestedBuilder, Location loc) {
884beff16f7SEugene Zhulenev ParallelComputeFunction compute = createParallelComputeFunction(
885beff16f7SEugene Zhulenev op, staticBounds, numUnrollableLoops, rewriter);
886ec0e4545Sbakhtiyar
887abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder);
888ec0e4545Sbakhtiyar // Align the block size to be a multiple of the statically known
889ec0e4545Sbakhtiyar // number of iterations in the inner loops.
890abe2dee5SEugene Zhulenev Value numIters = b.create<arith::ConstantIndexOp>(
891ec0e4545Sbakhtiyar numIterations[op.getNumLoops() - numUnrollableLoops]);
892abe2dee5SEugene Zhulenev Value alignedBlockSize = b.create<arith::MulIOp>(
893abe2dee5SEugene Zhulenev b.create<arith::CeilDivSIOp>(blockSize, numIters), numIters);
894beff16f7SEugene Zhulenev doDispatch(b, rewriter, compute, op, alignedBlockSize, blockCount,
895beff16f7SEugene Zhulenev tripCounts);
896abe2dee5SEugene Zhulenev b.create<scf::YieldOp>();
8976c1f6558SEugene Zhulenev };
8986c1f6558SEugene Zhulenev
899beff16f7SEugene Zhulenev // Dispatch to block aligned compute function only if the computed block
900beff16f7SEugene Zhulenev // size is larger than the number of iterations in the unrollable inner
901beff16f7SEugene Zhulenev // loops, because otherwise it can reduce the available parallelism.
902beff16f7SEugene Zhulenev if (numUnrollableLoops > 0) {
903beff16f7SEugene Zhulenev Value numIters = b.create<arith::ConstantIndexOp>(
904beff16f7SEugene Zhulenev numIterations[op.getNumLoops() - numUnrollableLoops]);
905beff16f7SEugene Zhulenev Value useBlockAlignedComputeFn = b.create<arith::CmpIOp>(
906beff16f7SEugene Zhulenev arith::CmpIPredicate::sge, blockSize, numIters);
907beff16f7SEugene Zhulenev
908beff16f7SEugene Zhulenev b.create<scf::IfOp>(TypeRange(), useBlockAlignedComputeFn,
909beff16f7SEugene Zhulenev dispatchBlockAligned, dispatchDefault);
910abe2dee5SEugene Zhulenev b.create<scf::YieldOp>();
911ec0e4545Sbakhtiyar } else {
912beff16f7SEugene Zhulenev dispatchDefault(b, loc);
913ec0e4545Sbakhtiyar }
914ec0e4545Sbakhtiyar };
915ec0e4545Sbakhtiyar
9166c1f6558SEugene Zhulenev // Replace the `scf.parallel` operation with the parallel compute function.
9176c1f6558SEugene Zhulenev b.create<scf::IfOp>(TypeRange(), isZeroIterations, noOp, dispatch);
9186c1f6558SEugene Zhulenev
91934a164c9SEugene Zhulenev // Parallel operation was replaced with a block iteration loop.
920c30ab6c2SEugene Zhulenev rewriter.eraseOp(op);
921c30ab6c2SEugene Zhulenev
922c30ab6c2SEugene Zhulenev return success();
923c30ab6c2SEugene Zhulenev }
924c30ab6c2SEugene Zhulenev
runOnOperation()9258a316b00SEugene Zhulenev void AsyncParallelForPass::runOnOperation() {
926c30ab6c2SEugene Zhulenev MLIRContext *ctx = &getContext();
927c30ab6c2SEugene Zhulenev
928dc4e913bSChris Lattner RewritePatternSet patterns(ctx);
929ec0e4545Sbakhtiyar populateAsyncParallelForPatterns(
930ec0e4545Sbakhtiyar patterns, asyncDispatch, numWorkerThreads,
931ec0e4545Sbakhtiyar [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) {
932ec0e4545Sbakhtiyar return builder.create<arith::ConstantIndexOp>(minTaskSize);
933ec0e4545Sbakhtiyar });
9348a316b00SEugene Zhulenev if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
935c30ab6c2SEugene Zhulenev signalPassFailure();
936c30ab6c2SEugene Zhulenev }
937c30ab6c2SEugene Zhulenev
createAsyncParallelForPass()9388a316b00SEugene Zhulenev std::unique_ptr<Pass> mlir::createAsyncParallelForPass() {
939c30ab6c2SEugene Zhulenev return std::make_unique<AsyncParallelForPass>();
940c30ab6c2SEugene Zhulenev }
94134a164c9SEugene Zhulenev
createAsyncParallelForPass(bool asyncDispatch,int32_t numWorkerThreads,int32_t minTaskSize)94255dfab39Sbakhtiyar std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch,
94355dfab39Sbakhtiyar int32_t numWorkerThreads,
94455dfab39Sbakhtiyar int32_t minTaskSize) {
94534a164c9SEugene Zhulenev return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads,
94655dfab39Sbakhtiyar minTaskSize);
94734a164c9SEugene Zhulenev }
948ec0e4545Sbakhtiyar
populateAsyncParallelForPatterns(RewritePatternSet & patterns,bool asyncDispatch,int32_t numWorkerThreads,const AsyncMinTaskSizeComputationFunction & computeMinTaskSize)949ec0e4545Sbakhtiyar void mlir::async::populateAsyncParallelForPatterns(
950ec0e4545Sbakhtiyar RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads,
9511fc096afSMehdi Amini const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) {
952ec0e4545Sbakhtiyar MLIRContext *ctx = patterns.getContext();
953ec0e4545Sbakhtiyar patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads,
954ec0e4545Sbakhtiyar computeMinTaskSize);
955ec0e4545Sbakhtiyar }
956