1 //===- AffineDataCopyGeneration.cpp - Explicit memref copying pass ------*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a pass to automatically promote accessed memref regions
10 // to buffers in a faster memory space that is explicitly managed, with the
11 // necessary data movement operations performed through either regular
12 // point-wise load/store's or DMAs. Such explicit copying (also referred to as
13 // array packing/unpacking in the literature), when done on arrays that exhibit
14 // reuse, results in near elimination of conflict misses, TLB misses, reduced
15 // use of hardware prefetch streams, and reduced false sharing. It is also
16 // necessary for hardware that explicitly managed levels in the memory
17 // hierarchy, and where DMAs may have to be used. This optimization is often
18 // performed on already tiled code.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "PassDetail.h"
23 #include "mlir/Dialect/Affine/Analysis/Utils.h"
24 #include "mlir/Dialect/Affine/IR/AffineOps.h"
25 #include "mlir/Dialect/Affine/LoopUtils.h"
26 #include "mlir/Dialect/Affine/Passes.h"
27 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
28 #include "mlir/Dialect/MemRef/IR/MemRef.h"
29 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
30 #include "llvm/ADT/MapVector.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include <algorithm>
34
35 #define DEBUG_TYPE "affine-data-copy-generate"
36
37 using namespace mlir;
38
39 namespace {
40
41 /// Replaces all loads and stores on memref's living in 'slowMemorySpace' by
42 /// introducing copy operations to transfer data into `fastMemorySpace` and
43 /// rewriting the original load's/store's to instead load/store from the
44 /// allocated fast memory buffers. Additional options specify the identifier
45 /// corresponding to the fast memory space and the amount of fast memory space
46 /// available. The pass traverses through the nesting structure, recursing to
47 /// inner levels if necessary to determine at what depth copies need to be
48 /// placed so that the allocated buffers fit within the memory capacity
49 /// provided.
50 // TODO: We currently can't generate copies correctly when stores
51 // are strided. Check for strided stores.
52 struct AffineDataCopyGeneration
53 : public AffineDataCopyGenerationBase<AffineDataCopyGeneration> {
54 AffineDataCopyGeneration() = default;
AffineDataCopyGeneration__anonbab2f4fe0111::AffineDataCopyGeneration55 explicit AffineDataCopyGeneration(unsigned slowMemorySpace,
56 unsigned fastMemorySpace,
57 unsigned tagMemorySpace,
58 int minDmaTransferSize,
59 uint64_t fastMemCapacityBytes) {
60 this->slowMemorySpace = slowMemorySpace;
61 this->fastMemorySpace = fastMemorySpace;
62 this->tagMemorySpace = tagMemorySpace;
63 this->minDmaTransferSize = minDmaTransferSize;
64 this->fastMemoryCapacity = fastMemCapacityBytes / 1024;
65 }
66
67 void runOnOperation() override;
68 void runOnBlock(Block *block, DenseSet<Operation *> ©Nests);
69
70 // Constant zero index to avoid too many duplicates.
71 Value zeroIndex = nullptr;
72 };
73
74 } // namespace
75
76 /// Generates copies for memref's living in 'slowMemorySpace' into newly created
77 /// buffers in 'fastMemorySpace', and replaces memory operations to the former
78 /// by the latter. Only load op's handled for now.
79 /// TODO: extend this to store op's.
80 std::unique_ptr<OperationPass<func::FuncOp>>
createAffineDataCopyGenerationPass(unsigned slowMemorySpace,unsigned fastMemorySpace,unsigned tagMemorySpace,int minDmaTransferSize,uint64_t fastMemCapacityBytes)81 mlir::createAffineDataCopyGenerationPass(unsigned slowMemorySpace,
82 unsigned fastMemorySpace,
83 unsigned tagMemorySpace,
84 int minDmaTransferSize,
85 uint64_t fastMemCapacityBytes) {
86 return std::make_unique<AffineDataCopyGeneration>(
87 slowMemorySpace, fastMemorySpace, tagMemorySpace, minDmaTransferSize,
88 fastMemCapacityBytes);
89 }
90 std::unique_ptr<OperationPass<func::FuncOp>>
createAffineDataCopyGenerationPass()91 mlir::createAffineDataCopyGenerationPass() {
92 return std::make_unique<AffineDataCopyGeneration>();
93 }
94
95 /// Generate copies for this block. The block is partitioned into separate
96 /// ranges: each range is either a sequence of one or more operations starting
97 /// and ending with an affine load or store op, or just an affine.forop (which
98 /// could have other affine for op's nested within).
runOnBlock(Block * block,DenseSet<Operation * > & copyNests)99 void AffineDataCopyGeneration::runOnBlock(Block *block,
100 DenseSet<Operation *> ©Nests) {
101 if (block->empty())
102 return;
103
104 uint64_t fastMemCapacityBytes =
105 fastMemoryCapacity != std::numeric_limits<uint64_t>::max()
106 ? fastMemoryCapacity * 1024
107 : fastMemoryCapacity;
108 AffineCopyOptions copyOptions = {generateDma, slowMemorySpace,
109 fastMemorySpace, tagMemorySpace,
110 fastMemCapacityBytes};
111
112 // Every affine.for op in the block starts and ends a block range for copying;
113 // in addition, a contiguous sequence of operations starting with a
114 // load/store op but not including any copy nests themselves is also
115 // identified as a copy block range. Straightline code (a contiguous chunk of
116 // operations excluding AffineForOp's) are always assumed to not exhaust
117 // memory. As a result, this approach is conservative in some cases at the
118 // moment; we do a check later and report an error with location info.
119 // TODO: An 'affine.if' operation is being treated similar to an
120 // operation. 'affine.if''s could have 'affine.for's in them;
121 // treat them separately.
122
123 // Get to the first load, store, or for op (that is not a copy nest itself).
124 auto curBegin =
125 std::find_if(block->begin(), block->end(), [&](Operation &op) {
126 return isa<AffineLoadOp, AffineStoreOp, AffineForOp>(op) &&
127 copyNests.count(&op) == 0;
128 });
129
130 // Create [begin, end) ranges.
131 auto it = curBegin;
132 while (it != block->end()) {
133 AffineForOp forOp;
134 // If you hit a non-copy for loop, we will split there.
135 if ((forOp = dyn_cast<AffineForOp>(&*it)) && copyNests.count(forOp) == 0) {
136 // Perform the copying up unti this 'for' op first.
137 (void)affineDataCopyGenerate(/*begin=*/curBegin, /*end=*/it, copyOptions,
138 /*filterMemRef=*/llvm::None, copyNests);
139
140 // Returns true if the footprint is known to exceed capacity.
141 auto exceedsCapacity = [&](AffineForOp forOp) {
142 Optional<int64_t> footprint =
143 getMemoryFootprintBytes(forOp,
144 /*memorySpace=*/0);
145 return (footprint.has_value() &&
146 static_cast<uint64_t>(footprint.value()) >
147 fastMemCapacityBytes);
148 };
149
150 // If the memory footprint of the 'affine.for' loop is higher than fast
151 // memory capacity (when provided), we recurse to copy at an inner level
152 // until we find a depth at which footprint fits in fast mem capacity. If
153 // the footprint can't be calculated, we assume for now it fits. Recurse
154 // inside if footprint for 'forOp' exceeds capacity, or when
155 // skipNonUnitStrideLoops is set and the step size is not one.
156 bool recurseInner = skipNonUnitStrideLoops ? forOp.getStep() != 1
157 : exceedsCapacity(forOp);
158 if (recurseInner) {
159 // We'll recurse and do the copies at an inner level for 'forInst'.
160 // Recurse onto the body of this loop.
161 runOnBlock(forOp.getBody(), copyNests);
162 } else {
163 // We have enough capacity, i.e., copies will be computed for the
164 // portion of the block until 'it', and for 'it', which is 'forOp'. Note
165 // that for the latter, the copies are placed just before this loop (for
166 // incoming copies) and right after (for outgoing ones).
167
168 // Inner loop copies have their own scope - we don't thus update
169 // consumed capacity. The footprint check above guarantees this inner
170 // loop's footprint fits.
171 (void)affineDataCopyGenerate(/*begin=*/it, /*end=*/std::next(it),
172 copyOptions,
173 /*filterMemRef=*/llvm::None, copyNests);
174 }
175 // Get to the next load or store op after 'forOp'.
176 curBegin = std::find_if(std::next(it), block->end(), [&](Operation &op) {
177 return isa<AffineLoadOp, AffineStoreOp, AffineForOp>(op) &&
178 copyNests.count(&op) == 0;
179 });
180 it = curBegin;
181 } else {
182 assert(copyNests.count(&*it) == 0 &&
183 "all copy nests generated should have been skipped above");
184 // We simply include this op in the current range and continue for more.
185 ++it;
186 }
187 }
188
189 // Generate the copy for the final block range.
190 if (curBegin != block->end()) {
191 // Can't be a terminator because it would have been skipped above.
192 assert(!curBegin->hasTrait<OpTrait::IsTerminator>() &&
193 "can't be a terminator");
194 // Exclude the affine.yield - hence, the std::prev.
195 (void)affineDataCopyGenerate(/*begin=*/curBegin,
196 /*end=*/std::prev(block->end()), copyOptions,
197 /*filterMemRef=*/llvm::None, copyNests);
198 }
199 }
200
runOnOperation()201 void AffineDataCopyGeneration::runOnOperation() {
202 func::FuncOp f = getOperation();
203 OpBuilder topBuilder(f.getBody());
204 zeroIndex = topBuilder.create<arith::ConstantIndexOp>(f.getLoc(), 0);
205
206 // Nests that are copy-in's or copy-out's; the root AffineForOps of those
207 // nests are stored herein.
208 DenseSet<Operation *> copyNests;
209
210 // Clear recorded copy nests.
211 copyNests.clear();
212
213 for (auto &block : f)
214 runOnBlock(&block, copyNests);
215
216 // Promote any single iteration loops in the copy nests and collect
217 // load/stores to simplify.
218 SmallVector<Operation *, 4> copyOps;
219 for (Operation *nest : copyNests)
220 // With a post order walk, the erasure of loops does not affect
221 // continuation of the walk or the collection of load/store ops.
222 nest->walk([&](Operation *op) {
223 if (auto forOp = dyn_cast<AffineForOp>(op))
224 (void)promoteIfSingleIteration(forOp);
225 else if (isa<AffineLoadOp, AffineStoreOp>(op))
226 copyOps.push_back(op);
227 });
228
229 // Promoting single iteration loops could lead to simplification of
230 // contained load's/store's, and the latter could anyway also be
231 // canonicalized.
232 RewritePatternSet patterns(&getContext());
233 AffineLoadOp::getCanonicalizationPatterns(patterns, &getContext());
234 AffineStoreOp::getCanonicalizationPatterns(patterns, &getContext());
235 FrozenRewritePatternSet frozenPatterns(std::move(patterns));
236 (void)applyOpPatternsAndFold(copyOps, frozenPatterns, /*strict=*/true);
237 }
238