1 //===- ExpandOps.cpp - Pass to legalize Arithmetic ops for LLVM lowering --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PassDetail.h"
10 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
11 #include "mlir/Dialect/Arithmetic/Transforms/Passes.h"
12 #include "mlir/IR/TypeUtilities.h"
13 #include "mlir/Transforms/DialectConversion.h"
14 
15 using namespace mlir;
16 
17 /// Create an integer or index constant.
createConst(Location loc,Type type,int value,PatternRewriter & rewriter)18 static Value createConst(Location loc, Type type, int value,
19                          PatternRewriter &rewriter) {
20   return rewriter.create<arith::ConstantOp>(
21       loc, rewriter.getIntegerAttr(type, value));
22 }
23 
24 namespace {
25 
26 /// Expands CeilDivUIOp (n, m) into
27 ///  n == 0 ? 0 : ((n-1) / m) + 1
28 struct CeilDivUIOpConverter : public OpRewritePattern<arith::CeilDivUIOp> {
29   using OpRewritePattern::OpRewritePattern;
matchAndRewrite__anond9e264a70111::CeilDivUIOpConverter30   LogicalResult matchAndRewrite(arith::CeilDivUIOp op,
31                                 PatternRewriter &rewriter) const final {
32     Location loc = op.getLoc();
33     Value a = op.getLhs();
34     Value b = op.getRhs();
35     Value zero = createConst(loc, a.getType(), 0, rewriter);
36     Value compare =
37         rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, a, zero);
38     Value one = createConst(loc, a.getType(), 1, rewriter);
39     Value minusOne = rewriter.create<arith::SubIOp>(loc, a, one);
40     Value quotient = rewriter.create<arith::DivUIOp>(loc, minusOne, b);
41     Value plusOne = rewriter.create<arith::AddIOp>(loc, quotient, one);
42     rewriter.replaceOpWithNewOp<arith::SelectOp>(op, compare, zero, plusOne);
43     return success();
44   }
45 };
46 
47 /// Expands CeilDivSIOp (n, m) into
48 ///   1) x = (m > 0) ? -1 : 1
49 ///   2) (n*m>0) ? ((n+x) / m) + 1 : - (-n / m)
50 struct CeilDivSIOpConverter : public OpRewritePattern<arith::CeilDivSIOp> {
51   using OpRewritePattern::OpRewritePattern;
matchAndRewrite__anond9e264a70111::CeilDivSIOpConverter52   LogicalResult matchAndRewrite(arith::CeilDivSIOp op,
53                                 PatternRewriter &rewriter) const final {
54     Location loc = op.getLoc();
55     Type type = op.getType();
56     Value a = op.getLhs();
57     Value b = op.getRhs();
58     Value plusOne = createConst(loc, type, 1, rewriter);
59     Value zero = createConst(loc, type, 0, rewriter);
60     Value minusOne = createConst(loc, type, -1, rewriter);
61     // Compute x = (b>0) ? -1 : 1.
62     Value compare =
63         rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, b, zero);
64     Value x = rewriter.create<arith::SelectOp>(loc, compare, minusOne, plusOne);
65     // Compute positive res: 1 + ((x+a)/b).
66     Value xPlusA = rewriter.create<arith::AddIOp>(loc, x, a);
67     Value xPlusADivB = rewriter.create<arith::DivSIOp>(loc, xPlusA, b);
68     Value posRes = rewriter.create<arith::AddIOp>(loc, plusOne, xPlusADivB);
69     // Compute negative res: - ((-a)/b).
70     Value minusA = rewriter.create<arith::SubIOp>(loc, zero, a);
71     Value minusADivB = rewriter.create<arith::DivSIOp>(loc, minusA, b);
72     Value negRes = rewriter.create<arith::SubIOp>(loc, zero, minusADivB);
73     // Result is (a*b>0) ? pos result : neg result.
74     // Note, we want to avoid using a*b because of possible overflow.
75     // The case that matters are a>0, a==0, a<0, b>0 and b<0. We do
76     // not particuliarly care if a*b<0 is true or false when b is zero
77     // as this will result in an illegal divide. So `a*b<0` can be reformulated
78     // as `(a<0 && b<0) || (a>0 && b>0)' or `(a<0 && b<0) || (a>0 && b>=0)'.
79     // We pick the first expression here.
80     Value aNeg =
81         rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, a, zero);
82     Value aPos =
83         rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, a, zero);
84     Value bNeg =
85         rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, b, zero);
86     Value bPos =
87         rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, b, zero);
88     Value firstTerm = rewriter.create<arith::AndIOp>(loc, aNeg, bNeg);
89     Value secondTerm = rewriter.create<arith::AndIOp>(loc, aPos, bPos);
90     Value compareRes =
91         rewriter.create<arith::OrIOp>(loc, firstTerm, secondTerm);
92     // Perform substitution and return success.
93     rewriter.replaceOpWithNewOp<arith::SelectOp>(op, compareRes, posRes,
94                                                  negRes);
95     return success();
96   }
97 };
98 
99 /// Expands FloorDivSIOp (n, m) into
100 ///   1)  x = (m<0) ? 1 : -1
101 ///   2)  return (n*m<0) ? - ((-n+x) / m) -1 : n / m
102 struct FloorDivSIOpConverter : public OpRewritePattern<arith::FloorDivSIOp> {
103   using OpRewritePattern::OpRewritePattern;
matchAndRewrite__anond9e264a70111::FloorDivSIOpConverter104   LogicalResult matchAndRewrite(arith::FloorDivSIOp op,
105                                 PatternRewriter &rewriter) const final {
106     Location loc = op.getLoc();
107     Type type = op.getType();
108     Value a = op.getLhs();
109     Value b = op.getRhs();
110     Value plusOne = createConst(loc, type, 1, rewriter);
111     Value zero = createConst(loc, type, 0, rewriter);
112     Value minusOne = createConst(loc, type, -1, rewriter);
113     // Compute x = (b<0) ? 1 : -1.
114     Value compare =
115         rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, b, zero);
116     Value x = rewriter.create<arith::SelectOp>(loc, compare, plusOne, minusOne);
117     // Compute negative res: -1 - ((x-a)/b).
118     Value xMinusA = rewriter.create<arith::SubIOp>(loc, x, a);
119     Value xMinusADivB = rewriter.create<arith::DivSIOp>(loc, xMinusA, b);
120     Value negRes = rewriter.create<arith::SubIOp>(loc, minusOne, xMinusADivB);
121     // Compute positive res: a/b.
122     Value posRes = rewriter.create<arith::DivSIOp>(loc, a, b);
123     // Result is (a*b<0) ? negative result : positive result.
124     // Note, we want to avoid using a*b because of possible overflow.
125     // The case that matters are a>0, a==0, a<0, b>0 and b<0. We do
126     // not particuliarly care if a*b<0 is true or false when b is zero
127     // as this will result in an illegal divide. So `a*b<0` can be reformulated
128     // as `(a>0 && b<0) || (a>0 && b<0)' or `(a>0 && b<0) || (a>0 && b<=0)'.
129     // We pick the first expression here.
130     Value aNeg =
131         rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, a, zero);
132     Value aPos =
133         rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, a, zero);
134     Value bNeg =
135         rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, b, zero);
136     Value bPos =
137         rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, b, zero);
138     Value firstTerm = rewriter.create<arith::AndIOp>(loc, aNeg, bPos);
139     Value secondTerm = rewriter.create<arith::AndIOp>(loc, aPos, bNeg);
140     Value compareRes =
141         rewriter.create<arith::OrIOp>(loc, firstTerm, secondTerm);
142     // Perform substitution and return success.
143     rewriter.replaceOpWithNewOp<arith::SelectOp>(op, compareRes, negRes,
144                                                  posRes);
145     return success();
146   }
147 };
148 
149 template <typename OpTy, arith::CmpFPredicate pred>
150 struct MaxMinFOpConverter : public OpRewritePattern<OpTy> {
151 public:
152   using OpRewritePattern<OpTy>::OpRewritePattern;
153 
matchAndRewrite__anond9e264a70111::MaxMinFOpConverter154   LogicalResult matchAndRewrite(OpTy op,
155                                 PatternRewriter &rewriter) const final {
156     Value lhs = op.getLhs();
157     Value rhs = op.getRhs();
158 
159     Location loc = op.getLoc();
160     // If any operand is NaN, 'cmp' will be true (and 'select' returns 'lhs').
161     static_assert(pred == arith::CmpFPredicate::UGT ||
162                       pred == arith::CmpFPredicate::ULT,
163                   "pred must be either UGT or ULT");
164     Value cmp = rewriter.create<arith::CmpFOp>(loc, pred, lhs, rhs);
165     Value select = rewriter.create<arith::SelectOp>(loc, cmp, lhs, rhs);
166 
167     // Handle the case where rhs is NaN: 'isNaN(rhs) ? rhs : select'.
168     Value isNaN = rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNO,
169                                                  rhs, rhs);
170     rewriter.replaceOpWithNewOp<arith::SelectOp>(op, isNaN, rhs, select);
171     return success();
172   }
173 };
174 
175 template <typename OpTy, arith::CmpIPredicate pred>
176 struct MaxMinIOpConverter : public OpRewritePattern<OpTy> {
177 public:
178   using OpRewritePattern<OpTy>::OpRewritePattern;
matchAndRewrite__anond9e264a70111::MaxMinIOpConverter179   LogicalResult matchAndRewrite(OpTy op,
180                                 PatternRewriter &rewriter) const final {
181     Value lhs = op.getLhs();
182     Value rhs = op.getRhs();
183 
184     Location loc = op.getLoc();
185     Value cmp = rewriter.create<arith::CmpIOp>(loc, pred, lhs, rhs);
186     rewriter.replaceOpWithNewOp<arith::SelectOp>(op, cmp, lhs, rhs);
187     return success();
188   }
189 };
190 
191 struct ArithmeticExpandOpsPass
192     : public ArithmeticExpandOpsBase<ArithmeticExpandOpsPass> {
runOnOperation__anond9e264a70111::ArithmeticExpandOpsPass193   void runOnOperation() override {
194     RewritePatternSet patterns(&getContext());
195     ConversionTarget target(getContext());
196 
197     arith::populateArithmeticExpandOpsPatterns(patterns);
198 
199     target.addLegalDialect<arith::ArithmeticDialect>();
200     // clang-format off
201     target.addIllegalOp<
202       arith::CeilDivSIOp,
203       arith::CeilDivUIOp,
204       arith::FloorDivSIOp,
205       arith::MaxFOp,
206       arith::MaxSIOp,
207       arith::MaxUIOp,
208       arith::MinFOp,
209       arith::MinSIOp,
210       arith::MinUIOp
211     >();
212     // clang-format on
213     if (failed(applyPartialConversion(getOperation(), target,
214                                       std::move(patterns))))
215       signalPassFailure();
216   }
217 };
218 
219 } // namespace
220 
populateArithmeticExpandOpsPatterns(RewritePatternSet & patterns)221 void mlir::arith::populateArithmeticExpandOpsPatterns(
222     RewritePatternSet &patterns) {
223   // clang-format off
224   patterns.add<
225     CeilDivSIOpConverter,
226     CeilDivUIOpConverter,
227     FloorDivSIOpConverter,
228     MaxMinFOpConverter<MaxFOp, arith::CmpFPredicate::UGT>,
229     MaxMinFOpConverter<MinFOp, arith::CmpFPredicate::ULT>,
230     MaxMinIOpConverter<MaxSIOp, arith::CmpIPredicate::sgt>,
231     MaxMinIOpConverter<MaxUIOp, arith::CmpIPredicate::ugt>,
232     MaxMinIOpConverter<MinSIOp, arith::CmpIPredicate::slt>,
233     MaxMinIOpConverter<MinUIOp, arith::CmpIPredicate::ult>
234    >(patterns.getContext());
235   // clang-format on
236 }
237 
createArithmeticExpandOpsPass()238 std::unique_ptr<Pass> mlir::arith::createArithmeticExpandOpsPass() {
239   return std::make_unique<ArithmeticExpandOpsPass>();
240 }
241