1 //===- AffineDataCopyGeneration.cpp - Explicit memref copying pass ------*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a pass to automatically promote accessed memref regions
10 // to buffers in a faster memory space that is explicitly managed, with the
11 // necessary data movement operations performed through either regular
12 // point-wise load/store's or DMAs. Such explicit copying (also referred to as
13 // array packing/unpacking in the literature), when done on arrays that exhibit
14 // reuse, results in near elimination of conflict misses, TLB misses, reduced
15 // use of hardware prefetch streams, and reduced false sharing. It is also
16 // necessary for hardware that explicitly managed levels in the memory
17 // hierarchy, and where DMAs may have to be used. This optimization is often
18 // performed on already tiled code.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "PassDetail.h"
23 #include "mlir/Analysis/Utils.h"
24 #include "mlir/Dialect/Affine/IR/AffineOps.h"
25 #include "mlir/Dialect/Affine/Passes.h"
26 #include "mlir/Dialect/MemRef/IR/MemRef.h"
27 #include "mlir/Dialect/StandardOps/IR/Ops.h"
28 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
29 #include "mlir/Transforms/LoopUtils.h"
30 #include "llvm/ADT/MapVector.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include <algorithm>
34 
35 #define DEBUG_TYPE "affine-data-copy-generate"
36 
37 using namespace mlir;
38 
39 namespace {
40 
41 /// Replaces all loads and stores on memref's living in 'slowMemorySpace' by
42 /// introducing copy operations to transfer data into `fastMemorySpace` and
43 /// rewriting the original load's/store's to instead load/store from the
44 /// allocated fast memory buffers. Additional options specify the identifier
45 /// corresponding to the fast memory space and the amount of fast memory space
46 /// available. The pass traverses through the nesting structure, recursing to
47 /// inner levels if necessary to determine at what depth copies need to be
48 /// placed so that the allocated buffers fit within the memory capacity
49 /// provided.
50 // TODO: We currently can't generate copies correctly when stores
51 // are strided. Check for strided stores.
52 struct AffineDataCopyGeneration
53     : public AffineDataCopyGenerationBase<AffineDataCopyGeneration> {
54   AffineDataCopyGeneration() = default;
55   explicit AffineDataCopyGeneration(unsigned slowMemorySpace,
56                                     unsigned fastMemorySpace,
57                                     unsigned tagMemorySpace,
58                                     int minDmaTransferSize,
59                                     uint64_t fastMemCapacityBytes) {
60     this->slowMemorySpace = slowMemorySpace;
61     this->fastMemorySpace = fastMemorySpace;
62     this->tagMemorySpace = tagMemorySpace;
63     this->minDmaTransferSize = minDmaTransferSize;
64     this->fastMemoryCapacity = fastMemCapacityBytes / 1024;
65   }
66 
67   void runOnFunction() override;
68   LogicalResult runOnBlock(Block *block, DenseSet<Operation *> &copyNests);
69 
70   // Constant zero index to avoid too many duplicates.
71   Value zeroIndex = nullptr;
72 };
73 
74 } // end anonymous namespace
75 
76 /// Generates copies for memref's living in 'slowMemorySpace' into newly created
77 /// buffers in 'fastMemorySpace', and replaces memory operations to the former
78 /// by the latter. Only load op's handled for now.
79 /// TODO: extend this to store op's.
80 std::unique_ptr<OperationPass<FuncOp>> mlir::createAffineDataCopyGenerationPass(
81     unsigned slowMemorySpace, unsigned fastMemorySpace, unsigned tagMemorySpace,
82     int minDmaTransferSize, uint64_t fastMemCapacityBytes) {
83   return std::make_unique<AffineDataCopyGeneration>(
84       slowMemorySpace, fastMemorySpace, tagMemorySpace, minDmaTransferSize,
85       fastMemCapacityBytes);
86 }
87 std::unique_ptr<OperationPass<FuncOp>>
88 mlir::createAffineDataCopyGenerationPass() {
89   return std::make_unique<AffineDataCopyGeneration>();
90 }
91 
92 /// Generate copies for this block. The block is partitioned into separate
93 /// ranges: each range is either a sequence of one or more operations starting
94 /// and ending with an affine load or store op, or just an affine.forop (which
95 /// could have other affine for op's nested within).
96 LogicalResult
97 AffineDataCopyGeneration::runOnBlock(Block *block,
98                                      DenseSet<Operation *> &copyNests) {
99   if (block->empty())
100     return success();
101 
102   uint64_t fastMemCapacityBytes =
103       fastMemoryCapacity != std::numeric_limits<uint64_t>::max()
104           ? fastMemoryCapacity * 1024
105           : fastMemoryCapacity;
106   AffineCopyOptions copyOptions = {generateDma, slowMemorySpace,
107                                    fastMemorySpace, tagMemorySpace,
108                                    fastMemCapacityBytes};
109 
110   // Every affine.forop in the block starts and ends a block range for copying;
111   // in addition, a contiguous sequence of operations starting with a
112   // load/store op but not including any copy nests themselves is also
113   // identified as a copy block range. Straightline code (a contiguous chunk of
114   // operations excluding AffineForOp's) are always assumed to not exhaust
115   // memory. As a result, this approach is conservative in some cases at the
116   // moment; we do a check later and report an error with location info.
117   // TODO: An 'affine.if' operation is being treated similar to an
118   // operation. 'affine.if''s could have 'affine.for's in them;
119   // treat them separately.
120 
121   // Get to the first load, store, or for op (that is not a copy nest itself).
122   auto curBegin =
123       std::find_if(block->begin(), block->end(), [&](Operation &op) {
124         return isa<AffineLoadOp, AffineStoreOp, AffineForOp>(op) &&
125                copyNests.count(&op) == 0;
126       });
127 
128   // Create [begin, end) ranges.
129   auto it = curBegin;
130   while (it != block->end()) {
131     AffineForOp forOp;
132     // If you hit a non-copy for loop, we will split there.
133     if ((forOp = dyn_cast<AffineForOp>(&*it)) && copyNests.count(forOp) == 0) {
134       // Perform the copying up unti this 'for' op first.
135       affineDataCopyGenerate(/*begin=*/curBegin, /*end=*/it, copyOptions,
136                              /*filterMemRef=*/llvm::None, copyNests);
137 
138       // Returns true if the footprint is known to exceed capacity.
139       auto exceedsCapacity = [&](AffineForOp forOp) {
140         Optional<int64_t> footprint =
141             getMemoryFootprintBytes(forOp,
142                                     /*memorySpace=*/0);
143         return (footprint.hasValue() &&
144                 static_cast<uint64_t>(footprint.getValue()) >
145                     fastMemCapacityBytes);
146       };
147 
148       // If the memory footprint of the 'affine.for' loop is higher than fast
149       // memory capacity (when provided), we recurse to copy at an inner level
150       // until we find a depth at which footprint fits in fast mem capacity. If
151       // the footprint can't be calculated, we assume for now it fits. Recurse
152       // inside if footprint for 'forOp' exceeds capacity, or when
153       // skipNonUnitStrideLoops is set and the step size is not one.
154       bool recurseInner = skipNonUnitStrideLoops ? forOp.getStep() != 1
155                                                  : exceedsCapacity(forOp);
156       if (recurseInner) {
157         // We'll recurse and do the copies at an inner level for 'forInst'.
158         // Recurse onto the body of this loop.
159         (void)runOnBlock(forOp.getBody(), copyNests);
160       } else {
161         // We have enough capacity, i.e., copies will be computed for the
162         // portion of the block until 'it', and for 'it', which is 'forOp'. Note
163         // that for the latter, the copies are placed just before this loop (for
164         // incoming copies) and right after (for outgoing ones).
165 
166         // Inner loop copies have their own scope - we don't thus update
167         // consumed capacity. The footprint check above guarantees this inner
168         // loop's footprint fits.
169         affineDataCopyGenerate(/*begin=*/it, /*end=*/std::next(it), copyOptions,
170                                /*filterMemRef=*/llvm::None, copyNests);
171       }
172       // Get to the next load or store op after 'forOp'.
173       curBegin = std::find_if(std::next(it), block->end(), [&](Operation &op) {
174         return isa<AffineLoadOp, AffineStoreOp, AffineForOp>(op) &&
175                copyNests.count(&op) == 0;
176       });
177       it = curBegin;
178     } else {
179       assert(copyNests.count(&*it) == 0 &&
180              "all copy nests generated should have been skipped above");
181       // We simply include this op in the current range and continue for more.
182       ++it;
183     }
184   }
185 
186   // Generate the copy for the final block range.
187   if (curBegin != block->end()) {
188     // Can't be a terminator because it would have been skipped above.
189     assert(!curBegin->hasTrait<OpTrait::IsTerminator>() &&
190            "can't be a terminator");
191     // Exclude the affine.yield - hence, the std::prev.
192     affineDataCopyGenerate(/*begin=*/curBegin, /*end=*/std::prev(block->end()),
193                            copyOptions, /*filterMemRef=*/llvm::None, copyNests);
194   }
195 
196   return success();
197 }
198 
199 void AffineDataCopyGeneration::runOnFunction() {
200   FuncOp f = getFunction();
201   OpBuilder topBuilder(f.getBody());
202   zeroIndex = topBuilder.create<ConstantIndexOp>(f.getLoc(), 0);
203 
204   // Nests that are copy-in's or copy-out's; the root AffineForOps of those
205   // nests are stored herein.
206   DenseSet<Operation *> copyNests;
207 
208   // Clear recorded copy nests.
209   copyNests.clear();
210 
211   for (auto &block : f)
212     (void)runOnBlock(&block, copyNests);
213 
214   // Promote any single iteration loops in the copy nests and collect
215   // load/stores to simplify.
216   SmallVector<Operation *, 4> copyOps;
217   for (Operation *nest : copyNests)
218     // With a post order walk, the erasure of loops does not affect
219     // continuation of the walk or the collection of load/store ops.
220     nest->walk([&](Operation *op) {
221       if (auto forOp = dyn_cast<AffineForOp>(op))
222         (void)promoteIfSingleIteration(forOp);
223       else if (isa<AffineLoadOp, AffineStoreOp>(op))
224         copyOps.push_back(op);
225     });
226 
227   // Promoting single iteration loops could lead to simplification of
228   // contained load's/store's, and the latter could anyway also be
229   // canonicalized.
230   RewritePatternSet patterns(&getContext());
231   AffineLoadOp::getCanonicalizationPatterns(patterns, &getContext());
232   AffineStoreOp::getCanonicalizationPatterns(patterns, &getContext());
233   FrozenRewritePatternSet frozenPatterns(std::move(patterns));
234   (void)applyOpPatternsAndFold(copyOps, frozenPatterns, /*strict=*/true);
235 }
236